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A Syntactic Interpreter for LC
• Recall our definition of the  LC language:

M :== x | n | (lambda x M) | (M M) | (+ M M)

where x is any variable in Var and n is a number (integer) in Num. A 
proper LC program is an LC expression M that is closed, i.e., contains 
no free variables. An LC program is any LC expression.

• The preceding is a conventional CFG definition but it parallels an 
abstract syntax definition (trees) because all constructed (non atomic) 
expressions are enclosed in parentheses, showing the precise structure 
of the corresponding AST.

• The set R of abstract representations is defined bv the equation:
R = (make-var Var) | (make-const Num) | (make-proc Var R) |

(make-app R R) | (make-add R R)

where we have defined the following Scheme data types

(define-struct var (name))
(define-struct const (number))

(define-struct proc (param body))
(define-struct app (rator rand))
(define-struct add (left right))



Syntactic Interpretation

• What does syntactic interpretation do?  Transform ASTs to 

values.

• What is a value?  An AST representing a data constant.

• Syntactic interpretation reduces the AST for a complete 
program to a value.  We arrange our evaluation rules so that 
every expression in the chain of expressions produced by 
the reduction process is a complete program.  Our semantics 
simply rewrites programs until the result is a value. 

• What is a value?  An AST representing a data constant. In 

LC (which a subset of Scheme), a value V is either a number 

or a procedure:

V :== n | (lambda x M)

• What are the Racket/Scheme evaluation rules (from Comp 
311) that are relevant to LC?



A Syntactic Interpreter for LC cont.
Basic Rules of Evaluation for call-by-value (universal in mainstream languages)

• Rule 1: For applications of the binary operator + to two arguments that are 
numbers, replace the application by the sum of the two arguments (a number).

• Rule 2: For applications of a lambda-expression to a value (defined below), 
substitute the argument for  the parameter in the body, i.e.,

((lambda x M) V)  --->   M[x := V]

where M[x := V] means M with all free occurrences of x replaced by V.

• Observation: the definition of value has a major impact on evaluation.

• What happens if we define

V :== n | v | (lambda x V)

• Some evaluation strategies for the untyped lambda-calculus essentially do this, 
but they have not proven relevant to defining the semantics of real 
programming languages.  Why?

• What if we allow arguments in procedure application reductions that aren’t 

values?

Example:  

((lambda y 5) ((lambda x (x x)) (lambda x (x x))))

• This is a sensible choice in functional languages that prohibit side effects (the 
values of bound variables and fields never change).   Haskell does this.



Syntactic Interpreter for LC cont.

Combining evaluation rules:

• Given an LC expression, we evaluate it by repeatedly applying the 
preceding rules until we get an answer.

• What happens when we encounter an expression to which more than 

one rule applies? In our framework, the leftmost rule always takes 

priority.
• Other strategies are possible.  Some “syntactic” (rewrite-rule-based) 

semantics for complex languages define formal syntactic rules 
(called evaluation contexts) to determine which reduction is done 
first.



Gotcha's in Syntactic Semantics
In Rule 2 (called “beta-reduction” in the program semantics literature), we confined 
substitution in the definition of  M[x := V] to the free occurrences of x in M.  If 
we had not confined substitution to free occurrences, the rule would have produced 
strange results, destroying the meaning of bound variables in M.   If we use Rule 2 
to transform programs (replacing “equals by equals”), we must be much more 
careful in how we perform the substitution of  V for x in M.  In particular, free 
variables in V can be “captured in replaced occurrences of x in M.  Consider the 
following example:

((lambda x (lambda y x)) y)

If we perform naïve beta-reduction replacing all free occurrences of x in

(lambda x (lambda y x))

by y, we get

(lambda y x)) [x := y]  → (lambda y y)

which is wrong!   The occurrence of y in [x := y] is free.  Presumably, it is 
bound somewhere in the context surrounding

((lambda x (lambda y x)) y)

When we substitute y for the free occurrence of x in (lambda (y) x), it 
becomes bound by a local definition of y.  The solution is to rename the variable 
introduced in the local definition of y as a fresh variable name, say z.  Hence,

(lambda y x)) [x := y]  → (lambda z y)



Safe Substitution
• This revised substitution process (renaming local variables that would 

otherwise capture free occurrences in the expression being 

substituted) is called safe substitution.  The results produced by safe 

substitution are non-deterministic in a trivial sense because the 

choices for the new names of renamed local variables are arbitrary 

(as long as they are fresh, i.e., distinct from existing variables in the 

program text involved in the substitution).

• Question to Ponder: Assume that we use deBruijn notation (static 

distance coordinates in LC instead of named variables.  How should 

we define substitution, i.e., what happens to the deBruijn indices 

during the substitution process?

• Further Reading: The safe substitution process hardly qualifies as a 

simple local modification of the program being reduced.  In the 

literature on reduction in the lambda calculus, there are some 

interesting papers that explicate the details of the safe substitution 

operation breaking it down into smaller steps that truly are simple 

local modifications.  See https://dl.acm.org/citation.cfm?id=96712

https://dl.acm.org/citation.cfm?id=96712


Supporting Recursion
• Our LC dialect does not directly support recursion.  A lambda abstraction cannot 

refer to itself.  Later in the course, we will show that lambda-notation is so 
powerful that we can express recursion implicitly using a subtle closed lambda-
abstraction that called the Y operator.  Alonzo Church and his students discovered 
this operation in the 1930’s when they created the lambda-calculus. Some of the 
unit tests that we provide for Assignment 2 (which only includes let as a 
syntactic abbreviation for an applications of a lambda-abstraction (map), omitting 
explicit support for recursion. 

• Later in the course, we will introduce a recursive form of let, which is used in the 
hand evaluation exercises appearing in the course calendar.  For clarity the let
operations in these exercises should be written as letrec.

• A recursive let construction

letrec x1 := E1;

...

xn := En;

in E

is syntactically evaluated by reducing the right-hand-sides E1, .., En to values V1, .., 

Vn which can be referenced in E using the corresponding left-hand-side identifiers 

x1, ..., xn.  If an identifier xi appears in E , it evaluates to the value of Vi (assuming 

it is not shadowed by an inner let also binding xi).


