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Type Systems: Simply Typed l-calculus

Realistic core language suitable for type-checking
    M ::=  c |  x  |  (M M … M)  |  (l x:t… x:t . M)  |  if M then M
      t ::=  b  |  t ¥ ... ¥ t Æ t
      b Œ B  (a set of base types including bool, )
      c Œ C (a set of constants including true, false),  c Œ C has a given type

c(c)
      x Œ V (a set of variables), variables in (x:t… x:t) must be distinct
Typing rules:

G, x:t  |- x: t
G |- c: c(c)                    [ c(true) = bool, c(false) = bool ]

G |-  M:s1 ¥ ... ¥ sk Æ t,   G |- N1:s1,  …  , G |- Nk:sk            (app rule)

                        G |- (M N1 … Nk): t.

     G,  x1:s1, …, xk:sk |- M: t.                                                     (abs rule)

G |-   (l x1:s1 …xk:sk . M): s1 ¥ ... ¥ sk Æ t

G |-    M1:bool,  G |-  M2:s,  G |-   M3:s                                   (if rule)

     G |- if M1 then M2  else M3 : s
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Type Systems : Sample Typing Proof

Show  ∅ | ((l f :boolÆbool . (l x:bool . (f (f x)))) (l x:bool . x)) :  boolÆbool

Tree1:   f :boolÆbool, x:bool | f :boolÆbool,    f :boolÆbool, x:bool | x :bool

                                f :boolÆbool, x:bool | (f x): bool

Tree2:                        f :boolÆbool, x:bool | f :boolÆbool,    Tree1

                                           f :boolÆ bool, x:bool | (f (f x)): bool

                                   f :boolÆbool | (l x:bool . (f (f x))): boolÆbool

            ∅ | ((l f :boolÆbool . (l x:bool . (f (f x)))) : (boolÆbool) Æ (boolÆbool)

Tree3:                                           x:bool | x:bool

                                        ∅ | (l x:bool . x)) :  boolÆbool

Tree4:                                             Tree2,  Tree3

              ∅ | ((l f :boolÆbool . (l x:bool . (f (f x)))) (l x:bool . x)) : boolÆbool
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Is ((l  f :s . (l x:t . (f (f x)))) (l x:u . x)) typable?  What is its principal type?

Tree1:                 f : s, x:t |  f :s,    f :s, x:t | x:t                        [s = s1 Æ s2 ,   t =s1 ]

                             f :s1 Æ s2, x:s1  | (f x): s2

Tree2:               f : s1 Æ s2, x: s1  | f : s1 Æ s2,    Tree1                         [s2 = s1 ]

                                   f : s1 Æ s1, x: s1  | (f (f x)): s1

                           f : s1 Æ s1 | (l x:s1  . (f (f x))) : s1 Æ s1

            ∅ | ((l f :s1 Æ s1. (l x:s1 . (f (f x)))) : (s1 Æ s1) Æ (s1 Æ s1)

Tree3:                                       x: u | x: u

                                      ∅ | (l x: u. x)) : u Æ u

Tree4:                                      Tree2,  Tree3                                                    [u = s1]

              ∅ | ((l f : s1 Æ s1. (l x: s1 . (f (f x)))) (l x: s1 . x)) : s1 Æ s1

Type Systems: Sample Type Reconstruction
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Type Systems: Formalizing Polymorphism

One extension to the simply typed language:

   (let x := M in M)

where let is recursive (scope of x includes the right hand side of definition of x)

Five extensions to our simple type system:

_ Type variables: a1, a2, ...

_ Type schemes: s ::= "a1 … ak . t  where t is a type.  Type schemes are not types!

_ Type environments (symbol tables) can contain type schemes; so can the table c.

_ Additional inference rules:
        G, x: "a1 … ak . t |-   x: OPEN("a1 … ak . t, b1, …,  bk)          (instantiation)
                                                                                                             [b1, …, bk   are types]

        G, x:t1 |- M:t1,     G, x:CLOSE(t1, G) |- N:t          (letpoly)
                        G |-  (let x := M  in N): t

_ Additional axiom:
                         G |- c: OPEN(c(c), b1, …,  bk)   where c Œ C and c(c) = "a1 … ak . t
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Type Systems: Formalizing Polymorphism continued

Notes

_ The notation OPEN("a1 … ak . t, b1, …,  bk) means convert the type scheme
"a1 … ak .  t to the type t’ where t’ is t with type variables a1 … ak  replaced by
“fresh” type variables b1, …,  bk.

_ The notation CLOSE(t1, G) means convert the type t1 to the type scheme "a1

… ak .  t1 where a1, …, ak  are the type variables that appear in t1 but not G.

Intuition:

_ Polymorphism abbreviates brute force replication of the definition
introduced in a let.  The new type variables that appear in the type of M
(rhs of the let binding) are arbitrary.  The instantiation and polylet rules lets
us adapt a symbolic type for M  to each of the specific uses of x (the lhs of
the le t binding) in N (the body of the let).

_ The rhs side of the let binding cannot use x polymorphically because such
usage is inconsistent with the fact that polymorphic let is an abbreviation
mechanism!
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Type Systems: Sample Polymorphic Type Reconstruction

 Consider a functional language with polymorphic lists.  The operations on
polymorphic lists include the binary function cons, unary functions first and rest,
and the constant null.  A sample program in this language is:

     (let length := (l x (if (null? x) then 0 else (+ 1 (length (rest x))))) in

                                   (+ (length (cons 1 null)) (length (cons true null))))

 Can we type it?

  Sketch:       ∅ | length: a list Æ int

   Use letpoly rule to add length to type environment with polymorphic type.

   Instantiate it twice: once for bool and once for int.
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Type Systems: Sample Polymorphic Type Reconstruction

Claim:   ∅ | (let length := (lx. (if (null? x) then 0 else (+ 1 (length (rest x))))) in (+ (length (cons 1 null)) (length (cons true null)))):int

Tree1:                            length: b, x:b1 | null?:a-listÆbool,   length:b, x: b1 | x:b1                         [b1 = a-list]

                                                              length:b,  x:a-list | (null? x):bool

Tree2:                 length:b, x:a-list | rest: a2-listÆa2-list,   length:b, x:a-list | x:a-list                 [a2 = a]

                                                              length:b, x:a-list | (rest x):a-list

                                                    length:a-listÆb2, x:a-list | (length (rest x)):b2                            [b  =  a-listÆb2]

                                                 length:a-listÆint, x:a-list | (+ 1 length(rest x)):int                         [b2  = int]

Tree3:                                         Tree1,    length:a-listÆ int, x:a-list | 0:int,     Tree2

                                  length:a-listÆint, x:a-list | if (null? x) then 0 else (+ 1 (length (rest x))))) : int

                                 length:a-listÆint | lx. if (null? x) then 0 else (+ 1 (length (rest x))))) : a-listÆint

Tree4:

       length:"a .a -listÆint  | cons:a3¥a3-listÆa3-list,  length:"a .a -listÆint  | 1:int,  length:"a .a -listÆint  | null:a4-list        [a3 = a4 = int ]

                                                          length:"a .a -listÆint  | (cons 1 null):int-list

Tree5:                                       length:"a .a -listÆint | length: a5 -listÆint,   Tree4                     [a5 =int]

                                                    length:"a .a -listÆint |  (length (cons 1 null)): int

Tree6:

                              length:"a .a -listÆint  | cons:a6¥a6-listÆa6-list,     length:"a .a -listÆint  | true:bool,     length:"a .a -listÆint  | null:a7-
list

  length:"a .a -listÆint  | length: int-listÆint,                   length:"a .a -listÆint  | (cons true null):bool -list

                                        length:"a .a -listÆint  | (length (cons true null)):int
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Type Systems: Sample Polymorphic Type Reconstruction, cont.

Tree7:                                        Tree5,      Tree6,         length:"a .a -listÆint  | +: int ¥intÆint

                                         length:"a .a -listÆint  |  (+ (length (cons 1 null)) (length (cons true null))): int

Tree8:                                                                               Tree3,      Tree7

 ∅ | (let length := (lx. (if (null? x) then 0 else (+ 1 (length (rest x))))) in (+ (length (cons 1 null)) (length (cons true null)))):int



COMP 311 10

Type Systems:  Coping with Imperativity

• If replicating the let definition

 x := M

 (renaming the defined variable x) for each use of x in M does not preserve the
meaning of programs, then programs written using Milner style polymorphism may
not be type correct.  In an imperative language, this phenomenon can happen in
several ways.  First, the evaluation of M may have side effects.  Second, the value
of x may allocate mutable storage which is shared when

 x := M

 is a single definition but split (among the various type instantiations) when the
definition is replicated.  In an imperative language this splitting can be detected by
mutating allocated storage.

• To avoid this problem, we can restrict M to a form that guarantees replication does
not change the meaning of programs.  This restricted form prevents M from
performing side-effects and from allocating shared mutable storage.

• If we restrict M to a syntactic value (a constant, variable, or l-expression) then no
side effect or sharing of mutable storage can occur.  The most modern languages
that use Hindley-Milner polymorphism use this restriction.  Standard ML uses a
much more complicated and less useful restriction (that is incomparable to the
syntactic value test).
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Type Systems:  Coping with Imperativity

• We can incorporate the value restriction in our type system by refining the
definition of CLOSE so that it does not generalize the free type variables when then
rhs of a definition is not a syntactic value.

• Let us extend our polymorphic -calculus language to imperative form in the same
way that we did for Jam by adding the type constant unit, the unary type
constructor ref,  the unary operations ref: * Æ * ref  and !: * ref Æ * , and the
binary operation ¨ : * ref ¥ * Æ  unit.

• The following polymorphic imperative program generates a run-time type error
even though it can be statically typed checked using our rules omitting the value
restriction.

   let x := ref null

   in { (¨ x cons(true,null));

           (+ (! x) 1) }

 In the absence of the value restriction, this program is typable, because x has
polymorphic type * ref, enabling each occurrence of x in the let body to be
separately typed.  Hence, the first occurrence of x has type bool ref while the
second has type int ref.

• The value  restriction prevents polymorphic generalization in this case, preserving
type soundness.


