
1

Comp 411: Sample Midterm Examination

(With Answers)

March 1, 2024

Name:

Id #:

NetID:

Instructions
1. The examination is closed book. If you forget the name for a Scheme

operation, make up a name for it and write a brief explanation in the

margin.

2. Fill in the information above and the pledge below.

3. There are 6 problems on the exam, totaling 100 points on the exam.

4. You have three hours to complete the exam.

Pledge:

2

Problem 1. (10 points) Al Gaulle, a programmer for Kludge, Inc., is designing a simple

extension language for a business software package. He is proposing the grammar for

imperative Jam (Project 4) except for the following revision to the syntax for if-

expressions:

<if-exp> ::= if <exp> then <exp> else <exp>
 | if <exp> then <exp>

Do you see any problems with this specification (besides the questionable use of Jam

as the foundation for his language), particularly his revision to Jam syntax? State your

criticism precisely.

His extension ostensibly is a flawed design because the syntax as specified by the CFG

above is ambiguous. There are two distinct parse trees for the following expression:

 if flag1 then if flag2 then foo() else bar()

The else clause can be associated with either of the two if expressions.

 if flag1 then (if flag2 then foo() else bar())

or

 if flag1 then (if flag2 then foo()) else bar()

On the other hand, if we write the parser based on the corresponding syntax diagrams

which maximize the length of each parsed sub-expression, the extra production for

<if-exp> does not create any problems. The expression:

 if flag1 then if flag2 then foo() else bar()

is parsed as

 if flag1 then (if flag2 then foo() else bar())

because the else is absorbed by the inner <if-exp> in the longest match.

3

Problem 2. (10 points) Al Gaulle is responsible for maintaining a Jam (without

recursive let as in Assignment 2) program written by another programmer. In the

middle of the program, Al notices expression

 let twice := map f to map t to f(f(t));
 t := 10;
 in twice(map n to t*n)

Al decides to optimize the program by

(i) “inlining” the definition of twice ,

(ii) reducing the application of the body [binding] of twice to

map n to t*n [using beta-reduction], and

(iii) eliminating the now dead binding of twice to yield:

 let t := 10;

 in map t to (map n to t*n) ((map n to t*n) (t))

Did he optimize the program correctly? Why or why not?

No. He did not optimize the program correctly.

The inlining of twice is valid yielding

=> let twice := map f to map t to f(f(t));
 t := 10;
 in (map f to map t to f(f(t))) (map n to t*n)

since twice has no free variables. But the next step

=> let twice := map f to map t to f(f(t));
 t := 10;
 in map t to (map n to t*n) ((map n to t*n) (t))

captures the free occurrence of t in map n to t*n.

[Optional:] The correct implementation of the optimization uses safe substitution for f

=> let twice := map f to map t to f(f(t));
 t := 10;
 in map s to (map n to t*n) ((map n to t*n) (s))

=> let t := 10;
 in map s to (map n to t*n) ((map n to t*n) (s))

which can be further optimized.

4

Problem 3. (20 points) Assume that our Jam dialect supports both raw let (as in Project

2) and letrec (the meaning of let in Project 3). Recall that the raw let expression

let x1 := E1; x2
:= E2; . . .
xn := En;

in E

abbreviates

(map x1, x2, ..., xn to E)(E1, E2, ..., En)

and that letrec is the recursive generalization of let as described in Assignment 3. For

this problem, we augment our Jam language with the let* construct from Scheme as

defined below. The let* construct has the same syntax as let except for the change

in the opening keyword (from let to let*). The let* construct can be defined in

terms of the raw let construct as follows:

 let* x1 := E1; x2 := E2; ..., xn := En; in E

abbreviates

 let x1 := E1;

 in let x2 := E2;

 in ...

 in let xn := En;

 in E

For each of the following two Jam expressions (which could generate run-time errors):

1. circle each binding occurrence of a variable;
2. draw arrows from each bound occurrence back to the corresponding binding

occurrence; and
3. draw a square box around any free occurrence of a variable within the entire

expression.
Do not classify Jam primitive operations including first, rest, cons, empty, empty?,

cons?, list?, and all unary and binary operators as variables; they are function

constants.

For example, given the expression

 let x := 17;
 y := 12;
 in x * y + y + z

5

the correct answer is:

For each of the two following expressions, circle each binding occurrence of a variable
and draw arrows from each bound occurrence back to the corresponding binding
occurrence.

1. let*

 fib := map n to

 letrec fibhelp := map k,fn,fnm1 to

 if k = 0 then fn

 else fibhelp(k - 1, fn + fnm1, fn);

 in if n < 2 then 1 else fibhelp(n – 1, 1, 1);

 fib100 := fib(100);

in fib100 * fib100 + fib(z)

2. let pair := map x, y to
 let x := x;
 y := y;
 // a functional representation of pairs
 in map msg to if msg = 0 then x else y;

in (pair(50, 100))(0)

6

Problem 4. (20 points) Let Jam have the name-value semantics specified in assignment 3,

i.e., map parameters are passed by name, cons is strict (as in Assignment 2 Jam), and let

is recursive. Consider the Jam expression:

 let and := map x,y to if x then y else false;

 or := map x,y to if x then true else y;

 member := map x,l to and(cons?(l), or(x = first(l), member(x, rest(l))));

 in member(1, cons(1, empty))

a. Using explicit substitution, show every step in the evaluation of this expression. Please

use abbreviations to shorten your trace.

 let and := map x,y to if x then y else false;

 or := map x,y to if x then true else y;

 member := map x,l to and(cons?(l), or(x = first(l), member(x, rest(l)));

 in member(1, cons(1, empty))

=> let ... in (map x,l to ...)(1, cons(1, empty))

=> let ... in and(cons?(cons(1,empty)),

 or(1 = first(cons(1,empty)), member(1,rest(cons(1,empty))))

=> let ... in (map x,y to if x then y else false)

 (cons?(cons(1,empty)),

 or(1 = first(cons(1,empty)), member(1,rest(cons(1,empty))))

=> let ... in if (cons?(cons(1,empty)) then

 or(1 = 1, member(1,rest(cons(1,empty))))

 else false

=> let ... in if true then

 or(1 = first(cons(1, null)), member(1, rest(cons(1, null))))

 else false

=> let ... in or(1 = first(cons(1, null)), member(1, rest(cons(1, null))))

=> let ... in (map x,y to ...)(1 = first(cons(1, null)),

 member(1, rest(cons(1, null))))

=> let ... in if 1 = first(cons(1, null)) then true

 else member(1, rest(cons(1, null)))

=> let ... in if 1 = 1 then true else member(1,rest(cons(1,empty)))

=> let ... in if true then true else member(1,rest(cons(1,empty)))

=> let ... in true

=> true

7

b. Assume that Jam passes parameters by value rather than by name and that cons is

still strict (yielding value-value semantics from Project 3). Show every step in the

evaluation of the preceding expression. Please use abbreviations to shorten your

trace.

 let and := map x,y to if x then y else false;

 or := map x,y to if x then true else y;

 member := map x,l to and(cons?(l), or(x = first(l), member(x, rest(l)));

 in member(1, cons(1, empty))

=> let ... in (map x,l to ...)(1, cons(1, empty))

=> let ... in and(cons?(cons(1,empty)), or(1=first(cons(1,empty)), member(1,rest(cons(1,empty)))))

=> let ... in (map x,y to ...)

 (cons?(cons(1,empty)), or(1 = first(cons(1,empty)), member(1,rest(cons(1,empty)))))

=> let ... in (map x,y to ...)(true, or(1 = first(cons(1,empty)), member(1,rest(cons(1,empty)))))

=> let ... in (map x,y to ...)

 (true, (map x,y to if x then true else y)

 (1 = first(cons(1,empty)), member(1, rest(cons(1,empty)))))

=> let ... in (map x,y to ...)(true, (map x,y to if x then true else y)

 (1 = 1, member(1,rest(cons(1,empty)))))

=> let ... in (map x,y to ...)(true, (map x,y to ...)(true, member(1, rest(cons(1,empty)))))

=> let ... in (map x,y to ...)(true, (map x,y to ...)(true, (map x,l to ...)

 (1, rest(cons(1,empty)))))

=> let ... in (map x,y to ...)(true, (map x,y to ...)(true, (map x,l to ...)(1,empty)))

=> let ... in (map x,y to ...)(true,

 (map x,y to ...)

 (true, and(cons?(empty), or(1 = first(empty), member(...)))))

=> let ... in (map x,y to ...)(true,

 (map x,y to ...)

 (true, (map x,y to ...)

 (cons?(empty), or(1 = first(empty), member(...)))))

=> let ... in (map x,y to ...)(true,

 (map x,y to ...)

 (true, (map x,y to ...)

 (false, or(1 = first(empty), member(...)))))

=> let ... in (map x,y to ...)(true, (map x,y to ...)

 (true, (map x,y to ...)

 (false,

 (map x,y to if x then true else y)

 (1 = first(empty), member(...)))))

=> run-time error: applying first to empty

8

Problem 5. (20 points) Al Gaulle has designed the ultimate Algol dialect supporting

passing parameters by value, by name, by reference, and by value-result. For value-

result parameter passing, follow the usual convention where the argument left-hand

evaluated on entry to the procedure and that the resulting location is used on exit.

Consider the following Algol-like program (written in Java-like notation):

 int i,j,a[5]; // a is an 5 element array with indices 0-4
 procedure swap(int x, int y) {
 int temp = x; x = y; y = temp;
 }

 for (j = 0; j < 5; j++) a[j] := j;

 i := 1;
 swap(i,a[i+1]);
 write(i,a[2]);

What numbers does the program print if both parameters in swap are passed by:

1. value?

Just prior to the swap statement, a = {0,1,2,3,4} and i = 1. The call on swap has no

effect on the actual parameters since they are passed by value. Hence, the program

outputs:

1 2

2. reference?

Just prior to the swap statement, a = {0,1,2,3,4} and i = 1. The call on swap swaps

the contents of i and a[2], yielding a = {0,1,1,3,4} and i = 2. Hence, the program

outputs:

 2 1

3. name?

Just prior to the swap statement, a = {0,1,2,3,4} and i = 1. Let us trace the call on

swap in detail. Within the body of swap, x is synonymous with the variable i; y is

synonymous with the variable a[i+1]. temp is set to the contents of x (i) which is

1. x (i) is set to the contents of y (a[2]) which is 2. y (a[3] since i is now 2) is set

9

to temp which is 1. On exit from swap, a = {0,1,2,1,4} and i = 2. Hence, the program

outputs:

 2 2

4. value-result?

Just prior to the swap statement, a = {0,1,2,3,4} and i = 1. After entering swap, x is

bound to 1 and y is bound 2 just as in call-by-value. The left-hand value associated

with x is the cell i and the left-hand value associated with y is the cell a[2]. Just

before exiting swap, the values of x and y have been swapped: x = 2 and y = 1. Call-

by-result stores 2 in i and 1 in a[2]. Hence, the program outputs:

 2 1

Algol evaluates procedure arguments in left-to-right order. You can get partial credit if

you show your hand evaluation of the code. Some answers may be indeterminate.

10

Problem 6. [20 points]

This problem uses value-value Jam dialect from Assignment 3 (recall that let is

recursive). In this problem you will convert a simple Jam program from conventional

syntax using named variables to 0-based static-distance coordinate form. In this

conversion, use

 the notation [*k*] to signify a sequence of k variables introduced by map, let, or

letrec;

 the notation (i:j) for an occurrence of the static distance variable that is defined

i levels outside the current (immediately enclosing) map or let construction and

appears in the jth (0-based) position in the list of variables defined in the matching

construction; and

 the right-hand-side expression E followed by a semi-colon for each binding <var>

:= E; introduced in a let or letrec construction.

Hence, the static distance coordinate (0:0) in the body of a map, let or letrec

construction refers to the 0th (first) variable in the enclosing map or construction.

For example, the Jam program

 let id := map x to x; in cons(id(17), empty)

has the 0-based static distance representation:

 let [*1*] map [*1*] to (0:0); in cons((0:0)(17), empty)

Note that the := separator in let notation vanishes when it is converted to static-

distance form, but we still need to put semicolons at the end of each binding expression

to separate them. Also note that 0 as a static distance coordinate refers the first entity

when counting. Hence, in the body of (map x to x), x converts to that static distance

coordinate (0:0), i.e., (map x to x) converts to (map [*1*] to (0:0))

Convert the following Jam program to 0-based static distance form. Note that all

variable names (e.g., maplist, f, s, and x) will be replaced by static distance

coordinates but the names of primitive operations (constants) like empty?, cons, first,

and rest are retained.

let and := map x,y to if x then y else false;

 or := map x,y to if x then true else y;

 member := map x,l to

11

 and(cons?(l), or(x = first(l), member(x, rest(l))));

in member(1, cons(1, null))

Solution:

let [*3]

 map [*2] to if (0:0) then (0:1) else false;

 map [*2] to if (0:0) then true else (0:1);

 map [*2] to

 (1:0)(cons?((0:1)), (1:1)((0:0)=first((0:1), (1:2)((0:0),rest((0:1))

12

Addendum On the midterm exam, there may be an extra-credit question

involving domain theory.

