Type Theory: Impredicative Part (1/5)

An Introduction to System F

Alexandre Miquel
Paris-sud University — Orsay, France

Alexandre.Miquel@lri.fr

Introduction

System F': independently discovered by Girard (1970) and Reynolds (1974)

Quite different motivations. . .

Girard: Interpretation of second-order logic

Reynolds: Functional programming

. connected by the Curry-Howard isomorphism

Significant influence on the development of Type Theory

— Interpretation of higher-order logic [Girard, Martin-Lof]
— Type:Type [Martin-Lof 1971]

— Martin-Lof Type Theory [1972, 1984, 1990, ..]

— The Calculus of Constructions [Coquand 1984]

Types A, B

Terms t

FV(t)
TV (t)
TV(A)

t{x := u}
t{a := A}
B{a := A}

S

System F’: syntax

2= a | A—- B | Va.B

= x | Ax:A.t | tu | Aa.t | tA
WV WV
term abstr./app. type abstr. /app.

set of free (term) variables of the term ¢
set of free type variables of the term ¢
set of free type variables of the type A

substitute the term w to the variable x in the term ¢
substitute the type A to the type variable o in the term ¢
substitute the type A to the type variable « in the type B

@ Perform «-conversions to avoid capture of free (term/type) variables!

System [': Typing rules

Contexts A == x1:A, ..., x,: A,

— Declarations are unordered
— Declaration of type variables is implicit (for each o« € TV (I"))
— Could also declare type variables explicitely: « : *... (just a matter of taste)

Typing rules are syntax-directed:

'x: A (wA)er

Ie: AFt: B I'-t: A— B I'u: A
I'-Xxz:A.t: A— B I'tu: B
I'Ht: B I'Ht:Va.B

agTV(T)

I'Aa.t:Va.B I'+tA: B{a:= A}

Example

The polymorphic identity: d = Aa.dz:a.x : Va.a — «

rT:iokFkx: o
FlAXrz:a.x: o0 — «
FAax. \r:a.xz :Va.a — «

One has:
id : YVa.a — «
id B . B — B for any type B
dBu : B for any term u : B
In particular, when B = Va.a — a and u = id
id Va.a — «) : Va.a—a) = Va.a — a)

id Vao.a — a)id : Va.a — «

Properties

Substitutivity
- If 'y z: A+t:B and T'Fu:A, then 'Ht{x:=u}:B
- If THt:B, then T{a:= A} Ft{a:= A} : B{a:= A}
(for any type variable o« and for any type A)
Unicity of type
- If THt: A and TTHt: B, then A=B (syntactic identity)

Decidability of typing: Both problems

1. Given1' andt, infer a type A such that T'+t : A s derivable
or raise Not_typable if there is no such type

2. GivenT', t and A, check whether the judgment I" -t : A is derivable

are decidable

System F': reduction

Two kind of redexes:

(Ax:A.t)u > t{z
(A . t)A - t{«o

u} (first kind)
A} (second kind)

Contextual closure:

t = t u > u t = t
tu > t'u tu = tu A At = dx:A.t
t > t t = t
tA = t'A

Aa.t = Aa.t

Reflexive & transitive closure:

t St

Examples

e The polymorphic identity (again):
dBu = (Aa.dzx:a.xz)Bu > Mz:B.z)u > wu

id(Va.a—a)id(Va.a—a) -+ - id(Va.a—a)idBu > u

e A more complex example. . .

32 times
(Aa . Az:a. Afra—a. f(- (fz)--))
Va.a—(a—a)—a) (Aa. Az:a. Af :a—a. fo)

(An:Va.a—(a—a)—a. Aa. dz:a. Af:a — a.na(naxf)f)

= Ao dr:a. Afra—a. (f - (fx)---)
N——
4294967 296 times

Properties

Church-Rosser

— If t =" t; and t = to, then there is a term t’
such that t1 =t and ty =t

Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)

Subject reduction
- If THt: A and t>=t, then THt: A

Proof. By induction on the derivation of ' - ¢ : A, with t > ¢’ (one step reduction)

Strong normalization
— All the well-typed term of system F' are strongly normalizable

Proof. Girard and Tait's method of reducibility candidates (postponed)

Data structures

In ML/Haskell approach, the type system constituted by — and V (prenex)
is not sufficent for programming

= Must extend the type system with other constructions

Primitive datatypes: booleans, integers, etc.
Type constructors: pairs, records, lists, etc.

In system F’, these primitive datatypes are actually definable

@ No extension of the type system is needed
@ Keeps the simplicity of the system
© Much less flexible than ML /Haskell approach

— lllustrates the strength of the system

Booleans (1/3)

Bool = Vy. v —~v — 7

true = Avy.Az,y:v.x : Bool
false = Avy.Az,y:v.y : Bool
if4 w then t] elseta = uAtits

From these definitions, we easily derive the typing rule

I' H v : Bool 't : A I'-ty: A
I'- if4 v then t{ else ty : A

as well as the reduction rules

u = true u S false

if 4 u then t| else to > t1 if 4 © then t else ty > t9

10

Booleans (2/3)

Objection: Could do the same in untyped A-calculus!

N

true = Ar,y.cx
false = Az,y.y Enjoys the same reduction rules
if ¢t then uj else us = tujus

So, why making life complicated with all these types ?

Remark: In untyped A-calculus, nothing prevents the following computation:

if Az .z thentj elsety = (Azx.x)tita > t1to
bad bool meaningless result

Question: Is the type system of system F' sufficent to avoid this problem ?

11

Booleans (3/3)

Principle (that should be satisfied by any good functional programming language)

When a program P of type A evaluates to a value v, then v has one of the
canonical forms expected by the type A.

In ML/Haskell for instance, a value produced by a program of type bool will always be
true or false (i.e. the canonical forms of type bool).

In system F': The subject-reduction property ensures that the normal form of a term of
type Bool is a term of type Bool. To conclude, it suffices to check that:

Lemma. - The terms A~ .Ax,y:~v.x (true) and A~ .Ax,y:~.y (false)
are the only closed normal terms of type ¥V~ .~ — v — ~ (Bool)

Proof. Case analysis on the derivation.

12

Cartesian product

Given two types A and B, we set:

AXB = Vyv.(A—- B —vy) — 7~

<t1,t2> — A’Y)\fA—>B—>’7ft1t2

fst = AMp:AXB.pA(Ax:A.\y:B.xz) : AXxB— A
snd = AMp:AXB.pB(Ax:A.\y:B.y) : AxXxB—B

From these definitions, we easily derive the typing rule and the reduction rules:

F |_ tl . A F |— t2 : B .)
I' - <t1,t2> : A X B fSt<t17t2> - 1 snd<t17t2> St

Again, we easily check that:

Lemma. - The closed normal terms of type A X B are of the form (ti,ts),
where t1 and to are closed normal terms of type A and B, respectively.

13

Disjoint union

Given two types A and B, we set:

A4+B = Vv.(A—-~v) = (B—7vy) —7v

inl(v) = Ay ANf:A—>~v.XAg:B—~v.fv : A+ B (withv:A)
inrflv) = Ay Af:A—-~v.Ag:B—>~v.gv : A+ B (withv:B)
casec u of inl(x) —t; | inrf(y)—ta = uCAx:A.t1)(Ay: B .ts)

From these definitions, we derive the expected typing rule and reduction rules

'u: A+ B ' x: At :C 'y y: BFty:C

I' b casec wof inl(x) —ty | inr(y) —ts : C
casec inl(v) of inl(x) — t1 | inr(y) — ta > ti{x:= v}
casec inr(v) of inl(z) — t1 | inr(y) — ta > to{y := v}

[Same remark as before for the canonical forms of type A + B]

Finite types

For any integer n > 0 we set

Fin, = Vy.y—--—~vy—>v
n t‘i?nes
el = Avy.Axi:7v...Axp:v.x1 : Fin,
e, = Av.dx1:v... Az :v.x, : Fin,
Again, eq, ..., e, are the only closed normal terms of type Fin,,.
In particular: Finp, = Vy.v—~—~v = Bool (type of booleans)
Finn, = Vy.v — 7~ = Unit (unit data-type)
Finp = Vvy.xv = 1 (empty data-type)

(Notice that there is no closed normal term of type L.)

15

Natural numbers

In system F' the type of Church numerals is defined by

Nat = Vy.v—(y—7v) =~

0 = Av.dzx:v. Af:y—>v.x

1 = Av.dx:v. Af:y—vy. fx

2 = Av. dx:v. Af:y—=v.f(fz)

n = Av.dx:v. Af:v— x . Nat

gt VA= £ t (fx)---)
= Theterms 0, 1, 2, ... are the only closed normal terms of type Nat.
The corresponding iterator (or recursor) is given by
iter = Av.Ax:v. Af:y—~v.An:Nat.nyxf

Vy.v — (y—7) — Nat — v

16

