Type Theory: Impredicative Part (1/5)

An Introduction to System ${\cal F}$

Alexandre Miquel

Paris-sud University — Orsay, France

Alexandre.Miquel@lri.fr

Introduction

- **System** F: independently discovered by Girard (1970) and Reynolds (1974)
- Quite different motivations. . .

Girard: Interpretation of second-order logic

Reynolds: Functional programming

... connected by the Curry-Howard isomorphism

- Significant influence on the development of Type Theory
 - Interpretation of higher-order logic [Girard, Martin-Löf]
 - Type:Type [Martin-Löf 1971]
 - Martin-Löf Type Theory [1972, 1984, 1990, ..]
 - The Calculus of Constructions [Coquand 1984]

System F: syntax

Terms
$$t, u ::= x \mid \underbrace{\lambda x : A \cdot t \mid tu}_{\mathsf{term \ abstr./app.}} \mid \underbrace{\Lambda \alpha \cdot t \mid tA}_{\mathsf{type \ abstr./app.}}$$

$$FV(t) \equiv \text{ set of free (term) \ variables of the term } t$$

$$TV(t) \equiv \text{ set of free type \ variables of the term } t$$

$$TV(A) \equiv \text{ set of free type \ variables of the type } A$$

$$t\{x := u\} \equiv \text{ substitute the term } u \text{ to the variable } x \text{ in the term } t$$

$$t\{\alpha := A\} \equiv \text{ substitute the type } A \text{ to the type \ variable } \alpha \text{ in the term } t$$

$$B\{\alpha := A\} \equiv \text{ substitute the type } A \text{ to the type variable } \alpha \text{ in the type } B$$

Types $A,B ::= \alpha \mid A \rightarrow B \mid \forall \alpha \,.\, B$

Perform α -conversions to avoid capture of free (term/type) variables!

System F: Typing rules

Contexts

$$\Gamma, \Delta ::= x_1 : A_1, \ldots, x_n : A_n$$

- Declarations are unordered
- Declaration of type variables is implicit (for each $\alpha \in TV(\Gamma)$)
- Could also declare type variables explicitely: $\alpha:*...$ (just a matter of taste)

Typing rules are syntax-directed:

$$\overline{\Gamma \vdash x : A} (x:A) \in \Gamma$$

$$\frac{\Gamma; x: A \vdash t: B}{\Gamma \vdash \lambda x: A \cdot t: A \to B} \qquad \frac{\Gamma \vdash t: A \to B}{\Gamma \vdash tu: B}$$

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash \Lambda \alpha . t : \forall \alpha . B} \quad \alpha \notin TV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall \alpha . B}{\Gamma \vdash tA : B\{\alpha := A\}}$$

Example

The polymorphic identity: id $\equiv \Lambda \alpha . \lambda x : \alpha . x : \forall \alpha . \alpha \rightarrow \alpha$

$$\frac{x : \alpha \vdash x : \alpha}{\vdash \lambda x : \alpha . x : \alpha \to \alpha} \\
\vdash \Lambda \alpha . \lambda x : \alpha . x : \forall \alpha . \alpha \to \alpha$$

One has:

id : $\forall \alpha . \alpha \rightarrow \alpha$

 $\operatorname{id} B \qquad : \quad B \to B \qquad \qquad \operatorname{for \ any \ type} \ B$

 $\mathsf{id}\,B\,u\quad :\quad B\qquad \qquad \mathsf{for\ any\ term}\ u:B$

In particular, when $\ B \ \equiv \ \forall \alpha \, . \, \alpha \to \alpha \quad \text{and} \quad u \ \equiv \ \mathrm{id}$

$$\operatorname{id} (\forall \alpha . \alpha \to \alpha) \qquad : \quad (\forall \alpha . \alpha \to \alpha) \to (\forall \alpha . \alpha \to \alpha)$$

 $\operatorname{id} \left(\forall \alpha \, . \, \alpha \to \alpha \right) \operatorname{id} \quad : \quad \forall \alpha \, . \, \alpha \to \alpha$

Properties

Substitutivity

- If Γ , $x:A \vdash t:B$ and $\Gamma \vdash u:A$, then $\Gamma \vdash t\{x:=u\}:B$
- If $\Gamma \vdash t : B$, then $\Gamma\{\alpha := A\} \vdash t\{\alpha := A\} : B\{\alpha := A\}$ (for any type variable α and for any type A)

Unicity of type

- If $\Gamma \vdash t : A$ and $\Gamma \vdash t : B$, then $A \equiv B$ (syntactic identity)

• Decidability of typing: Both problems

- 1. Given Γ and t, infer a type A such that $\Gamma \vdash t : A$ is derivable or raise Not_typable if there is no such type
- 2. Given Γ , t and A, check whether the judgment $\Gamma \vdash t : A$ is derivable are decidable

System F: reduction

Two kind of redexes:

$$\begin{array}{lll} (\lambda x:A\cdot t)u & \succ & t\{x:=u\} & \text{(first kind)} \\ (\Lambda\alpha\cdot t)A & \succ & t\{\alpha:=A\} & \text{(second kind)} \end{array}$$

Contextual closure:

$$\frac{t \succ t'}{tu \succ t'u} \qquad \frac{u \succ u'}{tu \succ tu'} \qquad \frac{t \succ t'}{\lambda x : A \cdot t \succ \lambda x : A \cdot t'}$$

$$\frac{t \succ t'}{tA \succ t'A} \qquad \frac{t \succ t'}{\Lambda \alpha \cdot t \succ \Lambda \alpha \cdot t'}$$

Reflexive & transitive closure:

$$\frac{t \succ^* t' \qquad t' \succ t''}{t \succ^* t'}$$

Examples

The polymorphic identity (again):

$$\operatorname{id} B u \equiv (\Lambda \alpha . \lambda x : \alpha . x) B u \succ (\lambda x : B . x) u \succ u$$

$$\operatorname{id} (\forall \alpha . \alpha \rightarrow \alpha) \operatorname{id} (\forall \alpha . \alpha \rightarrow \alpha) \cdots \operatorname{id} (\forall \alpha . \alpha \rightarrow \alpha) \operatorname{id} B u \succ^* u$$

A more complex example. . .

$$(\Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . \overbrace{f(\cdots (fx) \cdots)}^{32 \text{ times}})$$

$$(\forall \alpha . \alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha) (\Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . fx)$$

$$(\lambda n : \forall \alpha . \alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha . \Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . n\alpha (n\alpha x f) f)$$

$$\succ^* \quad \Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . \underbrace{(f \cdots (fx) \cdots)}_{4294967296 \text{ times}}$$

Properties

Church-Rosser

- If $t \succ^* t_1$ and $t \succ^* t_2$, then there is a term t' such that $t_1 \succ^* t'$ and $t_2 \succ^* t'$.

Proof. Roughly the same as for the untyped λ -calculus (adaptation is easy)

Subject reduction

- If $\Gamma \vdash t : A$ and $t \succ^* t'$, then $\Gamma \vdash t' : A$

Proof. By induction on the derivation of $\Gamma \vdash t : A$, with $t \succ t'$ (one step reduction)

Strong normalization

- All the well-typed term of system F are strongly normalizable

Proof. Girard and Tait's method of reducibility candidates (postponed)

Data structures

- In ML/Haskell approach, the type system constituted by \rightarrow and \forall (prenex) is not sufficent for programming
 - ⇒ Must extend the type system with other constructions

Primitive datatypes: booleans, integers, etc.

Type constructors: pairs, records, lists, etc.

- \bullet In system F, these primitive datatypes are actually definable
 - No extension of the type system is needed

 - → Much less flexible than ML/Haskell approach
 - ⇒ Illustrates the strength of the system

Booleans (1/3)

$$\begin{array}{lll} \mathsf{Bool} & \equiv & \forall \gamma \,.\, \gamma \to \gamma \to \gamma \\ \mathsf{true} & \equiv & \Lambda \gamma \,.\, \lambda x, \, y \,:\, \gamma \,.\, x & : & \mathsf{Bool} \\ \mathsf{false} & \equiv & \Lambda \gamma \,.\, \lambda x, \, y \,:\, \gamma \,.\, y & : & \mathsf{Bool} \\ \mathsf{if}_A \ u \ \mathsf{then} \ t_1 \ \mathsf{else} \ t_2 & \equiv & u A t_1 t_2 \end{array}$$

From these definitions, we easily derive the typing rule

$$\frac{\Gamma \vdash u : \mathsf{Bool} \quad \Gamma \vdash t_1 : A \quad \Gamma \vdash t_2 : A}{\Gamma \vdash \mathsf{if}_A \ u \ \mathsf{then} \ t_1 \ \mathsf{else} \ t_2 : A}$$

as well as the reduction rules

$$\frac{u \hspace{0.1cm} \succ^* \hspace{0.1cm} \mathsf{true}}{\mathsf{if}_A \hspace{0.1cm} u \hspace{0.1cm} \mathsf{then} \hspace{0.1cm} t_1 \hspace{0.1cm} \mathsf{else} \hspace{0.1cm} t_2 \hspace{0.1cm} \succ^* \hspace{0.1cm} t_1} \hspace{0.2cm} \frac{u \hspace{0.1cm} \succ^* \hspace{0.1cm} \mathsf{false}}{\mathsf{if}_A \hspace{0.1cm} u \hspace{0.1cm} \mathsf{then} \hspace{0.1cm} t_1 \hspace{0.1cm} \mathsf{else} \hspace{0.1cm} t_2 \hspace{0.1cm} \succ^* \hspace{0.1cm} t_2}$$

Booleans (2/3)

Objection: Could do the same in untyped λ -calculus!

true
$$\equiv \lambda x, y . x$$
 false $\equiv \lambda x, y . y$ Enjoys the same reduction rules if t then u_1 else u_2 $\equiv tu_1u_2$

So, why making life complicated with all these types?

Remark: In untyped λ -calculus, nothing prevents the following computation:

if
$$\underbrace{\lambda x \cdot x}_{\text{bad bool}}$$
 then t_1 else $t_2 \equiv (\lambda x \cdot x) t_1 t_2 \succ \underbrace{t_1 t_2}_{\text{meaningless result}}$

Question: Is the type system of system F sufficent to avoid this problem ?

Booleans (3/3)

Principle (that should be satisfied by any good functional programming language)

When a program P of type A evaluates to a value v, then v has one of the canonical forms expected by the type A.

In ML/Haskell for instance, a value produced by a program of type bool will always be true or false (i.e. the canonical forms of type bool).

In system F: The subject-reduction property ensures that the normal form of a term of type Bool is a term of type Bool. To conclude, it suffices to check that:

Lemma. – The terms $\Lambda \gamma . \lambda x, y : \gamma . x$ (true) and $\Lambda \gamma . \lambda x, y : \gamma . y$ (false) are the only closed normal terms of type $\forall \gamma . \gamma \rightarrow \gamma \rightarrow \gamma$ (Bool)

Proof. Case analysis on the derivation.

Cartesian product

Given two types A and B, we set:

$$\begin{array}{lll} A\times B & \equiv & \forall \gamma \,.\, (A\to B\to \gamma)\to \gamma \\ \\ \langle t_1,t_2\rangle & \equiv & \Lambda\gamma \,.\, \lambda f: A\to B\to \gamma \,.\, ft_1t_2 \\ \\ \mathrm{fst} & \equiv & \lambda p: A\times B \,.\, pA(\lambda x: A\,.\, \lambda y: B\,.\, x) & : & A\times B\to A \\ \\ \mathrm{snd} & \equiv & \lambda p: A\times B \,.\, pB(\lambda x: A\,.\, \lambda y: B\,.\, y) & : & A\times B\to B \end{array}$$

From these definitions, we easily derive the typing rule and the reduction rules:

$$\frac{\Gamma \vdash t_1 : A \qquad \Gamma \vdash t_2 : B}{\Gamma \vdash \langle t_1, t_2 \rangle : A \times B} \qquad \text{fst} \langle t_1, t_2 \rangle \ \succ^* \ t_1 \qquad \text{snd} \langle t_1, t_2 \rangle \ \succ^* \ t_2$$

Again, we easily check that:

Lemma. – The closed normal terms of type $A \times B$ are of the form $\langle t_1, t_2 \rangle$, where t_1 and t_2 are closed normal terms of type A and B, respectively.

Disjoint union

Given two types A and B, we set:

$$\begin{array}{lll} A+B&\equiv&\forall\gamma\,.\,(A\to\gamma)\to(B\to\gamma)\to\gamma\\ & \mathrm{inl}(v)&\equiv&\Lambda\gamma\,.\,\lambda f:A\to\gamma\,.\,\lambda g:B\to\gamma\,.\,fv&:&A+B\quad(\mathrm{with}\ v:A)\\ & \mathrm{inr}(v)&\equiv&\Lambda\gamma\,.\,\lambda f:A\to\gamma\,.\,\lambda g:B\to\gamma\,.\,gv&:&A+B\quad(\mathrm{with}\ v:B)\\ & \mathrm{case}_C\ u\ \mathrm{of}\ \ \mathrm{inl}(x)\mapsto t_1\ \mid\ \mathrm{inr}(y)\mapsto t_2&\equiv&uC(\lambda x:A\,.\,t_1)(\lambda y:B\,.\,t_2) \end{array}$$

From these definitions, we derive the expected typing rule and reduction rules

[Same remark as before for the canonical forms of type A+B]

Finite types

For any integer $n \ge 0$ we set

$$\begin{array}{lll} \operatorname{Fin}_n & \equiv & \forall \gamma \, . \, \underbrace{\gamma \to \cdots \to \gamma}_{n \, \text{ times}} \to \gamma \\ \\ \mathbf{e}_1 & \equiv & \Lambda \gamma \, . \, \lambda x_1 : \gamma \dots \lambda x_n : \gamma \, . \, x_1 & : & \operatorname{Fin}_n \\ & \vdots & & & & \\ \mathbf{e}_n & \equiv & \Lambda \gamma \, . \, \lambda x_1 : \gamma \dots \lambda x_n : \gamma \, . \, x_n & : & \operatorname{Fin}_n \end{array}$$

Again, e_1, \ldots, e_n are the only closed normal terms of type Fin_n.

In particular: Fin
$$_2 \equiv \forall \gamma . \gamma \rightarrow \gamma \rightarrow \gamma \equiv \text{Bool}$$
 (type of booleans) Fin $_1 \equiv \forall \gamma . \gamma \rightarrow \gamma \equiv \text{Unit}$ (unit data-type) Fin $_0 \equiv \forall \gamma . \gamma \equiv \bot$ (empty data-type)

(Notice that there is no closed normal term of type \perp .)

Natural numbers

In system F the type of Church numerals is defined by

$$\begin{array}{lll} \operatorname{Nat} & \equiv & \forall \gamma \, . \, \gamma \, \to (\gamma \, \to \, \gamma) \, \to \gamma \\ \hline \overline{0} & \equiv & \Lambda \gamma \, . \, \lambda x \, : \, \gamma \, . \, \lambda f \, : \, \gamma \, \to \gamma \, . \, x \\ \hline \overline{1} & \equiv & \Lambda \gamma \, . \, \lambda x \, : \, \gamma \, . \, \lambda f \, : \, \gamma \, \to \gamma \, . \, f x \\ \hline \overline{2} & \equiv & \Lambda \gamma \, . \, \lambda x \, : \, \gamma \, . \, \lambda f \, : \, \gamma \, \to \gamma \, . \, f (f x) \\ \hline \vdots & & \vdots & & \vdots \\ \hline \overline{n} & \equiv & \Lambda \gamma \, . \, \lambda x \, : \, \gamma \, . \, \lambda f \, : \, \gamma \, \to \gamma \, . \, \underbrace{f (\cdots (f \, x) \, \cdots)}_{n \, \text{ times}} & : & \operatorname{Nat}_{n \, \text{times}} \end{array}$$

 \Rightarrow The terms $\overline{0}$, $\overline{1}$, $\overline{2}$, ... are the only closed normal terms of type Nat.

The corresponding iterator (or recursor) is given by

$$\begin{array}{ll} \mathrm{iter} & \equiv & \Lambda \gamma \, . \, \lambda x : \gamma \, . \, \lambda f : \gamma {\longrightarrow} \gamma \, . \, \lambda n : \mathrm{Nat} \, . \, n \gamma x f \\ & : & \forall \gamma \, . \, \gamma \, \longrightarrow \, (\gamma {\longrightarrow} \gamma) \, \longrightarrow \, \mathrm{Nat} \, \longrightarrow \, \gamma \end{array}$$