
Comp 411

Principles of Programming Languages

Lecture 1

Course Overview and Culture

Corky Cartwright

January 10, 2022

Course Facts
• Course web page:

https://ricecomp411.github.io/Master-2022/MainPage.pdf

• Piazza page:
piazza.com/rice/spring2022/comp411

• Instructors:

• Robert “Corky” Cartwright (DCH 3104, Office Hours MW 3-4pm)

• Zoran Budimlic (DCH 3134, Office Hours WF 2-3pm)

• Teaching Assistants:

• Shaan Nagy

• Chatham Abate

• TBA

• TBA

• Coding style matters; testing suites really matter.

• Grade in Comp 411 is 50% assignments and 50% tests; there is a scheduled
mid-term and a scheduled final; each counts 25%. Class participation
concerning lectures can add up to a 5% extra credit bonus. See the tentative
schedule on the course web page.

https://ricecomp411.github.io/Master-2022/MainPage.pdf
1.pptx

Comp 411 vs. 511

● No difference.

● In the past, Comp 511 included a few extra

assignments that were insignificant.

Why Study Programming Languages?

• Programmers must master the programming languages of
importance within the domains in which they are working.

• Program correctness hinges on the meaning of program text.

• New languages are continually being developed. Who knows what
languages may be involved in computing 25 years from now?

• Many software applications involve defining and implementing a
programming language.

• A deep knowledge of programming languages expands the range of
possible solutions available to a software developer. A program
design may involve extending the designated implementation
language either explicitly (macros, pre-processors & custom class
loaders) or implicitly (new libraries, hand-translation).

• The correctness of portable software hinges on program semantics
independent of the underlying implementation.

What is Comp 411?

Anatomy (Syntax) and Physiology
(Semantics) of Programming Languages
• What is the anatomy of a programming language

• Parsing and abstract syntax

• Lexical nesting and the scope of variables

• Static properties of languages (e.g., typing) are
syntax-directed.

• What are the conceptual building blocks of
programming languages? (Common anatomical
structures and their functions)

• Use syntactic reduction and high-level
interpretation to define meaning of languages
(expression evaluators)

What is Comp 411? (cont.)

• Using anatomy to prevent bugs
• Type systems (syntactic tags with semantic content)

• Type checking

• Type inference (reconstruction)

• Mechanisms for language extension
• Syntax extension (macros)

• Reflection

• Custom class loaders

• Sketch how the interpretive process can be

efficiently implemented by machine instructions

(intelligent compilation) using good data

representations
• Environment representations

• CPS transformation

• Storage management: reference counting and garbage collection

Subtext of Comp 411
• Teach good software engineering practice in Java.

• You have to write a significant number of conceptually challenging
lines of code in this course. With good software engineering
practices, the workload is reasonable.

• With poor software engineering practices, the workload is
unreasonable.

• The assignments in this course leverage abstractions that are not
explicit in Java but are easily encoded using the proper design
patterns (e.g., composite, interpreter, strategy, visitor).

• In putative successors to Java, notably Scala and Swift, some of
these abstractions are built-in to the language. Unfortunately, the
semantics of Scala are hideously complex. Martin Odersky has
assured me that a new edition of Scala with a semantically tractable
core subset is in the pipeline. I am skeptical. Swift is simpler but
the open source version is not as well supported as Java and there is
a paucity of open source libraries. Moreover, it is still evolving. I
am hopeful that we can use Swift in the future. In the meantime,
we will use Java, which is a decent language if it used properly.

Good Software Engineering

Practice

• Test-driven design
• Unit tests for each non-trivial method written before

any method code is written

• Unit tests are a permanent part of the code base

• Pair programming (no longer feasible with
remote instruction and distributed development)

• Continual integration

• Continual refactoring to avoid code duplication

• Conscientious documentation (contracts)

• Avoiding mutation unless there is a compelling
reason to introduce it.

Course Culture
• Approximately 8 programming assignments

• 7 required

• 2 extra credit

• Assignments must be done in Generic Java (Java 8 including

parameterized types). You an use newer versions of Java to develop

programs but verify that you submitted code compiles and runs using

Java 8. We encourage you to use DrJava or IntelliJ. JUnit, JaCoco (a

code coverage tool developed by the Eclipse team, which is used in

many IDEs), and javadoc are built-in to DrJava and they are fully

compatible with command line compilation, execution, and testing

(using ant scripts).

• Late assignments not accepted, but …

• Every student has 7 slip days to use as he/she sees fit.

• A maximum of 3 slip days can be used on each of first three assignments.

• Advice: save as many slip days as possible until late in the term. The last two

assignments are the most time-consuming.

Course Culture (cont.)

• Assignments are cumulative.

• Class solutions are provided for the first three

assignments three days after they are due.

• After the third assignment, you are on your own

except for skeleton test suites which we will

provide. Extensive unit testing is important. In

most of the projects, you can reuse previous unit

tests on subsequent assignments with little or no

change.

Course Culture, cont.

• My teaching style
• Encourage you to develop a passion for the

subject and personally digest and master the
material.

• Make the course accessible to students who
don't aspire to become language researchers

• Weaknesses:
• Tendency to digress.

• Explain concepts at too abstract a level without
sufficient examples.

• Redress: remind me when I have strayed from
the course outline; ask questions about
examples and tell me if my explanations are
too abstract.

