
Comp Sci 411 – Type Inference Study Guide

Corky Cartwright

Produced: May 5, 2021

1 Synopsis of Implicitly Polymorphic Jam

The syntax of (Implicitly) Polymorphic Jam is a restriction of the syntax of untyped Jam. Every
legal Polymorphic Jam program is also a legal untyped Jam Program. But the converse is false,
because there may not be a valid typing for a given untyped Jam program.

1.1 Abstract Syntax

The following grammar describes the abstract syntax of Polymorphic Jam. Each clause in the
grammar corresponds directly to a node in the abstract syntax tree. The let construction has been
limited to a single binding for the sake of notational simplicity. It is straightforward to generalize
the rule to multiple bindings (with mutual recursion). Note that let is recursive.

M ::= M (M · · ·M) | P (M · · ·M) | if M then M else M | let x := M in M | V
V ::= map x · · ·x to M | x | n | true | false | empty

n ::= 1 | 2 | . . .
P ::= cons | first | rest | empty? | cons? | + | - | / | * | = | < | <= | <- | + | - |

~ | ref | !

x ::= variable names

In the preceding grammar, unary and binary operators are treated exactly like primitive func-
tions.

Monomorphic types in the language are defined by τ , below. Polymorphic types are defined by
σ. The → corresponds to a function type, whose inputs are to the left of the arrow and whose
output is to the right of the arrow.

σ ::= ∀α1 · · ·αn. τ
τ ::= int | bool | unit | τ1 × · · · × τn → τ | α | list τ | ref τ
α ::= type variable names

1.2 Type Checking Rules

Each proof rule in our type system is formulated as a “natural deduction” rule as originally conceived
by Gerhard Gentzen. For each construct in the language including the applications of unary and
binary operators (which are treated as applications of unary and binary functions, respectively,
where infix notation is viewed as syntactic sugar for explicit function applications) has an associated
rule consisting of a conclusion that is a typing judgement Γ `M : τ (where Γ is a type environment
mapping program variables to types or type schemes and the outermost operation in M matches the
name of the rule) and a finite set of premises which are typing judgments that can be syntactically

1

2

constructed from the conclusion Γ ` M : τ . The type environment in each typing judgment in the
rule is a finite set of declarations of the form x : τ or x : σ. Note that the only place where type
schemes σ may appear is within type environments; they never appear on the right hand side of `
in a typing judgment.

In the following rules, the notation Γ[x1 : τ1, . . . , xn : τn] means Γ\{x1, . . . , xn}∪{x1 : τ1, . . . , xn : τn}
and Γ′ abbreviates Γ[x1 : τ ′1, . . . , xn : τ ′n]. Note that Γ\{x1, . . . , xn} means Γ less the type assertions
(if any) for {x1, . . . , xn}.

Γ[x1 : τ1, . . . , xn : τn] `M : τ

Γ ` map x1 . . . xn to M : τ1 × · · · × τn → τ
[abs]

Γ `M : τ1 × · · · × τn → τ Γ `M1 : τ1 · · · Γ `Mn : τn

Γ `M (M1 · · ·Mn) : τ
[app]

Γ `M1 : bool Γ `M2 : τ Γ `M3 : τ

Γ ` if M1 then M2 else M3 : τ
[if]

Note that there are two rules for let expressions. The [letmono] rule corresponds to the let
rule of Typed Jam; it places no restriction on the form of the right-hand side M1 of the let binding.
The [letpoly] rule generalizes the free type variables (not occurring in the type environment Γ) in
the type inferred for the right-hand-side of a let binding – provided that the right-hand-side M1 is
a syntactic value: a constant like empty or cons, a map expression, or a variable. Syntactic values
are expressions whose evaluation is trivial, excluding evaluations that allocate storage.

Γ[x : τ] ` x : τ

Γ′ `M1 : τ ′1 . . . Γ′ `Mn : τ ′n Γ′ `M : τ

Γ ` let x1 := M1; . . .; xn := Mn; in M : τ
[letmono]

Γ′ `M1 : τ ′1 . . . Γ′ `Mn : τ ′n Γ[x1 : CM1(τ ′1,Γ), . . . , xn : CMn(τ ′n,Γ)] `M : τ

Γ ` let x1 := M1; . . .; xn := Mn; in M : τ
[letpoly]

Γ[x : ∀α1, . . . , αn. τ] ` x : O(∀α1, . . . , αn. τ, τ1, . . . , τn)

The functions O(·, ·) and C·(·, ·) are the keys to polymorphism. Here is how C·(·, ·) is defined:

CV (τ,Γ) := ∀{FTV(τ)− FTV(Γ)}. τ

CN (τ,Γ) := τ

where V is a syntactic value, N is an expression that is not a syntactic value, and FTV(α) means
the “free type variables in the expression (or type environment) α”.

When closing over a type, you must find all of the free variables in τ that are not free in any of
the types in the environment Γ. Then, build a polymorphic type by quantifying τ over all of those
type variables.

To open a polymorphic type
∀α1, . . . , αn. τ,

substitute any type terms τ1, . . . , τn for the quantified type variables α1, . . . , αn:

O(∀α1, . . . , αn. τ, τ1, . . . , τn) = τ[α1:=τ1,...,αn:=τn]

which creates a monomorphic type from a polymorphic type. For example,

O(∀α. α→ α, τ) = τ → τ

3

1.3 Types of Primitives

The following table gives types for all of the primitive constants, functions, and operators. The
symbol n stands for any integer constant. Programs are type checked starting with a primitive type
environment Γ0 consisting of this table.

true bool
false bool

n int
empty ∀α. listα

cons ∀α. α× listα→ listα
first ∀α. listα→ α
rest ∀α. listα→ listα
cons? ∀α. listα→ bool

empty? ∀α. listα→ bool

= ∀α. α× α→ bool
!= ∀α. α× α→ bool

+ int× int→ int
- int× int→ int
* int× int→ int
/ int× int→ int

< int× int→ bool
> int× int→ bool

<= int× int→ bool
>= int× int→ bool

(unary) - int→ int
(unary) + int→ int
(unary) ˜ bool→ bool

<- ∀α. refα× α→ unit
ref ∀α. α→ refα
! ∀α. refα→ α

1.4 Typed Jam

The Typed Jam language used in Assignment 5 (absent the explicit type information embedded
in program text) can be formalized as a subset of Polymorphic Jam. For the purposes of these
exercises, Typed Jam is simply Polymorphic Jam less the letpoly inference rule which prevents it
from inferring polymorphic types for program-defined functions.

2 Exercises

Task 1: Prove the following type judgements for Typed Jam or explain why they are not provable:

1. Γ0 |- (map x to x(10))(map x to x) : int

2. Γ0 |- let fact := map n to if n=0 then 1 else n*(fact(n-1));

in fact(10)+fact(0) : int

3. Γ0 |- (map x to 1 + (1/x))(0) : int

4. Γ0 |- (map x to x) (map y to y) : (int -> int)

5. Γ0 |- let id := map x to x; in id(id) : (int -> int)

Task 2: Are the following Polymorphic Jam programs typable? Justify your answer either by
giving a proof tree (constructed using the inference rules for PolyJam) or by showing a conflict in
the type constraints generated by matching the inference rules against the program text.

1. let listMap := map f,l to

if empty?(l) then empty

else cons(f(first(l)), listMap(f, rest(l)))

in listMap(first,empty);

4

2. let length := map l to if empty?(l) then 0

else 1 + length(rest(l));

l := cons(cons(1,empty),cons(cons(2,cons(3,empty)),empty));

in length(l)+length(first(l))

Task 3: Give a simple example of an untyped Jam expression that is not typable in Typed Jam
but is typable in Polymorphic Jam.

3 Solutions to Selected Exercises

Task 1 : The first four expressions are typable in Typed Jam, but the fifth is not.

1. Tree 1:
Γ0[f:int→ int] ` 10:int Γ0[f:int→ int] ` f:int→ int

Γ0[f:int→ int] ` f(10):int
[app]

Γ0 ` map f to f(10):(int→ int)→ int
[abs]

Tree 2:

Tree 1
Γ0[x:int] ` x:int

Γ0 ` map x to x:int→ int
[abs]

Γ0 ` (map f to f(10))(map x to x):int
[app]

2. Type Inference Proof Omitted.

3. Tree 1:
Γ0[x:int] ` /:int× int→ int Γ0[x:int] ` 1:int Γ0[x:int] ` x:int

Γ0[x:int] ` 1/x:int]
[app]

Tree 2:
Γ0[x:int] ` +:int× int→ int Γ0[x:int] ` 1:int Tree 1

Γ0[x:int] ` (1 + (1/x)):int
[app]

Γ0 ` (map x to 1 + (1/x)):int→ int
[abs]

Tree 3:
Tree 2 Γ0 ` 0:int

Γ0 ` (map x to 1 + (1 /x))(0):int
[app]

4. Tree 1:
Γ0[x:int→ int] ` x:int→ int

Γ0 ` (map x to x):(int→ int)→ (int→ int)
[abs]

Tree 2:
Γ0[y:int] ` y:int

Γ0 ` (map y to y):int→ int
[abs]

Tree 3:
Tree 1 Tree 2

Γ0 ` (map x to x)(map y to y):int→ int
[app]

5. This example is almost identical to the previous one, but the identity function id is defined only once
in a let binding and then applied to itself. Since Typed Jam does not support polymorphism, we can
only assign one typing to id. But we needed two different typings for the identity in the preceding
example, so we cannot type this program.

5

Task 2: Both programs are typable in Polymorphic Jam. In fact, the first program is typable in
Typed Jam because the listMap function is only applied to one type of list. Hence the letmono
rule can be used to type the let expression in this program instead of the more general letpoly
rule.

1. The type inference proof is omitted. It is technically straightforward, but the body of the let is
unusual because it uses the constant empty which has polymorphic type ∀α. listα in the base type
environment Γ0. In type inference proofs, all occurrences of empty have ambiguous type listα where
α is a fresh type variable not in the type environment. In this sample program, the constant function
first is passed as the function argument to listMap. Since first requires a list as input, the type of
listMap in the body of the let requires a list listβ for some β as its second input and the occurrence
of first passed as the first input has type (by unification constraints) listβ → β, forcing empty to
have type list listβ.

2. Let Γ1 abbreviate Γ0[length : listα→ int, l : list list int];
let Γ2 abbreviate Γ0[length : ∀α. (listα→ int), l : list list int];
and let Γ3 abbreviate Γ1[l : listα]. Tree 1:

Γ3 ` rest : listα→ listα Γ3 ` l : listα

Γ3 ` rest(l) : listα
[app] Γ3 ` length : listα→ int

Γ3 ` length(rest(l)) : int
[app]

Tree 2:
Γ3 ` + : int× int→ int Γ3 ` 1 : int Tree 1

Γ3 ` 1+length(rest(l)) : int
[app]

Tree 3:

Γ3 ` empty? : listα→ bool Γ3 ` l : listα

Γ3 ` empty?(l) : bool
[app] Γ3 ` 0 : int Tree 2

Γ3 ` if empty?(l) then 0 else 1+length(rest(l)) : int
[if]

Γ1 ` map l to if empty?(l) then 0 else 1+length(rest(l)) : listα→ int
[abs]

Tree 4:

Γ1 ` cons : int× list int→ list int Γ1 ` 1 : int Γ1 ` empty : list int

Γ1 ` cons(1,empty) : list int
[app]

Tree 5:

Γ1 ` cons : int× list int→ list int Γ1 ` 3 : int Γ1 ` empty : list int

Γ1 ` cons(3,empty) : list int
[app]

Tree 6:
Γ1 ` cons : int× list int→ list int Γ1 ` 2 : int Tree 5

Γ1 ` cons(2,cons(3,empty)) : list int
[app]

Tree 7:

Γ1 ` cons : list int× list list int→ list list int Tree 6 Γ1 ` empty : list list int

Γ1 ` cons(cons(2,cons(3,empty)),empty) : list list int
[app]

Tree 8:

Γ1 ` cons : list int× list list int→ list list int Tree 4 Tree 7

Γ1 ` cons(cons(1,empty), cons(cons(2,cons(3,empty)), empty)) : list list int
[app]

6

Tree 9:

Γ2 ` length : list int→ int
Γ2 ` first : list list int→ list int Γ2 ` l : list list int

Γ2 ` first(l) : list int
[app]

Γ2 ` length(first(l)) : int
[app]

Tree 10

Γ2 ` + : int× int→ int
Γ2 ` length : list list int→ int Γ2 ` l : list list int

Γ2 ` length(l) : int
[app]Tree 9

Γ2 ` length(l)+length(first(l)):int
[app]

Tree 11

Tree 3 Tree 8 Tree 10

Γ0 ` let length := map l to

if empty?(l) then 0

else 1 + length(rest(l))

l := cons(cons(1,empty),cons(cons(2,cons(3,empty)),empty))

in length(l)+length(first(l)):int

[letpoly]

Task 3: The second program in the preceding section is an example. The following is a shorter
(but not necessarily simpler) example:

let id := map x to x;

in (id(id))(0)

The program is not typable in Typed Jam because the function id is applied to an argument of type
int → int and again (since id(id) is id) to the an argument of type int. Hence it must have type
(int → int) → (int → int) and type (int → int) which cannot be unified.

