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Abstract

We survey basic garbage collection algorithms, and
variations such as incremental and generational collec-
tion; we then discuss low-level implementation consid-
erations and the relationships between storage man-
agement systems, languages, and compilers. Through-
out, we attempt to present a unified view based on
abstract traversal strategies, addressing issues of con-
servatism, opportunism, and immediacy of reclama-
tion; we also point out a variety of implementation
details that are likely to have a significant impact on

performance.
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1 Awutomatic Storage Reclama-
tion

Garbage collection is the automatic reclamation of
computer storage [Knu69, Coh81, App91]. While in
many systems programmers must explicitly reclaim
heap memory' at some point in the program, by us-
ing a “free” or “dispose” statement; garbage collected
systems free the programmer from this burden. The
garbage collector’s function is to find data objects?
that are no longer in use and make their space avail-
able for reuse by the the running program. An object
is considered garbage (and subject to reclamation) if it
is not reachable by the running program via any path
of pointer traversals. Live (potentially reachable) ob-
jects are preserved by the collector, ensuring that the
program can never traverse a “dangling” pointer into
a deallocated object.

This paper surveys basic and advanced techniques
in uniprocessor garbage collectors, especially those de-
veloped in the last decade. (For a more thorough
treatment of older techniques, see [Knu69, Coh81].)
While it does not cover parallel or distributed col-
lection, it presents a unified taxonomy of incremen-
tal techniques, which lays the groundwork for under-
standing parallel and distributed collection. Our fo-
cus is on garbage collection for procedural and object-
oriented languages, but much of the information here
will serve as background for understanding garbage
collection of other kinds of systems, such as functional
or logic programming languages. (For further reading
on various advanced topics in garbage collection, the
papers collected in [BC92] are a good starting point.?)

1.1 Motivation

Garbage collection is necessary for fully modular pro-
gramming, to avoid introducing unnecessary inter-
module dependencies. A software routine operating
on a data structure should not have to depend what

1We use the term “heap” in the simple sense of a storage
management technique which allows any dynamically allocated
object to be freed at any time—this is not to be confused with
heap data structures which maintain ordering constraints.

2We use the term “object” loosely, to include any kind of
structured data record, such as Pascal records or C structs, as
well as full-fledged objects with encapsulation and inheritance,
in the sense of object-oriented programming.

3There is also a repository of papers in PostScript for-
mat available for anonymous Internet FTP from our FTP
host (cs.utexas.edu:pub/garbage). Among other things, this
repository contains collected papers from several garbage col-
lection workshops held in conjunction with ACM OOPSLA

conferences.



other routines may be operating on the same struc-
ture, unless there is some good reason to coordinate
their activities. If objects must be deallocated explic-
itly, some module must be responsible for knowing
when other modules are not interested in a particular
object.

Since liveness is a global property, this introduces
nonlocal bookkeeping into routines that might other-
wise be locally understandable and flexibly compos-
able. This bookkeeping inhibits abstraction and re-
duces extensibility, because when new functionality is
implemented, the bookkeeping code must be updated.
The runtime cost of the bookkeeping itself may be sig-
nificant, and in some cases it may introduce the need
for additional synchronization in concurrent applica-
tions.

The unnecessary complications and subtle interac-
tions created by explicit storage allocation are espe-
cially troublesome because programming mistakes of-
ten break the basic abstractions of the programming
language, making errors hard to diagnose. Failing to
reclaim memory at the proper point may lead to slow
memory leaks, with unreclaimed memory gradually ac-
cumulating until the process terminates or swap space
is exhausted. Reclaiming memory too soon can lead to
very strange behavior, because an object’s space may
be reused to store a completely different object while
an old pointer still exists. The same memory may
therefore be interpreted as two different objects simul-
taneously with updates to one causing unpredictable
mutations of the other.

These programming errors are particularly dan-
gerous because they often fail to show up repeat-
ably, making debugging very difficult—they may never
show up at all until the program is stressed in an un-
usual way. If the allocator happens not to reuse a
particular object’s space, a dangling pointer may not
cause a problem. Later, after delivery, the application
may crash when it makes a different set of memory de-
mands, or is linked with a different allocation routine.
A slow leak may not be noticeable while a program is
being used in normal ways—perhaps for many years—
because the program terminates before too much extra
space is used. But if the code is incorporated into a
long-running server program, the server will eventu-
ally exhaust the available memory and crash.?

Recently, tools have become available to help pro-

* Long-running server programs are also especially vulnerable
to leaks due to exception handling. Exception handling code
may fail to deallocate all of the objects allocated by an aborted
operation, and these occasional failures may cause a leak that
is extremely hard to diagnose.

grammers find the source of leaked objects in lan-
guages with explicit deallocation [HJ92], and these can
be extremely valuable. Unfortunately, these tools only
find actual leaks during particular program runs, not
possible leaks due to uncommon execution patterns.
Finding the source of a leaked object does not always
solve the problem, either: the programmer still must
be able to determine a point where the object should
be deallocated—if one exists. If one doesn’t exist, the
program must be restructured. (This kind of “gar-
bage debugging” is better than nothing, but it is very
fallible, and it must be repeated whenever programs
change; it is desirable to actually eliminate leaks in
general, rather than certain detectable leaks in partic-
ular.)

Explicit allocation and reclamation lead to program
errors in more subtle ways as well. It is common for
programmers to allocate a moderate number of ob-
jects statically, so that it is unnecessary to allocate
them on the heap and decide when and where to re-
claim them. This leads to fixed limitations on pro-
grams, making them fail when those limitations are
exceeded, possibly years later when computer memo-
ries (and data sets) are much larger. This “brittleness”
makes code much less reusable, because the undocu-
mented limits cause it to fail, even if it’s being used in
a way consistent with its abstractions. (For example,
many compilers fail when faced with automatically-
generated programs that violate assumptions about
“normal” programming practices.)

These problems lead many applications program-
mers to implement some form of application-specific
garbage collection within a large software system, to
avoid most of the headaches of explicit storage man-
agement. Many large programs have their own data
types that implement reference counting, for example.
Because they are coded up for a one-shot application,
these collectors are often both incomplete and buggy.
The garbage collectors themselves are therefore often
unreliable, as well as being hard to use because they
are not integrated into the programming language.
The fact that such kludges exist despite these prob-
lems is a testimony to the value of garbage collection,
and 1t suggests that garbage collection should be part
of programming language implementations.

It is widely believed that garbage collection is quite
expensive relative to explicit heap management, but
several studies have shown that garbage collection is
sometimes cheaper [App87] than explicit deallocation,
and is usually competitive with it [Zor93]. As we will
explain later, a well-implemented garbage collector



should slow running programs down by (very roughly)
10 percent, relative to explicit heap deallocation, for
a high-performance system.> A significant number of
programmers regard such a cost as unacceptable, but
many others believe it to be a small price for the ben-
efits in convenience, development time, and reliability.

Reliable cost comparisons are difficult, however,
partly because the use of explicit deallocation affects
the structure of programs in ways that may themselves
be expensive, either directly or by their impact on the
software development process.

For example, explicit heap management often moti-
vates extra copying of objects so that deallocation de-
cisions can be made locally—i.e., each module makes
its own copy of a piece of information, and can deal-
locate it when it is finished with it. This not only in-
curs extra heap allocation, but undermines an object-
oriented design strategy, where the identities of ob-
jects may be as important as the values they store.
(The efficiency cost of this extra copying is hard to
measure, because you can’t fairly compare the same
program with and without garbage collection; the pro-
gram would have been written differently if garbage
collection were assumed.)

In the long run, poor program structure may incur
extra development and maintenance costs, and may
cause programmer time to be spent on maintaining in-
elegant code rather than optimizing time-critical parts
of applications; even if garbage collection costs more
than explicit deallocation, the savings in human re-
sources may pay for themselves in increased attention
to other aspects of the system.®

For these reasons, garbage-collected languages have
long been used for the programming of sophisticated
algorithms using complex data structures. Many
garbage-collected languages (such as Lisp and Pro-
log) were originally popular for artificial intelligence
programming, but have been found useful for general-
purpose programming. Functional and logic program-
ming languages generally incorporate garbage col-
lection, because their unpredictable execution pat-
terns make it especially difficult to explicitly pro-
gram storage deallocation. The influential object-

5This is an estimate on our part, and in principle we think
garbage collection performance could be somewhat better; in
practice, it is sometimes worse. Reasons for (and limitations
of) such an estimate will be discussed in Sect. 8. One practical
problem is that state-of-the-art garbage collectors have not gen-
erally been available for most high-performance programming
systems.

8For example, Rovner reports that an estimated 40% of de-
veloper effort in the Mesa system was spent dealing with difficult
storage management issues [Rov85].

oriented programming language Smalltalk incorpo-
rates garbage collection; more recently, garbage collec-
tion has been incorporated into many general-purpose
languages (such as Eiffel, Self and Dylan), including
those designed in part for low-level systems program-
ming (such as Modula-3 and Oberon). Several add-on
packages also exist to retrofit C and C++ with gar-
bage collection.

In the rest of this paper, we focus on garbage col-
lectors that are built into a language implementation,
or grafted onto a language by importing routines from
a library. The usual arrangement is that the heap al-
location routines perform special actions to reclaim
space, as necessary, when a memory request is not
easily satisfied. Explicit calls to the “deallocator”
are unnecessary because calls to the collector are im-
plicit in calls to the allocator—the allocator invokes
the garbage collector as necessary to free up the space
it needs.

Most collectors require some cooperation from the
compiler (or interpreter), as well: object formats must
be recognizable by the garbage collector, and certain
invariants must be preserved by the running code. De-
pending on the details of the garbage collector, this
may require slight changes to the compiler’s code gen-
erator, to emit certain extra information at compile
time, and perhaps execute different instruction se-
quences at run time [Boe91, WH91, BC91, DMH92].
(Contrary to widespread misconceptions, there is no
conflict between using a compiled language and gar-
bage collection; state-of-the art implementations of
garbage-collected languages use sophisticated optimi-
zing compilers.)

1.2 The Two-Phase Abstraction

Garbage collection automatically reclaims the space
occupied by data objects that the running program
can never access again. Such data objects are referred
to as garbage. The basic functioning of a garbage col-
lector consists, abstractly speaking, of two parts:

1. Distinguishing the live objects from the garbage
in some way (garbage detection), and

2. Reclaiming the garbage objects’ storage, so that
the running program can use it (garbage reclama-
tion).

In practice, these two phases may be functionally
or temporally interleaved, and the reclamation tech-
nique is strongly dependent on the garbage detection
technique.



In general, garbage collectors use a “liveness” cri-
terion that is somewhat more conservative than those
used by other systems. In an optimizing compiler,
a value may be considered dead at the point that it
can never be used again by the running program, as
determined by control flow and data flow analysis. A
garbage collector typically uses a simpler, less dynamic
criterion, defined in terms of a root set and reachability
from these roots.

At the moment the garbage collector is invoked, the
active variables are considered live. Typically, this in-
cludes statically-allocated global or module variables,
as well as local variables in activation records on the
activation stack(s), and any variables currently in reg-
isters. These variables form the root set for the traver-
sal. Heap objects directly reachable from any of these
variables could be accessed by the running program,
so they must be preserved. In addition, since the pro-
gram might traverse pointers from those objects to
reach other objects, any object reachable from a live
object 1s also live. Thus the set of live objects is sim-
ply the set of objects on any directed path of pointers
from the roots.

Any object that is not reachable from the root set
is garbage, i.e., useless, because there is no legal se-
quence of program actions that would allow the pro-
gram to reach that object. Garbage objects therefore
can’t affect the future course of the computation, and
their space may be safely reclaimed.

1.3 Object Representations

In most of this paper, we make the simplifying as-
sumption that heap objects are self-identifying, i.e.,
that it is easy to determine the type of an object at run
time. Implementations of statically-typed garbage col-
lected languages typically have hidden “header” fields
on heap objects, i.e.; an extra field containing type in-
formation, which can be used to decode the format of
the object itself. (This is especially useful for finding
pointers to other objects.) Such information can eas-
ily be generated by the compiler, which must have the
information to generate correct code for references to
objects’ fields.

Dynamically-typed languages such as Lisp and
Smalltalk usually use tagged pointers; a slightly short-
ened representation of the hardware address is used,
with a small type-identifying field in place of the miss-
ing address bits. This also allows short immutable ob-
jects (in particular, small integers) to be represented
as unique bit patterns stored directly in the “address”
part of the field, rather than actually referred to by

an address. This tagged representation supports poly-
morphic fields which may contain either one of these
“immediate” objects, or a pointer to an object on the
heap. Usually, these short tags are augmented by ad-
ditional information in heap-allocated objects’ head-
ers.

For a purely statically-typed language, no per-
object runtime type information is actually necessary,
except the types of the root set variables. (This will be
discussed in Sect 6.1.) Despite this, headers are often
used for statically-typed languages, because it sim-
plifies implementations at little cost. (Conventional
(explicit) heap management systems often use object
headers for similar reasons.)

(Garbage collectors using conservative pointer find-
ing [BW88] are usable with little or no coopera-
tion from the compiler—not even the types of named
variables—but we will defer discussion of these collec-
tors until Sect 6.2.)

1.4 Overview of the Paper

The remainder of this paper will discuss basic and
advanced topics in garbage collection.

The basic algorithms include reference count-
ing, mark-sweep, mark-compact, copying, and non-
copying implicit collection; these are discussed in
Sect. 2.

Incremental techniques (Sect. 3) allow garbage col-
lection to proceed piecemeal while applications are
running. These techniques can reduce the disruptive-
ness of garbage collection, and may even provide real-
time guarantees. They can also be generalized into
concurrent collections, which proceed on another pro-
cessor, in parallel with actual program execution.

Generational schemes (Sect. 4) improve efficiency
and/or locality by garbage collecting a smaller area
more often, while exploiting typical lifetime character-
istics to avoid undue overhead from long-lived objects.
Because most collections are of a small area, typical
pause times are also short, and for many applications
this is an acceptable alternative to incremental collec-
tion.

Section 5 discusses locality properties of garbage-
collected systems, which are rather different from
those of conventional systems. Section 6 explores low-
level implementation considerations, such as object
formats and compiler cooperation; Section 7 describes
language-level constraints and features for garbage-
collected systems. Section 9 presents the basic con-
clusions of the paper and sketches research issues in



garbage collection of parallel, distributed, and persis-
tent systems.

2 Basic Garbage Collection

Techniques

Given the basic two-part operation of a garbage collec-
tor, many variations are possible. The first part, dis-
tinguishing live objects from garbage, may be done in
two ways: by reference counting, or by tracing. (The
general term “tracing,” used to include both marking
and copying techniques, is taken from [LD87].) Ref-
erence counting garbage collectors maintain counts of
the number of pointers to each object, and this count
is used as a local approximation of determining true
liveness. Tracing collectors determine liveness more
directly, by actually traversing the pointers that the
program could traverse, to find all of the objects the
program might reach. There are several varieties of
tracing collection: mark-sweep, mark-compact, copy-
ing, and non-copying implicit reclamation.” Because
each garbage detection scheme has a major influence
on reclamation and on reuse techniques, we will intro-
duce reclamation methods as we go.

2.1 Reference Counting

In a reference counting system [Col60], each object
has an associated count of the references (pointers) to
it. Each time a reference to the object is created, e.g.,
when a pointer is copied from one place to another
by an assignment, the pointed-to object’s count is in-
cremented. When an existing reference to an object
is eliminated, the count is decremented. (See Fig. 1.)
The memory occupied by an object may be reclaimed
when the object’s count equals zero, since that in-
dicates that no pointers to the object exist and the
running program cannot reach it.

In a straightforward reference counting system, each
object typically has a header field of information de-
scribing the object, which includes a subfield for the
reference count. Like other header information, the
reference count is generally not visible at the language
level.

When the object is reclaimed, its pointer fields are
examined, and any objects it holds pointers to also

"Some authors use the term “garbage collection” in a nar-
rower sense, which excludes reference counting and/or copy col-
lection systems; we prefer the more inclusive sense because of its
popular usage and because it’s less awkward than “automatic
storage reclamation.”
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Figure 1: Reference counting.

have their reference counts decremented, since refer-
ences from a garbage object don’t count in determin-
ing liveness. Reclaiming one object may therefore lead
to the transitive decrementing of reference counts and
reclaiming many other objects. For example, if the
only pointer into some large data structure becomes
garbage, all of the reference counts of the objects in
that structure typically become zero, and all of the
objects are reclaimed.

In terms of the abstract two-phase garbage collec-
tion, the adjustment and checking of reference counts
implements the first phase, and the reclamation phase
occurs when reference counts hit zero. These opera-
tions are both interleaved with the execution of the
program, because they may occur whenever a pointer
is created or destroyed.

One advantage of reference counting is this incre-
mental nature of most of its operation—garbage col-
lection work (updating reference counts) is interleaved
closely with the running program’s own execution. It
can easily be made completely incremental and real
time; that is, performing at most a small and bounded
amount of work per unit of program execution.

Clearly, the normal reference count adjustments are
intrinsically incremental, never involving more than a
few operations for any given operation that the pro-
gram executes. The transitive reclamation of whole
data structures can be deferred, and also done a lit-
tle at a time, by keeping a list of freed objects whose
reference counts have become zero but which haven’t
yet been processed.

This incremental collection can easily satisfy “real
time” requirements, guaranteeing that memory man-
agement operations never halt the executing program



for more than a very brief period. This can support
applications in which guaranteed response time is crit-
ical; incremental collection ensures that the program
is allowed to perform a significant, though perhaps ap-
preciably reduced, amount of work in any significant
amount of time. (Subtleties of real-time requirements
will be discussed in the context of tracing collection
in Sect. 3.8.)

One minor problem with reference counting systems
is that the reference counts themselves take up space.
In some systems, a whole machine word is used for
each object’s reference count field, actually allowing
it to represent any number of pointers that might ac-
tually exist in the whole system. In other systems, a
shorter field is used, with a provision for overflow—if
the reference count reaches the maximum that can be
represented by the field size, its count is fixed at that
maximum value, and the object cannot be reclaimed.
Such objects (and other objects reachable from them)
must be reclaimed by another mechanism, typically by
a tracing collector that is run occasionally; as we will
explain below, such a fall-back reclamation strategy is
usually required anyway.

There are two major problems with reference count-
ing garbage collectors; they are not always effective,
and they are difficult to make efficient.

2.1.1 The Problem with Cycles

The effectiveness problem is that reference counting
fails to reclaim circular structures. If the pointers
in a group of objects create a (directed) cycle, the
objects’ reference counts are never reduced to zero,
even if there is no path to the objects from the root set
[McB63].

Figure 2 illustrates this problem. Consider the iso-
lated pair of objects on the right. Each holds a pointer
to the other, and therefore each has a reference count
of one. Since no path from a root leads to either,
however, the program can never reach them again.

Conceptually speaking, the problem here is that ref-
erence counting really only determines a conservative
approximation of true liveness. If an object is not
pointed to by any variable or other object, it is clearly
garbage, but the converse is often not true.

It may seem that circular structures would be very
unusual, but they are not. While most data struc-
tures are acyclic, it is not uncommon for normal pro-
grams to create some cycles, and a few programs cre-
ate very many of them. For example, nodes in trees
may have “backpointers,” to their parents, to facilitate
certain operations. More complex cycles are some-

HEAP SPACE

-y
ROOT T
SET -y . i
:__1_‘ :__l- _\\\
\ 2 \

1 I Y I I A

Figure 2:
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Reference counting with unreclaimable cy-

times formed by the use of hybrid data structures
which combine advantages of simpler data structures,
as well as when the application-domain semantics of
data are most naturally expressed with cycles.

Systems using reference counting garbage collectors
therefore usually include some other kind of garbage
collector as well, so that if too much uncollectable
cyclic garbage accumulates, the other method can be
used to reclaim it.

Many programmers who use reference-counting sys-
tems (such as Interlisp and early versions of Smalltalk)
have modified their programming style to avoid the
creation of cyclic garbage, or to break cycles before
they become a nuisance. This has a negative impact
on program structure, and many programs still have
storage “leaks” that accumulate cyclic garbage which
must be reclaimed by some other means.® These leaks,
in turn, can compromise the real-time nature of the al-
gorithm, because the system may have to fall back to
the use of a non-real-time collector at a critical mo-
ment.

2.1.2 The Efficiency Problem

The efficiency problem with reference counting is that
its cost is generally proportional to the amount of
work done by the running program, with a fairly large
constant of proportionality. One cost is that when
a pointer is created or destroyed, its referent’s count
must be adjusted. If a variable’s value is changed from
one pointer to another, fwo objects’ counts must be

8[Bob80] describes modifications to reference counting to al-
low it to handle some special cases of cyclic structures, but this
restricts the programmer to certain stereotyped patterns.



adjusted—one object’s reference count must be incre-
mented, the other’s decremented and then checked to
see if it has reached zero.

Short-lived stack variables can incur a great deal
of overhead in a simple reference-counting scheme.
When an argument is passed, for example, a new
pointer appears on the stack, and usually disappears
almost immediately because most procedure activa-
tions (near the leaves of the call graph) return very
shortly after they are called. In these cases, reference
counts are incremented, and then decremented back
to their original value very soon. It is desirable to op-
timize away most of these increments and decrements
that cancel each other out.

2.1.3 Deferred Reference Counting.

Much of this cost can be optimized away by special
treatment of local variables [DB76, Bak93b]. Rather
than always adjusting reference counts and reclaiming
objects whose counts become zero, references from the
local variables are not included in this bookkeeping
most of the time. Usually, reference counts are only
adjusted to reflect pointers from one heap object to
another. This means that reference counts may not be
accurate, because pointers from the stack may be cre-
ated or destroyed without being accounted for; that,
in turn, means that objects whose count drops to zero
may not actually be reclaimable. Garbage collection
can only be done when references from the stack are
taken into account as well.

Every now and then, the reference counts are
brought up to date by scanning the stack for pointers
to heap objects. Then any objects whose reference
counts are still zero may be safely reclaimed. The
interval between these phases is generally chosen to
be short enough that garbage is reclaimed often and
quickly, yet still long enough that the cost of peri-
odically updating counts (for stack references) is not
high.

This deferred reference counting [DB76] avoids ad-
justing reference counts for most short-lived pointers
from the stack, and greatly reduces the overhead of
reference counting. When pointers from one heap ob-
ject to another are created or destroyed, however, the
reference counts must still be adjusted. This cost is
still roughly proportional to the amount of work done
by the running program in most systems, but with a
lower constant of proportionality.

2.1.4 Variations on Reference Counting

Another optimization of reference counting is to use
a very small count field, perhaps only a single bit,
to avoid the need for a large field per object [WF77].
Given that deferred reference counting avoids the need
to continually represent the count of pointers from the
stack, a single bit is sufficient for most objects; the
minority of objects whose reference counts are not zero
or one cannot be reclaimed by the reference counting
system, but are caught by a fall-back tracing collector.
A one-bit reference count can also be represented in
each pointer to an object, if there is an unused address
bit, rather than requiring a header field [SCN84].

There is another cost of reference-counting collec-
tion that is harder to escape. When objects’ counts
go to zero and they are reclaimed, some bookkeeping
must be done to make them available to the running
program. Typically this involves linking the freed ob-
jects into one or more “free lists” of reusable objects,
from which the program’s allocation requests are sat-
isfied. (Other strategies will be discussed in the con-
text of mark-sweep collection, in Sect. 2.2.) Objects’
pointer fields must also be examined so that their ref-
erents can be freed.

It is difficult to make these reclamation operations
take less than a few tens of instructions per object,
and the cost is therefore proportional to the number
of objects allocated by the running program.

These costs of reference counting collection have
combined with its failure to reclaim circular structures
to make it unattractive to most implementors in re-
cent years. As we will explain below, other techniques
are usually more efficient and reliable. Still, refer-
ence counting has its advantages. The immediacy of
reclamation can have advantages for overall memory
usage and for locality of reference [DeT90]; a refer-
ence counting system may perform with little degra-
dation when almost all of the heap space is occupied
by live objects, while other collectors rely on trading
more space for higher efficiency.® It can also be useful
for finalization, that is, performing “clean-up” actions
(like closing files) when objects die [Rov85]; this will
be discussed in Sect. 7.

The inability to reclaim cyclic structures is not a
problem in some languages which do not allow the con-
struction of cyclic data structures at all (e.g., purely
functional languages). Similarly, the relatively high
cost of side-effecting pointers between heap objects is
not a problem in languages with few side-effects. Ref-

9 As [WLM92] shows, generational techniques can recapture
some of this locality, but not all of it.



erence counts themselves may be valuable in some sys-
tems. For example, they may support optimizations in
functional language implementations by allowing de-
structive modification of uniquely-referenced objects.
Distributed garbage collection can benefit from the
local nature of garbage collection, compared to global
tracing. (In some configurations the cost of reference
counting is only incurred for pointers to objects on
other nodes; tracing collection is used within a node
and to compute changes to reference counts between
nodes.) Future systems may find other uses for ref-
erence counting, perhaps in hybrid collectors also in-
volving other techniques, or when augmented by spe-
cialized hardware [PS89, Wis85, GC93] to keep CPU
costs down.

While reference counting is out of vogue for high-
performance implementations of general-purpose pro-
gramming languages, it is quite common in other ap-
plications, where acyclic data structures are common.
Most file systems use reference counting to manage
files and/or disk blocks. Because of its simplicity, sim-
ple reference counting is often used in various software
packages, including simple interpretive languages and
graphical toolkits. Despite its weakness in the area of
reclaiming cycles, reference counting is common even
in systems where cycles may occur.

2.2 Mark-Sweep Collection

Mark-sweep garbage collectors [McC60] are named for
the two phases that implement the abstract garbage
collection algorithm we described earlier:

1. Distinguish the live objects from the garbage.
This is done by tracing—starting at the root
set and actually traversing the graph of pointer
relationships—usually by either a depth-first or
breadth-first traversal. The objects that are
reached are marked in some way, either by alter-
ing bits within the objects, or perhaps by record-
ing them in a bitmap or some other kind of
table.10

2. Reclaim the garbage. Once the live objects have
been made distinguishable from the garbage ob-
jects, memory is swept, that is, exhaustively ex-
amined, to find all of the unmarked (garbage) ob-
jects and reclaim their space. Traditionally, as
with reference counting, these reclaimed objects
are linked onto one or more free lists so that they
are accessible to the allocation routines.

10More detailed descriptions of traversal and marking algo-
rithms can be found in [Knu69] and [Coh81].

There are three major problems with traditional
mark-sweep garbage collectors. First, it is difficult to
handle objects of varying sizes without fragmentation
of the available memory. The garbage objects whose
space is reclaimed are interspersed with live objects,
so allocation of large objects may be difficult; several
small garbage objects may not add up to a large con-
tiguous space. This can be mitigated somewhat by
keeping separate free lists for objects of varying sizes,
and merging adjacent free spaces together, but dif-
ficulties remain. (The system must choose whether
to allocate more memory as needed to create small
data objects, or to divide up large contiguous hunks of
free memory and risk permanently fragmenting them.
This fragmentation problem is not unique to mark-
sweep—it occurs in reference counting as well, and in
most explicit heap management schemes.)

The second problem with mark-sweep collection is
that the cost of a collection is proportional to the size
of the heap, including both live and garbage objects.
All live objects must be marked, and all garbage ob-
jects must be collected, imposing a fundamental limi-
tation on any possible improvement in efficiency.

The third problem involves locality of reference.
Since objects are never moved, the live objects re-
main in place after a collection, interspersed with free
space. Then new objects are allocated in these spaces;
the result is that objects of very different ages be-
come interleaved in memory. This has negative im-
plications for locality of reference, and simple (non-
generational) mark-sweep collectors are often consid-
ered unsuitable for most virtual memory applications.
(It is possible for the “working set” of active objects
to be scattered across many virtual memory pages, so
that those pages are frequently swapped in and out
of main memory.) This problem may not be as bad
as many have thought, because objects are often cre-
ated in clusters that are typically active at the same
time. Fragmentation and locality problems are is un-
avoidable in the general case, however, and a potential
problem for some programs.

It should be noted that these problems may not be
insurmountable, with sufficiently clever implementa-
tion techniques. For example, if a bitmap is used for
mark bits; 32 bits can be checked at once with a 32-bit
integer ALU operation and conditional branch. If live
objects tend to survive in clusters in memory, as they
apparently often do, this can greatly diminish the con-
stant of proportionality of the sweep phase cost; the
theoretical linear dependence on heap size may not be
as troublesome as it seems at first glance. The clus-



tered survival of objects may also mitigate the local-
ity problems of re-allocating space amid live objects;
if objects tend to survive or die in groups in memory
[Hay91], the interspersing of objects used by different
program phases may not be a major consideration.

2.3 Mark-Compact Collection

Mark-compact collectors remedy the fragmentation
and allocation problems of mark-sweep collectors.
As with mark-sweep, a marking phase traverses and
marks the reachable objects. Then objects are com-
pacted, moving most of the live objects until all of
the live objects are contiguous. This leaves the rest
of memory as a single contiguous free space. This is
often done by a linear scan through memory, finding
live objects and “sliding” them down to be adjacent to
the previous object. Eventually, all of the live objects
have been slid down to be adjacent to a live neighbor.
This leaves one contiguous occupied area at one end of
heap memory, and implicitly moving all of the “holes”
to the contiguous area at the other end.

This sliding compaction has several interesting
properties. The contiguous free area eliminates frag-
mentation problems so that allocating objects of vari-
ous sizes is simple. Allocation can be implemented as
the incrementing of a pointer into a contiguous area of
memory, in much the way that different-sized objects
can be allocated on a stack. In addition, the garbage
spaces are simply “squeezed out,” without disturb-
ing the original ordering of objects in memory. This
can ameliorate locality problems, because the alloca-
tion ordering is usually more similar to subsequent
access orderings than an arbitrary ordering imposed
by a copying garbage collector [CGT7, Cla79].

While the locality that results from sliding com-
paction is advantageous, the collection process itself
shares the mark-sweep’s unfortunate property that
several passes over the data are required. After the
initial marking phase, sliding compactors make two or
three more passes over the live objects [CN83]. One
pass computes the new locations that objects will be
moved to; subsequent passes must update pointers to
refer to objects’ new locations, and actually move the
objects. These algorithms may be therefore be signif-
icantly slower than mark-sweep if a large percentage
of data survives to be compacted.

An alternative approach is to use Daniel J. Ed-
wards’ two-pointer algorithm,'' which scans inward
from both ends of a heap space to find opportunities

HDescribed in an exercise on page 421 of [Knu69).

for compaction. One pointer scans downward from the
top of the heap, looking for live objects, and the other
scans upward from the bottom, looking for holes to
put them in. (Many variations of this algorithm are
possible, to deal with multiple areas holding different-
sized objects, and to avoid intermingling objects from
widely-dispersed areas.) For a more complete treat-
ment of compacting algorithms, see [CN83].

2.4 Copying Garbage Collection

Like mark-compact (but unlike mark-sweep), copying
garbage collection does not really “collect” garbage.
Rather, it moves all of the live objects into one area,
and the rest of the heap is then known to be available
because it contains only garbage. “Garbage collec-
tion” in these systems is thus only implicit, and some
researchers avoid applying that term to the process.
Copying collectors, like marking-and-compacting
collectors, move the objects that are reached by the
traversal to a contiguous area. While mark-compact
collectors use a separate marking phase that traverses
the live data, copying collectors integrate the traversal
of the data and the copying process, so that most ob-
jects need only be traversed once. Objects are moved
to the contiguous destination area as they are reached
by the traversal. The work needed is proportional to
the amount of live data (all of which must be copied).
The term scavenging is applied to the copying
traversal, because it consists of picking out the worth-
while objects amid the garbage, and taking them away.

2.4.1 A Simple Copying Collector: “Stop-

and-Copy” Using Semispaces.

A very common kind of copying garbage collector is
the semispace collector [FY69] using the Cheney algo-
rithm for the copying traversal [Che70]. We will use
this collector as a reference model for much of this
paper.!?

In this scheme, the space devoted to the heap is
subdivided into two contiguous semispaces. During
normal program execution, only one of these semi-
spaces is in use, as shown in Fig. 3. Memory is alloca-
ted linearly upward through this “current” semispace

12 As a historical note, the first copying collector was Min-
sky’s collector for Lisp 1.5 [Min63]. Rather than copying data
from one area of memory to another, a single heap space was
used. The live data were copied out to a file on disk, and
then read back in, in a contiguous area of the heap space.
On modern machines this would be unbearably slow, because
file operations—writing and reading every live object—are now
many times slower than memory operations.

10
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Figure 3: A simple semispace garbage collector before
garbage collection.
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Figure 4: Semispace collector after garbage collection.

as demanded by the executing program. As with a
mark-compact collector, the ability to allocate from
a large, contiguous free space makes allocation sim-
ple and fast, much like allocating on a stack; there is
no fragmentation problem when allocating objects of
various sizes.

When the running program demands an allocation
that will not fit in the unused area of the current semis-
pace, the program is stopped and the copying garbage
collector is called to reclaim space (hence the term
“stop-and-copy”). All of the live data are copied from
the current semispace (fromspace) to the other semis-
pace (tospace). Once the copying is completed, the
tospace semispace is made the “current” semispace,
and program execution is resumed. Thus the roles
of the two spaces are reversed each time the garbage
collector is invoked. (See Fig. 4.)

Perhaps the simplest form of copying traversal is
the Cheney algorithm [Che70]. The immediately-
reachable objects form the initial queue of objects
for a breadth-first traversal. A “scan” pointer is ad-
vanced through the first object, location by location.
Each time a pointer into fromspace is encountered,
the referred-to-object is transported to the end of the
queue, and the pointer to the object is updated to re-
fer to the new copy. The free pointer is then advanced
and the scan continues. This effects the “node ex-
pansion” for the breadth-first traversal, reaching (and
copying) all of the descendants of that node. (See
Fig. 5. Reachable data structures in fromspace are
shown at the top of the figure, followed by the first
several states of tospace as the collection proceeds—
tospace is shown in linear address order to emphasize
the linear scanning and copying.)

Rather than stopping at the end of the first object,
the scanning process simply continues through sub-
sequent objects, finding their offspring and copying
them as well. A continuous scan from the beginning
of the queue has the effect of removing consecutive
nodes and finding all of their offspring. The offspring
are copied to the end of the queue. Eventually the
scan reaches the end of the queue, signifying that all
of the objects that have been reached (and copied)
have also been scanned for descendants. This means
that there are no more reachable objects to be copied,
and the scavenging process is finished.

Actually, a slightly more complex process is needed,
so that objects that are reached by multiple paths are
not copied to tospace multiple times. When an ob-
ject is transported to tospace, a forwarding pointer is
installed in the old version of the object. The for-
warding pointer signifies that the old object is obso-
lete and indicates where to find the new copy of the
object. When the scanning process finds a pointer
into fromspace, the object it refers to is checked for
a forwarding pointer. If it has one, it has already
been moved to tospace, so the pointer by which it was
reached is simply updated to point to its new loca-
tion. This ensures that each live object is transported
exactly once, and that all pointers to the object are
updated to refer to the new copy.

2.4.2 Efficiency of Copying Collection.

A copying garbage collector can be made arbitrarily ef-
ficient if sufficient memory is available [Lar77, App87].
The work done at each collection is proportional to
the amount of live data at the time of garbage collec-
tion. Assuming that approximately the same amount
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of data is live at any given time during the program’s
execution, decreasing the frequency of garbage collec-
tions will decrease the total amount of garbage collec-
tion effort.

A simple way to decrease the frequency of garbage
collections is to increase the amount of memory in the
heap. If each semispace is bigger, the program will run
longer before filling it. Another way of looking at this
is that by decreasing the frequency of garbage collec-
tions, we are increasing the average age of objects at
garbage collection time. Objects that become garbage
before a garbage collection needn’t be copied, so the
chance that an object will never have to be copied is
increased.

Suppose, for example, that during a program run
twenty megabytes of memory are allocated, but only
one megabyte is live at any given time. If we have
two three-megabyte semispaces, garbage will be col-
lected about ten times. (Since the current semispace
is one third full after a collection, that leaves two
megabytes that can be allocated before the next col-
lection.) This means that the system will copy about
half as much data as it allocates, as shown in the top
part of Fig. 6. (Arrows represent copying of live ob-
jects between semispaces at garbage collections.)

On the other hand, if the size of the semispaces is
doubled, 5 megabytes of free space will be available af-
ter each collection. This will force garbage collections
a third as often, or about 3 or 4 times during the run.
This straightforwardly reduces the cost of garbage col-
lection by more than half, as shown in the bottom part
of Fig. 6. (For the moment, we ignore virtual memory
paging costs, assuming that the larger heap area can
be cached in RAM rather than paged to disk. As we
will explain in Sect. 2.7, paging costs may make the
use of a larger heap area impractical if there is not a
correspondingly large amount of RAM.)

2.5 Non-Copying Implicit Collection

Recently, Wang [Wan89] and Baker [Bak91b] have (in-
dependently) proposed a new kind of non-copying col-
lector with some of the efficiency advantages of a copy-
ing scheme. Their insight is that in a copying collector,
the “spaces” of the collector are really just a particular
implementation of sets. The tracing process removes
objects from the set subject to garbage collection, and
when tracing is complete, anything remaining in the
set is known to be garbage, so the set can be reclaimed
in its entirety. Another implementation of sets could
do just as well, provided that it has similar perfor-
mance characteristics. In particular, given a pointer

to an object, it must be easy to determine which set it
is a member of; in addition, it must be easy to switch
the roles of the sets, just as fromspace and tospace
roles are exchanged in a copy collector. (In a copying
collector, the set is an area of memory, but in a non-
copying collector it can be any kind of set of chunks
of memory that formerly held live objects.)

The non-copying system adds two pointer fields and
a “color” field to each object. These fields are invisible
to the application programmer, and serve to link each
hunk of storage into a doubly-linked list that serves
as a set. The color field indicates which set an object
belongs to.

The operation of this collector is simple, and iso-
morphic to the copy collector’s operation. (Wang
therefore refers to this as a “fake copying” collector.)
Chunks of free space are initially linked to form a
doubly-linked list, while chunks holding allocated ob-
jects are linked together into another list.

When the free list is exhausted, the collector tra-
verses the live objects and “moves” them from the allo-
cated set (which we could call the fromset) to another
set (the toset). This is implemented by unlinking the
object from the doubly-linked fromset list, toggling its
color field, and linking it into the toset’s doubly-linked
list.

Just as in a copy collector, space reclamation is im-
plicit. When all of the reachable objects have been
traversed and moved from the fromset to the toset,
the fromset is known to contain only garbage. It is
therefore a list of free space, which can immediately
be put to use as a free list. (As we will explain in sec-
tion 3.4.2, Baker’s scheme is actually somewhat more
complex, because his collector is incremental.) The
cost of the collection is proportional to the number of
live objects, and the garbage objects are all reclaimed
in small constant time.

This scheme can be optimized in ways that are anal-
ogous to those used in a copying collector—allocation
can be fast because the allocated and free lists can
be contiguous, and separated only by an allocation
pointer. Rather than actually unlinking objects from
one list and linking them into another, the allocator
can simply advance a pointer which points into the list
and divides the allocated segment from the free seg-
ment. Similarly, a Cheney-style breadth-first traversal
can be implemented with only a pair of pointers, and
the scanned and free lists can be contiguous, so that
advancing the scan pointer only requires advancing
the pointer that separates them.

This scheme has both advantages and disadvantages
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Figure 6: Memory usage in a semispace GC, with 3 MB (top) and 6 MB (bottom) semispaces
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compared to a copy collector. On the minus side, the
per-object constants are probably a little bit higher,
and fragmentation problems are still possible. On the
plus side, the tracing cost for large objects is not as
high. As with a mark-sweep collector, the whole ob-
ject needn’t be copied; if it can’t contain pointers,
it needn’t be scanned either. Perhaps more impor-
tantly for many applications, this scheme does not
require the actual language-level pointers between ob-
jects to be changed, and this imposes fewer constraints
on compilers. As we’ll explain later, this is particu-
larly important for parallel and real-time incremental
collectors.

The space costs of this technique are usually roughly
comparable to those of a copying collector. Two
pointer fields are required per object, but live objects
being traced do not require space for both fromspace
and tospace versions. In most cases, this appears to
make the space cost smaller than that of a copying
collector, but in some cases fragmentation costs (due
to the inability to compact data) may outweigh those
savings.

2.6 Choosing Among Basic Tracing
Techniques

Treatments of garbage collection algorithms in text-
books often stress asymptotic complexity, but all basic
algorithms have roughly similar costs, especially when
we view garbage collection as part of the overall free
storage management scheme. Allocation and garbage
collection are two sides of the basic memory reuse coin,
and any algorithm incurs costs at allocation time, if
only to initialize the fields of new objects. A common
criterion for “high performance” garbage collection is
that the cost of garbage collecting objects be compa-
rable, on average, to the cost of allocating objects.

Any efficient tracing collection scheme therefore has
three basic cost components, which are (1) the initial
work required at each collection, such as root set scan-
ning, (2) the work done at allocation (proportional to
the amount of allocation, or the number of objects
allocated) and (3) the work done during garbage de-
tection (e.g., tracing).

The initial work is usually relatively fixed for a par-
ticular program, by the size of the root set. The
work done at allocation is generally proportional to
the number of objects allocated, plus an initialization
cost proportional to their sizes. The garbage detec-
tion cost is proportional to the amount of live data
that must be traced.
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The latter two costs are usually similar, in that the
amount of live data traced is usually some significant
percentage of the amount of allocated memory. Thus
algorithms whose cost is proportional to the amount
of allocation (e.g., mark-sweep) may be competitive
with those whose cost is proportional to the amount
of live data traced (e.g., copying).

For example, suppose that 10 percent of all allo-
cated data survive a collection, and 90 percent never
need to be traced. In deciding which algorithm is more
efficient, the asymptotic complexity is less important
than the associated constants. If the cost of sweeping
an object is ten times less than the cost of copying it,
the mark-sweep collector costs about the same as as
copy collector. (If a mark-sweep collector’s sweeping
cost is billed to the allocator, and it is small relative
to the cost of initializing the objects, then it becomes
obvious that the sweep phase is just not terribly ex-
pensive.) While current copying collectors appear to
be more efficient than current mark-sweep collectors,
the difference is not large for state-of-the art imple-
mentations.

In systems where memory is not much larger than
the expected amount of live data, nonmoving collec-
tors have an an advantage over copying collectors in
that they don’t need space for two versions of each live
object (the “from” and “to” versions). When space
is very tight, reference counting collectors are partic-
ularly attractive because their performance is essen-
tially independent of the ratio of live data to total
storage.

Further, real high-performance systems often use
hybrid techniques to adjust tradeoffs for different cate-
gories of objects. Many high-performance copy collec-
tors use a separate large object area [CWB86, UJ88],
to avoid copying large objects from space to space.
The large objects are kept “off to the side” and usually
managed in-place by some variety of marking traversal
and free list technique. Other hybrids may use non-
copying techniques most of the time, but occasionally
compact some of the data using copying techniques to
avoid permanent fragmentation (e.g., [LD8T7]).

A major point in favor of in-place collectors is the
ability to make them conservative with respect to data
values that may or may not be pointers. This allows
them to be used for languages like C, or off-the-shelf
optimizing compilers [BW88, Bar88, BDS91], which
can make it difficult or impossible to unambiguously
identify all pointers at run time. A non-moving col-
lector can be conservative because anything that looks
like a pointer object can be left where it is, and the



(possible) pointer to it doesn’t need to be changed.
In contrast, a copying collector must know whether
a value is a pointer—and whether to move the ob-
ject and update the pointer. (Conservative pointer-
finding techniques will be discussed in more detail in
Sect. 6.2.)

Similarly, the choice of a non-moving collector can
greatly simplify the interfaces between modules writ-
ten in different languages and compiled using different
compilers. It is possible to pass pointers to garbage-
collectible objects as arguments to foreign routines
that were not written or compiled with garbage col-
lection in mind. This is not practical with a copying
collector, because the pointers that “escape” into for-
eign routines would have to be found and updated
when their referents moved.

2.7 Problems with Simple Tracing Col-
lectors

It is widely known that the asymptotic complexity of
copying garbage collection is excellent—the copying
cost approaches zero as memory becomes very large.
Treadmill collection shares this property, but other
collectors can be similarly efficient if the constants
associated with memory reclamation and reallocation
are small enough. In that case, garbage detection is
the major cost.

Unfortunately, it is difficult in practice to achieve
high efficiency in a simple garbage collector, because
large amounts of memory are too expensive. If virtual
memory is used, the poor locality of the allocation
and reclamation cycle will generally cause excessive
paging. (Every location in the heap is used before
any location’s space is reclaimed and reused.) Simply
paging out the recently-allocated data is expensive for
a high-speed processor [Ung84], and the paging caused
by the copying collection itself may be tremendous,
since all live data must be touched in the process.)

It therefore doesn’t generally pay to make the heap
area larger than the available main memory. (For a
mathematical treatment of this tradeoff, see [Lar77].)
Even as main memory becomes steadily cheaper, lo-
cality within cache memory becomes increasingly im-
portant, so the problem is partly shifted to a different
level of the memory hierarchy [WLM92].

In general, we can’t achieve the potential efficiency
of simple garbage collection; increasing the size of
memory to postpone or avoid collections can only be
taken so far before increased paging time negates any
advantage.
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It is important to realize that this problem is
not unique to copying collectors. All efficient gar-
bage collection strategies involve similar space-time
tradeoffs—garbage collections are postponed so that
garbage detection work is done less often, and that
means that space is not reclaimed as quickly. On av-
erage, that increases the amount of memory wasted
due to unreclaimed garbage.

(Deferred reference counting, like tracing collection,
also trades space for time—in giving up continual in-
cremental reclamation to avoid spending CPU cycles
in adjusting reference counts, one gives up space for
objects that become garbage and are not immedi-
ately reclaimed. At the time scale on which memory
is reused, the resulting locality characteristics must
share basic performance tradeoff characteristics with
generational collectors of the copying or mark-sweep
varieties, which will be discussed later.)

While copying collectors were originally designed to
improve locality, in their simple versions this improve-
ment is not large, and their locality can in fact be
worse than that of non-compacting collectors. These
systems may improve the locality of reference to long-
lived data objects, which have been compacted into
a contiguous area. However, this effect is typically
swamped by the effects of references due to alloca-
tion. Large amounts of memory are touched between
collections, and this alone makes them unsuitable for
a virtual memory environment.

The major locality problem is not with the locality
of compacted data, or with the locality of the garbage
collection process itself. The problem is an indirect
result of the use of garbage collection—by the time
space is reclaimed and reused, it’s likely to have been
paged out, simply because too many other pages have
been allocated in between. Compaction is helpful, but
the help is generally too little, too late. With a simple
semispace copy collector, locality is likely to be worse
than that of a mark-sweep collector, because the copy
collector uses more total memory—only half the mem-
ory can be used between collections. Fragmentation
of live data is not as detrimental as the regular reuse
of two spaces.!3

The only way to have good locality is to ensure that
memory is large enough to hold the regularly-reused

138lightly more complicated copying schemes appear to avoid
this problem [Ung84, WMB89], but [WLM92] demonstrates that
cyclic memory reuse patterns can fare poorly in hierarchical
memories because of recency-based (e.g., LRU) replacement
policies. This suggests that freed memory should be reused
in a LIFO fashion (i.e., in the opposite order of its previous
allocation), if the entire reuse pattern can’t be kept in memory.



area. (Another approach would be to rely on opti-
mizations such as prefetching, but this is not feasi-
ble at the level of virtual memory—disks simply can’t
keep up with the rate of allocation because of the enor-
mous speed differential between RAM and disk.) Gen-
erational collectors address this problem by reusing
a smaller amount of memory more often; they will
be discussed in Sect. 4. (For historical reasons, is
widely believed that only copying collectors can be
made generational, but this is not the case. Gener-
ational non-copying collectors are slightly harder to
construct, but they do exist and are quite practical
[DWH*90, WJ93].)

Finally, the temporal distribution of a simple trac-
ing collector’s work is also troublesome in an inter-
active programming environment; it can be very dis-
ruptive to a user’s work to suddenly have the system
become unresponsive and spend several seconds gar-
bage collecting, as is common in such systems. For
large heaps, the pauses may be on the order of sec-
onds, or even minutes if a large amount of data is
dispersed through virtual memory. Generational col-
lectors alleviate this problem, because most garbage
collections only operate on a subset of memory. Even-
tually they must garbage collect larger areas, however,
and the pauses may be considerably longer. For real
time applications, this may not be acceptable.

2.8 Conservatism in Garbage Collec-
tion

An ideal garbage collector would be able to reclaim
every object’s space just after the last use of the ob-
ject. Such an object is not implementable in practice,
of course, because it cannot in general be determined
when the last use occurs. Real garbage collectors can
only provide a reasonable approximation of this be-
havior, using conservative approximations of this om-
niscience. The art of efficient garbage collector design
is largely one of introducing small degrees of conser-
vatism which significantly reduce the work done in
detecting garbage. (This notion of conservatism is
very general, and should not be confused with the
specific pointer-identification techniques used by so-
called “conservative” garbage collectors. All garbage
collectors are conservative in one or more ways.)

The first conservative assumption most collectors
make is that any variable in the stack, globals; or reg-
isters is live, even though the variable may actually
never be referenced again. (There may be interactions
between the compiler’s optimizations and the garbage
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collector’s view of the reachability graph. A compiler’s
data and control flow analysis may detect dead values
and optimize them away entirely. Compiler optimiza-
tions may also extend the effective lifetime of vari-
ables, causing extra garbage to be retained, but this
is not typically a problem in practice.)

Tracing collectors introduce a major temporal form
of conservatism, simply by allowing garbage to go un-
collected between collection cycles. Reference count-
ing collectors are conservative topologically, failing to
distinguish between different paths that share an edge
in the graph of pointer relationships.

As the remainder of this survey will show, there are
many possible kinds and degrees of conservatism with
different performance tradeoffs.

3 Incremental Tracing Collec-
tors

For truly real-time applications, fine-grained incre-
mental garbage collection appears to be necessary.
Garbage collection cannot be carried out as one atomic
action while the program is halted, so small units
of garbage collection must be interleaved with small
units of program execution. As we said earlier, it is
relatively easy to make reference counting collectors
incremental. Reference counting’s problems with ef-
ficiency and effectiveness discourage its use, however,
and it is therefore desirable to make tracing (copying
or marking) collectors incremental.

In much of the following discussion, the difference
between copying and mark-sweep collectors is not par-
ticularly important. The incremental tracing for gar-
bage detection is more interesting than the reclama-
tion of detected garbage.

The difficulty with incremental tracing is that while
the collector is tracing out the graph of reachable data
structures, the graph may change—the running pro-
gram may mutate the graph while the collector “isn’t
looking.” For this reason, discussions of incremen-
tal collectors typically refer to the running program
as the mutator [DLM*78]. (From the garbage collec-
tor’s point of view, the actual application is merely a
coroutine or concurrent process with an unfortunate
tendency to modify data structures that the collec-
tor is attempting to traverse.) An incremental scheme
must have some way of keeping track of the changes to
the graph of reachable objects, perhaps re-computing
parts of its traversal in the face of those changes.

An important characteristic of incremental tech-



niques is their degree of conservatism with respect to
changes made by the mutator during garbage collec-
tion. If the mutator changes the graph of reachable
objects, freed objects may or may not be reclaimed
by the garbage collector. Some floating garbage may
go unreclaimed because the collector has already cat-
egorized the object as live before the mutator frees
it. This garbage is guaranteed to be collected at the
next cycle, however, because it will be garbage at the
beginning of the next collection.

3.1 Coherence and Conservatism

Incremental marking traversals must take into ac-
count changes to the reachability graph, made by the
mutator during the collector’s traversal. Incremen-
tal copying collectors pose more severe coordination
problems—the mutator must also be protected from
changes made by the garbage collector.

It may be enlightening to view these issues as a vari-
ety of coherence problems—having multiple processes
attempt to share changing data, while maintaining
some kind of consistent view [NOPH92]. (Readers un-
familiar with coherence problems in parallel systems
should not worry too much about this terminology;
the issues should become apparent as we go along.)

An incremental mark-sweep traversal poses a multi-
ple readers, single writer coherence problem—the col-
lector’s traversal must respond to changes, but only
the mutator can change the graph of objects. (Simi-
larly, only the traversal can change the mark bits; each
process can update values, but any field is writable by
only one process. Only the mutator writes to pointer
fields, and only the collector writes to mark fields.)

Copying collectors pose a more difficult problem—a
maultiple readers, multiple writers problem. Both the
mutator and the collector may modify pointer fields,
and each must be protected from inconsistencies in-
troduced by the other.

Garbage collectors can efficiently solve these prob-
lems by taking advantage of the semantics of garbage
collection, and using forms of relazed consistency—
that is, the processes needn’t always have a consistent
view of the data structures, as long as the differences
between their views “don’t matter” to the correctness
of the algorithm.

In particular, the garbage collector’s view of the
reachability graph is typically not identical to the ac-
tual reachability graph visible to the mutator. It is
only a safe, conservative approximation of the true
reachability graph—the garbage collector may view
some unreachable objects as reachable, as long as it
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doesn’t view reachable objects as unreachable, and
erroneously reclaim their space. Typically, some gar-
bage objects go unreclaimed for a while; usually, these
are objects that become garbage after being reached
by the collector’s traversal. Such floating garbage is
usually reclaimed at the next garbage collection cy-
cle; since they will be garbage at the beginning of
that collection, the tracing process will not conser-
vatively view them as live. The inability to reclaim
floating garbage immediately is unfortunate, but may
be essential to avoiding very expensive coordination
between the mutator and collector.

The kind of relaxed consistency used—and the
corresponding coherence features of the collection
scheme—are closely intertwined with the notion of
conservatism. In general, the more we relax the consis-
tency between the mutator’s and the collector’s views
of the reachability graph, the more conservative our
collection becomes, and the more floating garbage we
must accept. On the positive side, the more relaxed
our notion of consistency, the more flexibility we have
in the details of the traversal algorithm. (In parallel
and distributed garbage collection, a relaxed consis-
tency model also allows more parallelism and/or less
synchronization, but that is beyond the scope of this
survey.)

3.2 Tricolor Marking

The abstraction of tricolor markingis helpful in under-
standing incremental garbage collection [DLM*78].
Garbage collection algorithms can be described as a
process of traversing the graph of reachable objects
and coloring them. The objects subject to garbage
collection are conceptually colored white, and by the
end of collection, those that will be retained must be
colored black. When there are no reachable nodes left
to blacken, the traversal of live data structures is fin-
ished.

In a simple mark-sweep collector, this coloring is
directly implemented by setting mark bits—objects
whose bit is set are black. In a copy collector, this
is the process of moving objects from fromspace to
tospace—unreached objects in fromspace are consid-
ered white, and objects moved to tospace are consid-
ered black. The abstraction of coloring is orthogonal
to the distinction between marking and copying col-
lectors, and is important for understanding the basic
differences between incremental collectors.

In incremental collectors, the intermediate states of
the coloring traversal are important, because of on-
going mutator activity—the mutator can’t be allowed



to change things “behind the collector’s back” in such
a way that the collector will fail to find all reachable
objects.

To understand and prevent such interactions be-
tween the mutator and the collector, it is useful to
introduce a third color, gray, to signify that an object
has been reached by the traversal, but that its descen-
dants may not have been. That is, as the traversal
proceeds outward from the roots, objects are initially
colored gray. When they are scanned and pointers to
their offspring are traversed, they are blackened and
the offspring are colored gray.

In a copying collector, the gray objects are the ob-
jects in the unscanned area of tospace—if a Cheney
breadth-first traversal is used, that’s the objects be-
tween the scan and free pointers. In a mark-sweep
collector, the gray objects correspond to the stack or
queue of objects used to control the marking traver-
sal, and the black objects are the ones that have been
removed from the queue. In both cases, objects that
have not been reached yet are white.

Intuitively, the traversal proceeds in a wavefront of
gray objects, which separates the white (unreached)
objects from the black objects that have been passed
by the wave—that is, there are no pointers directly
from black objects to white ones. This abstracts away
from the particulars of the traversal algorithm—it may
be depth-first, breadth-first, or just about any kind
of exhaustive traversal. It is only important that a
well-defined gray fringe be identifiable, and that the
mutator preserve the invariant that no black object
hold a pointer directly to a white object.

The importance of this invariant is that the collector
must be able to assume that it is “finished with” black
objects, and can continue to traverse gray objects and
move the wavefront forward. If the mutator creates
a pointer from a black object to a white one, it must
somehow notify the collector that its assumption has
been violated. This ensures that the collector’s book-
keeping is brought up to date.

Figure 7 demonstrates this need for coordination.
Suppose the object A has been completely scanned
(and therefore blackened); its descendants have been
reached and grayed. Now suppose that the mutator
swaps the pointer from A to C with the pointer from B
to D. The only pointer to D is now in a field of A, which
the collector has already scanned. If the traversal con-
tinues without any coordination, B will be blackened,
C will be reached again (from B), and D will never be
reached at all, and hence will be erroneously deemed
garbage and reclaimed.
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Figure 7: A violation of the coloring invariant.

3.2.1 Incremental approaches

There are two basic approaches to coordinating the
collector with the mutator. One is to use a read bar-
rier, which detects when the mutator attempts to ac-
cess a pointer to a white object, and immediately col-
ors the object gray; since the mutator can’t read poin-
ters to white objects, it can’t install them in black
objects. The other approach is more direct, and in-
volves a write barrier—when the program attempts to
write a pointer into an object, the write is trapped or
recorded.

Write barrier approaches, in turn, fall into two dif-
ferent categories, depending on which aspect of the
problem they address. To foil the garbage collector’s
marking traversal, it is necessary for the mutator to
1) write a pointer to a white object into a black object
and 2) destroy the original pointer before the collector
sees it.

If the first condition (writing the pointer into a black
object) does not hold, no special action is needed—if
there are other pointers to the white object from gray
objects, it will be retained, and if not, it is garbage and
needn’t be retained anyway. If the second condition
(obliterating the original path to the object) does not
hold, the object will be reached via the original pointer
and retained. The two write-barrier approaches focus
on these two aspects of the problem.

Snapshot-at-beginning collectors ensure that the sec-
ond condition cannot happen—rather than allowing
pointers to be simply overwritten, they are first saved
in a data structure “off to the side” so that the col-
lector can find them. Thus no path to a white object
can be broken without providing another path to the



object for the garbage collector.

Incremental update collectors are more direct in
dealing with these troublesome pointers. Rather than
saving copies of all pointers that are overwritten (be-
cause they might have already been copied into black
objects) they actually record pointers stored into black
objects, and catch the troublesome copies where they
are stored, rather than noticing if the original is de-
stroyed. That is, if a pointer to a white object is copied
into a black object, that new copy of the pointer will
be found. Conceptually, the black object (or part of it)
is reverted to gray when the mutator “undoes” the col-
lector’s traversal [Ste75]. (Alternatively, the pointed-
to object may be grayed immediately [DLM*78].)
This ensures that the traversal is updated in the face
of mutator changes.

Read barriers and write barriers are conceptually
synchronization operations—before the mutator can
perform certain operations, it must activate the gar-
bage collector to perform some action. In practice,
this invocation of the garbage collector only requires
a relatively simple action, and the compiler can simply
emit the necessary additional instructions as part of
the mutator’s own machine code. Each pointer read
or write (depending on the incremental strategy) is
accompanied by a few extra instructions that perform
the collector’s operations. Depending on the complex-
ity of the read or write barrier, the entire barrier action
may be compiled inline; alternatively, the barrier may
simply be a hidden, out-of-line procedure call accom-
panying each pointer read or write. (Other strategies
are possible, relying less on additional instructions in
compiled code, and more on assistance from special-
ized hardware or virtual memory features.)

3.3 Write Barrier Algorithms

If a non-copying collector is used, the use of a read
barrier is an unnecessary expense; there is no need to
protect the mutator from seeing an invalid version of a
pointer. Write barriertechniques are cheaper, because
heap writes are several times less common than heap
reads.

3.3.1 Snapshot-at-beginning Algorithms

Snapshot-at-beginning algorithms use a write barrier
to ensure that no objects ever become inaccessible to
the garbage collector while collection is in progress.
Conceptually, at the beginning of garbage collection,
a copy-on-write virtual copy of the graph of reachable
data structures is made. That is, the graph of reach-

able objects is fixed at the moment garbage collection
starts, even though the actual traversal proceeds in-
crementally.

The first snapshot-at-beginning algorithm was ap-
parently that of Abrahamson and Patel, which used
virtual memory copy-on-write techniques [AP87], but
the same general effect can be achieved straightfor-
wardly (and fairly efficiently) with a simple software
write barrier.

Perhaps the simplest and best-known snapshot col-
lection algorithm is Yuasa’s [Yua90b]. If a location
is written to, the overwritten value is first saved and
pushed on a marking stack for later examination. This
guarantees that no objects will become unreachable
to the garbage collector traversal—all objects which
are live at the beginning of garbage collection will be
reached, even if the pointers to them are overwritten.
In the example shown in Fig. 7, the pointer from B to
D is saved on a stack when it is overwritten with the
pointer to C.

Snapshot-at-beginning schemes are very conserva-
tive, because they actually allow the tricolor “invari-
ant” to be broken, temporarily, during incremental
tracing. Rather than preventing the creation of poin-
ters from black objects to white ones, a more global
and conservative strategy prevents the loss of such
white objects: the original path to the object can’t be
lost, because all overwritten pointer values are saved
and traversed.

This implies that no objects can be freed during col-
lection, because a pointer to any white object might
have been stored into a reachable object. This in-
cludes objects that are created while the collection is
in progress. Newly-allocated objects are therefore con-
sidered to be black, as though they had already been
traversed. This short-circuits the traversal of new ob-
jects, which would fail to free any of them anyway.

The collector’s view of the reachability graph is thus
the set union of the graph at the beginning of garbage
collection, plus all of those that are allocated during
tracing.

An important feature to notice about snapshot-at-
beginning algorithms is that since don’t actually pre-
serve Dijkstra’s tricolor invariant, grey objects have a
subtle role. Rather than guaranteeing that each path
from a black object to a white object must go through
a grey object, it is only guaranteed that for each such
reachable white object there will be at least one path
to the object from a grey object. A grey object there-
fore does not just represent the local part of the collec-
tor’s traversal wavefront—it may also represent poin-
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ters elsewhere in the reachability graph, which cross
the wavefront unnoticed.?

3.3.2 Incremental Update Write-Barrier Al-
gorithms

While both are write-barrier algorithms, snapshot-
at-beginning and incremental update algorithms are
quite different. Unfortunately, incremental update al-
gorithms have generally been cast in terms of parallel
systems, rather than as incremental schemes for serial
processing; perhaps due to this, they have been largely
overlooked by implementors targeting uniprocessors.!®

Perhaps the best known of these algorithms is due
to Dijkstra et al. [DLM*78]. (This is similar to the
scheme developed by Steele [Ste75], but simpler be-
cause it does not deal with compaction.) Rather than
retaining everything that’s in a snapshot of the graph
at the beginning of garbage collection, it heuristically
(and somewhat conservatively) attempts to retain the
objects that are live at the end of garbage collection.
Objects that die during garbage collection—and be-
fore being reached by the marking traversal—are not
traversed and marked. More precisely, an object will
not be reached by the collector if all paths to it are
broken at a point that the garbage collector has not
yet reached. If a pointer is obliterated after being
reached by the collector, it is too late. (E.g., if the
head of a list has already been reached and grayed,
and then becomes garbage, the rest of the list will
still be traversed.)

To avoid the problem of pointers being hidden in
reachable objects that have already been scanned,
such copied pointers are caught when they are stored
into the scanned objects. Rather than noticing when
a pointer escapes from a location that hasn’t been tra-
versed, it notices when the pointer hides in an object
that has already been traversed. If a pointer is over-
written without being copied elsewhere, so much the

14 This nonlocal constraint poses significant problems for op-
timization of the garbage collection process, particularly when
trying to make a hierarchical generational or distributed version
of a snapshot algorithm, where multiple garbage collections of
different scopes proceed concurrently [WJ93].

15 Another probable reason is that the early papers on concur-
rent garbage collection addressed different concerns than those
facing most language implementors. [DLMt 78] stressed ele-
gance of correctness proofs at the expense of efficiency, and
readers may have missed the fact that trivial changes to the al-
gorithm would make it vastly more practical. [Ste75] presented
a complex algorithm with an optional incremental compaction
phase; many readers doubtless failed to recognize that the in-
cremental update strategy was itself simple, and orthogonal to
the other features.

better—the object is garbage, so it might as well not
get marked.

If the pointer is installed into an object already de-
termined to be live, that pointer must be taken into
account—it has now been incorporated into the graph
of reachable data structures. Those formerly-black ob-
jects will be scanned again before the garbage collec-
tion is complete, to find any live objects that would
otherwise escape. This process may iterate, because
more black objects may be reverted while the collec-
tor is in the process of traversing them. The traversal
is guaranteed to complete, however, and the collector
eventually catches up with the mutator.®

Several variations of this incremental update algo-
rithm are possible, with different implementations of
the write barrier and different treatments of objects
allocated during collection.

In the incremental update scheme of Dijkstra et al.
[DLM*78], objects are optimistically assumed to be
unreachable when they’re allocated. In terms of tri-
color marking, objects are allocated white, rather than
black. At some point, the stack must be traversed
and the objects that are reachable at that time are
marked and therefore preserved. In contrast, snap-
shot schemes must assume that such newly-created
objects are live, because pointers to them might get
installed into objects that have already been reached
by the collector’s traversal without being detected.

Dijkstra also chooses to allocate new objects white,
on the assumption that new objects are likely to be
short-lived and quickly reclaimed.

We believe that this has a potentially significant
advantage over schemes that allocate black. Most
objects are short-lived, so if the collector doesn’t
reach those objects early in its traversal, they’re likely
never to be reached, and instead to be reclaimed
very promptly. Compared to the snapshot scheme (or
Baker’s, described below) there’s an extra computa-
tional cost—the newly-created objects that are still
live at the end of collection must be traversed, and also
any that became garbage too late to be reclaimed, be-
cause the traversal had already started along a path to
them. As we will explain later, whether this is worth-
while may depend on several factors, such as the rel-
ative importance of average case efficiency and hard
real-time response. Steele proposes a heuristic that
allocates some objects white and other objects black,
attempting to reclaim the short-live objects quickly
while avoiding traversal of most other objects [Ste75].

16The algorithm of [DLM 78] actually uses a somewhat more
conservative technique, as we will explain shortly.
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The effectiveness of this heuristic is unproven, and it
appears to be difficult to implement efficiently on stan-
dard hardware.

Dijkstra’s incremental update algorithm [DLM*78]
(which apparently predates Steele’s slightly) actu-
ally preserves the tricolor invariant by blackening the
pointed-to white object, rather than reverting the
stored-into black object to gray. Intuitively, this
pushes the gray wavefront outward to preserve the tri-
color invariant, rather than pushing it back. This is
more conservative than Steele’s strategy, because the
pointer might later be overwritten, freeing the object.
On the other hand, it appears to be simpler and faster
in practice; it also makes it slightly easier to prove he
correctness of the algorithm, because there is an obvi-
ous guarantee of forward progress.

3.4 Baker’s Read Barrier Algorithms

The best-known real-time garbage collector is Baker’s
incremental copying scheme [Bak78]. It is an adap-
tation of the simple copy collection scheme described
in Sect. 2.4, and uses a read barrier for coordination
with the mutator. More recently, Baker has proposed
a non-copying version of this algorithm, which shares
many properties with the copying version [Bak91b].

3.4.1 Incremental Copying

Baker’s original copying algorithm was an adaptation
of the Cheney algorithm. For the most part, the copy-
ing of data proceeds in the Cheney (breadth-first)
fashion, by advancing the scan pointer through the
unscanned area of tospace and moving any referred-to
objects from fromspace. This background scavenging
is interleaved with mutator operation, however, and
mutator activity can also trigger copying, as needed,
to ensure that the mutator’s view of data structures
is always consistent.

In Baker’s system, a garbage collection cycle begins
with an atomic flip, which conceptually invalidates all
objects in fromspace, and copies to tospace all ob-
jects directly reachable from the root set. Then the
mutator is allowed to resume. Any fromspace object
that is accessed by the mutator must first be copied
to tospace, and this copying-on-demand is enforced by
the read barrier. (The read barrier is typically imple-
mented as a few instructions emitted by the compiler,
forming a wrapper around pointer-dereferencing read
instructions.) The background scavenging process is
also interleaved with normal program execution, to
ensure that all reachable data are copied to tospace

and the collection cycle completes before memory is
exhausted.

An important feature of Baker’s scheme is its treat-
ment of objects allocated by the mutator during in-
cremental collection. These objects are allocated in
tospace and are treated as though they had already
been scanned—i.e., they are assumed to be live. In
terms of tricolor marking, new objects are black when
allocated, and none of them can be reclaimed; they
are never reclaimed until the next garbage collection
cycle 1?

In order to ensure that the collector finds all of the
live data and copies it to tospace before the free area in
newspace is exhausted, the rate of copy collection work
is tied to the rate of allocation. Each time an object
is allocated, an increment of scanning and copying is
done.

In terms of tricolor marking, the scanned area of
tospace contains black objects, and the copied but un-
scanned objects (between the scan and free pointer)
are gray. As-yet unreached objects in fromspace are
white. The scanning of objects (and copying of their
offspring) moves the wavefront forward.

In addition to the background tracing, other ob-
jects may be copied to tospace as needed to ensure
that the basic invariant is not violated—pointers into
fromspace must not be stored into objects that have
already been scanned, undoing the collector’s work.

Baker’s approach is to couple the collector’s copying
traversal with the mutator’s traversal of data struc-
tures. The mutator is never allowed to see pointers
into fromspace, i.e., pointers to white objects. When-
ever the mutator reads a (potential) pointer from the
heap, it immediately checks to see if it is a pointer into
fromspace; if so, the referent is copied to tospace, i.e.,
its color is changed from white to gray. In effect, this
advances the wavefront of graying just ahead of the
actual references by the mutator, keeping the mutator
inside the wavefront.'® The preservation of the tri-
color invariant is therefore indirect—rather than actu-
ally checking to see whether pointers to white objects
are stored into black ones, the read barrier ensures

1"Baker suggests copying old live objects into one end of
tospace, and allocating new objects in the other end. The two
occupied areas of tospace thus grow toward each other, and
older objects aren’t interspersed with new ones.

18Nilsen’s variant of Baker’s algorithm updates the pointers
without actually copying the objects—the copying is lazy, and
space in tospace is simply reserved for the object before the
pointer is updated [Nil88]. This makes it easier to provide
smaller bounds on the time taken by list operations, and to gear
collector work to the amount of allocation—including guaran-
teeing shorter pauses when smaller objects are allocated.
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that the mutator can’t see such pointers in the first
place.

It should be noted that Baker’s collector itself
changes the graph of reachable objects, in the process
of copying. The read barrier does not just inform the
collector of changes by the mutator, to ensure that
objects aren’t lost; it also shields the mutator from
viewing temporary inconsistencies created by the col-
lector. If this were not done, the mutator might en-
counter two different pointers to versions of the same
object, one of them obsolete.

The read barrier may be implemented in software,
by preceding each read (of a potential pointer from
the heap) with a check and a conditional call to the
copying-and-updating routine. (Compiled code thus
contains extra instructions to implement the read bar-
rier.) Alternatively, it may be implemented with spe-
cialized hardware checks and/or microcoded routines.

The read barrier is expensive on stock hardware,
because in the general case, any load of a pointer
must check to see if the pointer points to a fromspace
(white) object; if so, extra code must be executed to
move the object to tospace and update the pointer.
The cost of these checks is high on conventional hard-
ware, because they occur very frequently. Lisp Ma-
chines have special purpose hardware to detect poin-
ters into fromspace and trap to a handler [Gre84,
Moo84, Joh91], but on conventional machines the
checking overhead is in the tens of percent for a high-
performance system [Zor89].

Brooks has proposed a variation on Baker’s scheme,
where objects are always referred to via an indirection
field embedded in the object itself [Bro84]. If an ob-
ject is valid, its indirection field points to itself. If
it’s an obsolete version in fromspace, its indirection
pointer points to the new version. Unconditionally
indirecting is cheaper than checking for indirections,
but could still incur overheads in the tens of percent
for a high-performance system [Ung84]. (A variant of
this approach has been used by North and Reppy in a
concurrent garbage collector [NR87]; another variant
exploits immutable values in ML to allow reading of
some data from fromspace [HL93]. Zorn takes a dif-
ferent approach to reducing the read barrier overhead,
using knowledge of important special cases and spe-
cial compiler techniques. Still, the time overheads are
on the order of twenty percent [Zor89].
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Figure 8: Treadmill collector during collection.

3.4.2 Baker’s Incremental Non-copying Algo-
rithm—The Treadmill

Recently, Baker has proposed a non-copying version
of his scheme, which uses doubly-linked lists (and
per-object color fields) to implement the sets of ob-
jects of each color, rather than separate memory ar-
eas. By avoiding the actual moving of objects and
updating of pointers, the scheme puts fewer restric-
tions on other aspects of language implementation
[Bak91b, WJ93].1°

This non-copying scheme preserves the essential ef-
ficiency advantage of copy collection, by reclaiming
space implicitly. (As described in Sect. 2.5, unreached
objects in the white set can be reclaimed in constant
time by appending the remainder of that list to the
free list.) The real-time version of this scheme links
the various lists into a cyclic structure, as shown in
Fig. 8. This cyclic structure is divided into four sec-
tions.

The new list is where allocation of new objects oc-
curs during garbage collection—it is contiguous with
the free-list, and allocation occurs by advancing the
pointer that separates them. At the beginning of gar-
bage collection, the new segment is empty.

The from list holds objects that were allocated be-
fore garbage collection began, and which are subject
to garbage collection. As the collector and mutator
traverse data structures, objects are moved from the
from-list to the to-list. The to-list is initially empty,

19Tn particular, it is possible to deal with compilers that do
not unambiguously identify pointer variables in the stack, mak-
ing it impossible to use simple copy collection.

23



but grows as objects are “unsnapped” (unlinked) from
the from-list (and snapped into the to-list) during col-
lection.

The new-list contains new objects, which are allo-
cated black. The to-list contains both black objects
(which have been completely scanned) and gray ones
(which have been reached but not scanned). Note
the isomorphism with the copying algorithm—even an
analogue of the Cheney algorithm can be used. It is
only necessary to have a scan pointer into the to-list
and advance it through the gray objects.?’

Eventually, all of the reachable objects in the from-
list have been moved to the to list, and scanned for
offspring. When no more offspring are reachable, all
of the objects in the to-list are black, and the remain-
ing objects in the from list are known to be garbage.
At this point, the garbage collection is complete. The
from-list is now available, and can simply be merged
with the free-list. The to-list and the new-list both
hold objects that were preserved, and they can be
merged to form the new to-list at the next collection.?!

The state is very similar to the beginning of the pre-
vious cycle, except that the segments have “moved”
part way around the cycle—hence the name “tread-
mill.”

Baker describes this algorithm as being isomorphic
to his original incremental copying algorithm, presum-
ably including the close coupling between the mutator
and the collector, i.e., the read barrier.

3.4.3 Conservatism of Baker’s Read Barrier

Baker’s garbage collectors use a somewhat conserva-
tive approximation of true liveness in two ways. The
most obvious one is that objects allocated during col-
lection are assumed to be live, even if they die be-
fore the collection is finished. The second is that
pre-existing objects may become garbage after having
been reached by the collector’s traversal, and they will
not be reclaimed—once an object has been grayed, it
will be considered live until the next garbage collec-
tion cycle. On the other hand, if objects become gar-
bage during collection, and all paths to those objects
are destroyed before being traversed, then they will
be reclaimed. That is, the mutator may overwrite a

20Because the list structure is more flexible than a contiguous
area of memory, it is even possible to implement a depth-first
traversal with no auxiliary stack, in much the same way that
the Cheney algorithm implements breadth-first [WJ93].

21 This discussion is a bit oversimplified; Baker uses four col-
ors, and whole lists can have their colors changed instanta-
neously by changing the sense of the bit patterns, rather than
the patterns themselves.

pointer from a gray object, destroying the only path to
one or more white objects and ensuring that the col-
lector will not find them. Thus Baker’s incremental
scheme incrementally updates the reachability graph
of pre-existing objects, but only when gray objects
have pointers overwritten. Overwriting pointers from
black objects has no effect on conservatism, because
their referents are already gray. The degree of con-
servatism (and floating garbage) thus depends on the
details of the collector’s traversal and of the program’s
actions.

3.4.4 Variations on the Read Barrier

Several garbage collectors have used slight variations
of Baker’s read barrier, where the mutator is only al-
lowed to see black (i.e., completely scanned) objects.
Recall that Baker’s read barrier copies an object to
tospace as soon as the mutator encounters a pointer
to the object. This may be inefficient, because the
checking costs are incurred at each reference in the
general case, and because it costs something to trap
to the scanning-and-copying routine (typically, a con-
ditional branch and a subroutine call).

It may therefore be preferable to scan an entire ob-
ject when it is first touched by the mutator, and up-
date all of the object’s pointer fields. This may be
cheaper than calling the scanning-and-copying routine
each time a field is first referenced; the compiler may
also be able to optimize away redundant checks for
multiple references to fields of the same object. (Juul
and Jul’s distributed garbage collector [JJ92] uses such
an objectwise scanning technique, and combines some
of the garbage collector’s checking costs with those
incurred for fine-grained object migration.)

Such a read barrier is coarser and more conserva-
tive than Baker’s original read barrier. It enforces a
stronger constraint—not only is the mutator not al-
lowed to see white objects, it is only allowed to see
black objects. Since an entire object is scanned when
it is first touched, and its referents are grayed, the ob-
ject becomes black before the mutator is allowed to
see it. This advances the wavefront of the collector’s
traversal an extra step ahead of the mutator’s pattern
of references.

Such a “black only” read barrier prevents any data
from becoming garbage, from the garbage collector’s
point of view, during a garbage collection—before any
pointer can be overwritten, the object containing it
will be scanned, and the pointer’s referent will be
grayed. In effect, this implements a “snapshot-at-
beginning” collection, using a read barrier rather than
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a write barrier.

Appel, Ellis, and Li’s concurrent incremental col-
lector [AEL88] uses virtual memory primitives to im-
plement a pagewise black-only read barrier. Rather
than detecting the first reference to any grey object
(in tospace), entire pages of unscanned data in tospace
are access-protected, so that the virtual memory sys-
tem will implicitly perform read barrier checks as part
of the normal functioning of the virtual memory hard-
ware. When the mutator accesses a protected page,
a special trap handler immediately scans the whole
page, fixing up all the pointers (i.e., blackening all of
the objects in the page); referents in fromspace are re-
located to tospace (i.e., grayed) and access-protected.
This avoids the need for continual software checks to
implement the read barrier, and in the usual case is
more efficient. (If the operating system’s trap han-
dling is slow, however, it may not be worth it.) Despite
reliance on operating system support, this technique
is relatively portable because most modern operating
systems provide the necessary support.

Unfortunately this scheme fails to provide meaning-
ful real-time guarantees in the general case [WM89,
NS90, WJ93]. (It does support concurrent collection,
however, and can greatly reduces the cost of the read
barrier.) In the worst case, each pointer traversal may
cause the scanning of a page of tospace until the whole
garbage collection is complete.??

3.5 Replication Copying Collection

Recently, Nettles et al. [NOPH92, ONG93] have
devised a new kind of incremental copying collec-
tion, replication copying, which is quite different from
Baker’s incremental copying scheme. Recall that in
Baker’s collector, garbage collection starts with a
“flip,” which copies the immediately-reachable data
to tospace, and invalidates fromspace; from that mo-
ment on, the mutator is only allowed to see the new
versions of objects, never the versions in fromspace.

Replication copying is almost the reverse of this.
While copying is going on, the mutator continues to
see the fromspace versions of objects, rather than the
“replicas” in tospace. When the copying process is
complete, a flip is performed, and the mutator then
sees the replicas.

22 Johnson has improved on this scheme by incorporating
lazier copying of objects to tospace [Joh92]; this is essentially
an application of Nilsen’s lazy copying technique [Nil88] to the
Appel-Ellis-Li collector. This decreases the maximum latency,
but in the (very unlikely) worst case a page may still be scanned
at each pointer traversal until a whole garbage collection has
been done “the hard way”.

The consistency issues in replication copying are
very different from those in Baker-style copying. The
mutator continues to access the same versions of ob-
jects during the copying traversal, so it needn’t check
for forwarding pointers. This eliminates the need
for a read barrier—conceptually, all objects are “for-
warded” to their new versions at once, when the flip
occurs.

On the other hand, this strategy requires a write
barrier, and the write barrier must deal with more
than just pointer updates. In Baker’s collector, the
mutator only sees the new versions of objects, so any
writes to objects automatically update the current
(tospace) version. In replication copying, however,
the mutator sees the old version in fromspace; if an
object has already been copied to tospace, and the
fromspace version is then modified by the mutator,
the new replica can have the wrong (old) values in
it—it gets “out of synch” with the version seen by the
mutator.

To avoid this, the write barrier must catch all up-
dates, and the collector must ensure that all updates
have been propagated when the flip occurs. That is,
all of the modifications to old versions of objects must
be made to the corresponding new versions, so that
the program sees the correct values after the flip.

This write barrier appears to be expensive for most
general-purpose programming languages, but not for
functional languages, or “nearly-functional” languages
(such as ML) where side effects are allowed but infre-
quently used.

3.6 Coherence and Conservatism Re-
visited

As we mentioned in Sect. 3.1, incremental collectors
may take different approaches to coordinating the mu-
tator with the collector’s tracing traversal. If these
quasi-parallel processes coordinate closely, their views
of data structures can be very precise, but the coordi-
nation costs may be unacceptable. If they do not co-
ordinate closely, they may suffer from using out-dated
information, and retain objects which have become
garbage during collection.

Coherence and Conservatism in Non-
copying collection

3.6.1

The non-copying write-barrier algorithms we have de-
scribed lie at different points along a spectrum of ef-
fectiveness and conservatism. Snapshot-at-beginning
algorithms treat everything conservatively, reducing
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their effectiveness. Dijkstra et al.’s incremental up-
date algorithm is less conservative than snapshot algo-

rithms, but more conservative than Steele’s algorithm.

In Steele’s algorithm, if a pointer to a white ob-
ject is stored into a black object, that white object
is not immediately grayed—instead, the stored-into
black object is reverted to gray, “undoing” the black-
ening done by the collector. This means that if the
stored-into field is again overwritten, the white object
may become unreachable and may be reclaimed at the
end of the current collection. In contrast, Dijkstra’s
algorithm will have grayed that object, and hence will
not reclaim it.

(It may seem that this is a trivial difference, but it
is easy to imagine a scenario in which it matters. Con-
sider a program that stores most of its data in stacks,
implemented as linked lists hanging off of “stack” ob-
jects. If a stack object is reached and blackened by
the collector’s traversal, and then many objects are
pushed onto and popped off of the stack, Dijkstra’s al-
gorithm will not reclaim any of the popped items—as
the stack object’s list pointer progresses through the
list, repeatedly being overwritten with the pointer to
the next item, each item will be grayed when the pre-
vious one is popped. Steele’s algorithm, on the other
hand, may reclaim almost all of the popped items, be-
cause the pointer field may be overwritten many times
before the collector’s traversal examines at it again.)

Note that this spectrum of conservatism (snapshot
algorithms, Dijkstra’s, Steele’s) is only a linear order-
ing if the algorithms use the same traversal algorithm,
scheduled in the same way relative to the program’s
actual behavior—and this is unlikely in practice. De-
tails of the ordering of collector and mutator actions
determine how much floating garbage will be retained.
(Any of these collectors will retain any data reachable
via paths that are traversed by the collector before
being broken by the mutator.)

This suggests that the reachability graph might
profitably be traversed opportunistically, i.e., total
costs might be reduced by carefully ordering the scan-
ning of gray objects. For example, it might be desir-
able to avoid scanning rapidly-changing parts of the
graph for as long as possible, to avoid reaching objects
that will shortly become garbage.

All other things being equal (i.e., in lieu of op-
portunism and random luck), snapshot-at-beginning
is more conservative (hence less effective) than incre-
mental update, and Dijkstra’s incremental update is
more conservative than Steele’s.

3.6.2 Coherence and Conservatism in Copy-
ing Collection

Baker’s read barrier algorithm does not fall neatly
into the above spectrum. It is less conservative than
snapshot-at-beginning, in that a pointer in a gray ob-
ject may be overwritten and never traversed; it is more
conservative than the incremental update algorithms,
however, because anything reached by the mutator is
grayed—objects cannot become garbage, from the col-
lector’s viewpoint, after simply being touched by the
mutator during a collection.

Nettles, et al.’s replication copying algorithm (like
an incremental update algorithm), is able to reclaim
objects that become unreachable because a pointer
can be overwritten before being reached by the collec-
tor. Their collector is less conservative than Baker’s,
in part because it can use a weaker notion of consis-
tency. Because the mutator doesn’t operate in tospace
until after the copying phase is complete, the copies of
data in tospace needn’t be entirely consistent during
incremental copying. (The changes made to fromspace
data structures by the mutator must be propagated to
tospace eventually, but the entire state only needs to
be consistent at the end of collection, when the atomic
“flip” is performed.) Like the other write-barrier algo-
rithms, replication copying might benefit significantly
from opportunistic traversal ordering.

3.6.3 “Radical” Collection and Opportunistic

Tracing

The tracing algorithms we’ve described fall roughly
into a spectrum of decreasing conservatism, thus:

e Snapshot-at-beginning write barrier
e Black-only read barrier

e Baker’s read barrier

e Dijkstra’s write barrier

o Steele’s write barrier

In considering this quasi-spectrum, it is interesting
to ask, is there anything less conservative than Steele’s
algorithm? That is, can we have a better-informed
collector than Steele’s;, one which responds more ag-
gressively to changes in the reachability graph? The
answer is yes. Such a garbage collector would be will-
ing to re-do some of the traversal it’s already done,
un-marking objects that were previously reached, to
avoid conservatism. We refer to this as a “radical”
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garbage collection strategy. At first glance, such col-
lectors may seem impractical, but under some circum-
stances, approximations of them may make sense.

The limiting case of decreasing conservatism is to
respond fully to any change in the reachability graph,
un-marking objects that have already been reached,
so that all garbage can be detected. (We might call
this a fully radical collector.)

One way of doing that is to perform a full trace of
the actual reachability graph at every pointer write
on the part of the application. Naturally, this is im-
practical because of its extreme cost. (A normal non-
incremental collector can be viewed as an approxima-
tion of this; the graph is traversed “instantaneously”
by stopping the mutator for the whole traversal, but
that’s only done occasionally.)

Another way of achieving fully radical collection
would be to record all of the dependencies within
the reachability graph, and update the dependency
database at every pointer update. Whenever all
paths keeping an object alive is broken, the object is
known to be garbage. Again, a full implementation of
this strategy would be impractical for general-purpose
garbage collection, because the dependency database
could be very large, and pointer updates would be very
expensive.

Note, however, that approximations of this depen-
dency information could be relatively cheap, and in
fact, that’s exactly what reference counts are. A ref-
erence count is a conservative approximation of the
number of paths to an object, and when those paths
are eliminated, the reference counts usually go to zero
and allow the object to be reclaimed immediately.
Some distributed garbage collection algorithms also
perform somewhat radical collection, by frequently re-
computing some local parts of the collector’s traversal.

3.7 Comparing Incremental

Techniques

In comparing collector designs, it is instructive to keep
in mind the abstraction of tricolor marking—as dis-
tinct from concrete tracing mechanisms such as mark-
sweep or copy collection. The choice of a read- or
write-barrier (and strategy for ensuring correctness)
is mostly independent of the choice of a tracing and
reclamation mechanism.

For example, Brooks’ copying collector [Bro84]
(which we mentioned in Sect 3.4.1) is actually an in-
cremental update write barrier algorithm, even though
Brooks describes it as an optimization of Baker’s
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scheme.?® Similarly, Dawson’s copying scheme (pro-
posed in [Daw82]) is cast as a variant of Baker’s, but it
is actually an incremental update scheme, and objects
are allocated in fromspace, i.e., white, as in Dijkstra’s
collector.

The choice of a read- or write-barrier scheme is
likely to be made on the basis of the available hard-
ware. Without specialized hardware support, a write
barrier appears to be easier to implement efficiently,
because heap pointer writes are much less common
than pointer traversals. If appropriate virtual mem-
ory support is available, and hard real-time response
is not required, a pagewise read barrier may be desir-
able.

Of write barrier schemes, snapshot-at-beginning al-
gorithms are significantly more conservative than in-
cremental update algorithms. This advantage of incre-
mental update might be increased by carefully choos-
ing the ordering of root traversal, traversing the most
stable structures first to avoid having the collector’s
work undone by mutator changes.

While incremental update schemes increase effec-
tiveness, they may also increase costs. In the worst
case, everything that becomes garbage during a col-
lection “floats,” i.e., it becomes unreachable too late,
and is traversed and retained anyway. If new objects
are allocated white (subject to reclamation), incre-
mental update algorithms may be considerably more
expensive than snapshot-at-beginning algorithms in
the worst case—it is possible that all of the newly-
allocated objects will float and require traversal, with
no increase in the amount of memory reclaimed. We
will discuss this in more detail in Sect. 3.8.2.

Careful attention should be paid to write bar-
rier implementation. Boehm, Demers and Shenker’s
[BDS91, Boe91] incremental update algorithm uses
virtual memory dirty bits as a coarse pagewise write
barrier. All black objects in a page must be re-scanned
if the page is dirtied again before the end of a collec-
tion. (As with Appel, Ellis and Li’s copy collector,
this coarseness sacrifices real-time guarantees, while
supporting parallelism. It also allows the use of off-
the-shelf compilers that don’t emit write barrier in-
structions along with heap writes.)

22 The use of uniform indirections may be viewed as avoiding
the need for a Baker-style read barrier—the indirections isolate
the collector from changes made by the mutator, allowing them
to be decoupled. The actual coordination, in terms of tricolor
marking, is through a write barrier. Brooks’ algorithm uses
a simple write barrier to protect the mutator from the collec-
tor, and a simple read barrier to protect the collector from the
mutator.



In a system with compiler support for garbage col-
lection, a list of stored-into locations can be kept, or
dirty bits can maintained (in software) for small areas
of memory, to reduce scanning costs and bound the
time spent updating the marking traversal. This has
been done for other reasons in generational garbage
collectors, as we will discuss in Sect. 4.

3.8 Real-time Tracing Collection

Incremental collectors are often designed to be real-
time, i.e., to impose strictly limited delays on pro-
gram execution, so that programmers can guaran-
tee that their garbage-collected programs will meet
real-time deadlines. Real-time applications are many
and varied, including industrial process controllers,
testing and monitoring equipment, audiovisual pro-
cessing, fly-by-wire aircraft controls, and telephone
switching equipment. Real-time applications can usu-
ally be classified as hard real time, where computations
must complete with strictly-limited time bounds, and
soft real-time, where it is acceptable for some tasks to
miss their schedules some of the time, as long as it
doesn’t happen “too often”.?*

The criterion for real time garbage collection is of-
ten stated as imposing only small and bounded delays
on any particular program operation. For example,
traversing a pointer might never take more than a mi-
crosecond, heap-allocating a small object might never
take more than a few microseconds, and so on.

There are two problems with this kind of crite-
rion. One problem is that the appropriate notion of
a “small” delay is inevitably dependent on the nature
of an application. For some applications, it is accept-
able to have responses that are delayed by a significant
fraction of a second, or even many seconds. For other
applications, a delay of a millisecond or two is not a
problem, while for others delays of more than a few
microseconds could be fatal. (On one hand, consider a
music synthesizer controller, where humans’ own im-
precision will swamp a delay of a millisecond and be
unnoticeable; on the other, consider a high-precision
guidance system for anti-missile missiles.)

Another problem with this kind of criterion is that it
unrealistically emphasizes the smallest program oper-
ations. When you press a key on a musical keyboard,
the controller may be required to execute thousands

24For example, in a digital telephone system, making a con-
nection might be a soft real-time task, but once a connection
is established, delivering continuous audio may be a hard real-
time task. In this section, we will deal primarily with hard
real-time issues.
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of program statements (e.g., to decide which note is
being played, what the corresponding pitch is given
the current tunings, how loud to play it, which sound
components to mix in what proportions to achieve the
right timbre for the given pitch, and so on).

For most applications, therefore, a more realistic
requirement for real time performance is that the ap-
plication always be able to use the CPU for a given
fraction of the time at a timescale relevant to the ap-
plication. (Naturally, the relevant fraction will depend
on both the application and the speed of the proces-
sor.)

For a chemical factory’s process control computer,
it might be sufficient for the controlling application to
execute for at least one second out of every two, be-
cause the controller must respond to changes (e.g., in
vat temperatures) within two seconds, and one second
is enough to compute the appropriate response. On
the other hand, a controller for a musical synthesizer
might require the CPU to run its control program for
half a millisecond out of every two milliseconds, to
keep delays in the onset of individual notes below the
threshold of noticeability.

Note that either of these applications can function
correctly if the garbage collector sometimes stops the
application for a quarter of a millisecond. Provided
that these pauses aren’t too frequent, they’re too short
to be relevant to the applications’ real-time deadlines.

But suppose these pauses are clustered in time; if
they happen frequently enough they will destroy the
application’s ability to meet deadlines, simply by soak-
ing up too large a fraction of the CPU time. If the ap-
plication only executes for a sixteenth of a millisecond
between quarter-millisecond pauses, it can’t get more
than a fifth of the CPU time. In that case, either of
the above programs would fail to meet its real-time re-
quirements, even the process control system that only
needs to respond within two seconds.

As we described above, some copy collectors use
virtual memory protections to trigger pagewise scan-
ning, and this coarseness may fail to respect real-time
guarantees. In the worst case, traversing a list of a
thousand elements may cause a thousand pages to be
scanned, performing considerable garbage collection
work and incurring trap overheads as well. (In this
way, a list traversal that would normally take a few
thousand instructions may unexpectedly take millions,
increasing the time to traverse the list by several or-
ders of magnitude.) Locality of reference may make
such situations improbable, but the probability of bad
cases is not negligible.



Unfortunately, using a fine-grained incremental col-
lector may not fix this problem, either [Nil88, Wit91].
Consider Baker’s copying technique. The time to tra-
verse a list depends on whether the list elements re-
quire relocation to tospace. Traversing a single pointer
may require an object to be copied; this may increase
the cost of that memory reference by an order of mag-
nitude even if objects are small and hardware support
is available. (Consider copying a Lisp cons cell con-
sisting of a header, a CAR field, and a CDR field. At
least three memory reads and three memory writes
are required for the actual copy, plus extra instruc-
tions to install a forwarding pointer, adjust the free-
space pointer, and probably to branch to and from
the garbage collector routine that does this work.)
In such cases, it is possible for the garbage collec-
tor overheads to consume over 90% of the CPU time,
reducing the available computing power—that is, the
power guaranteed to be available for meeting real-time
deadlines—by an order of magnitude.

(In Baker’s original incremental copying scheme, the
worst-case cost 1s even worse, because any pointer
traversal may force the copying of a large object. Ar-
rays are treated specially, and copied lazily, 1.e., only
when they are actually touched. Nilsen reduces the
worst-case by extending this lazy copying to all types
of objects. When a pointer to a tospace object is en-
countered by the mutator, space is simply reserved in
tospace for the object, rather than actually copying it.
The actual copying occurs later, incrementally, when
the background scavenger scans that part of tospace

[Nil88].)

In deciding on a real-time tracing strategy, there-
fore, it is important to decide what kind of guaran-
tees are necessary, and at what timescales. While
Baker’s is the best-known incremental algorithm, it
may not be the most suitable for most real-time appli-
cations, because its performance is very unpredictable
at small timescales. Algorithms with a weaker cou-
pling between the mutator and the collector (such as
most write-barrier algorithms) may be more suitable
[WJ93]. It may be easier for programmers to reason
about real-time guarantees if they know that pointer
traversals always take a constant time, independent of
whether the pointer being traversed has been reached
by the garbage collector yet. (Write barrier algorithms
require more work per pointer store, but the work per
program operation is less variable, and most of it need
not be performed immediately to maintain correct-
ness.)

Unfortunately, while non-copying algorithms have

the convenient property that their time overheads are
more predictable, their space costs are much more dif-
ficult to reason about. A copying algorithm generally
frees a large, contiguous area of memory, and requests
for objects of any size can be satisfied by a constant-
time stack-like allocation operation. Non-copying al-
gorithms are subject to fragmentation—memory that
is freed may not be contiguous, so it may not be pos-
sible to allocate an object of a given size even if there
is that much memory free.

The following sections discuss techniques for obtain-
ing real-time performance from an incremental trac-
ing collector. We assume that the system is purely
hard real time—that is, the program consists only of
computations which must complete before their dead-
lines; we also assume that there is only one timescale
for real-time deadlines. In such a system, the main
goal is to make the worst-case performance as good as
possible, and further increases in expected-case per-
formance do no good. (Later, we will briefly dis-
cuss tradeoffs in systems with soft real-time sched-
ules, where differences in expected-case performance
may also be important.) We also assume that either a
copying algorithm is used, or all objects are of a uni-
form size.?® This allows us to assume that any mem-
ory request can be satisfied by any available memory,
and ignore possible fragmentation of free storage.

3.8.1 Root Set Scanning

An important determinant of real-time performance
is the time required to scan the root set. Recall that
in Baker’s incremental collector, the root set is up-
dated, and immediately-reachable objects are copied
to tospace, in a single atomic operation, uninterrupted
by mutator execution. This means that there will oc-
casionally be a pause of a duration roughly propor-
tional to the size of the root set. This pause is likely
to be much larger than a pause for a normal incre-
ment of tracing, and may be the main limitation on
real-time guarantees.

Similar pauses occur in incremental update trac-
ing algorithms when attempting to terminate a collec-
tion. Before a collection can be considered finished,
the root set must be scanned (along with any gray ob-
jects recorded by the write barrier, in the case of an
algorithm like Steele’s), and all reachable data must
be traversed and blackened atomically. (This ensures

25In some systems, it is feasible to transparently fragment
language-level objects into easily-managed chunks, to make gar-
bage collection easier and reduce or eliminate fragmentation
problems.
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that no pointers have been hidden from the collector
by storing them in roots after those roots were last
scanned.) If this work cannot be accomplished within
the time allowed by the real-time bounds, the collector
must be suspended and the mutator resumed, and the
entire termination process must be tried again later.
(Snapshot at beginning algorithms don’t pose as dif-
ficult a problem for termination detection, since no
paths can be hidden from the collector.)

One way to bound the work required for a flip or for
termination is to keep the root set small. Rather than
considering all local and global variables to be part of
the root set, some or all of them may be treated like
objects on the heap. Reads or writes to these variables
will be detected by the read barrier or write barrier,
and the collector will therefore maintain the relevant
information incrementally.

The problem with keeping the root set small is
that the cost of the read or write barrier goes up
correspondingly—a larger number of variables is pro-
tected by a read or write barrier, incurring overhead
each time they are read or written. One possible trade-
off is to avoid the read or write-barrier cost for register-
allocated variables, and to scan (only) the register set
atomically when necessary. If there are too many oper-
ations on stack-allocated local variables, however, this
will slow execution significantly. In that case, the en-
tire stack may be scanned atomically instead. While
this may sound expensive, most real-time programs
never have deep or unbounded activation stacks, and
the cost may be negligible at the scale of the pro-
gram’s intended response times. Similarly, for small
systems using fast processors (or with relatively large
timescales for real-time requirements), it may be de-
sirable to avoid the read or write barrier for all global
variables, and scan them atomically as well. Interme-
diate strategies are possible, treating some variables
one way and others another, perhaps based on profil-
ing information.

3.8.2 Guaranteeing Sufficient Progress

The preceding section focused on ensuring that the
collector does not use too much CPU time, at the
relevant timescale, keeping the processor from being
able to meet its real-time deadlines. Conversely, the
collector has a real-time deadline of its own to meet:
it must finish its traversal and free up more memory
before the currently-free memory is exhausted. If it
doesn’t, the application will have to halt and wait for
the collection to complete and free up more memory.

For hard real-time programs, then, there must be
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some way of ensuring that the collector gets enough
CPU time to complete its task before free memory is
exhausted, even in the worst possible case. To pro-
vide such a guarantee, it is necessary to quantify the
worst case—that is, to put some bound on what the
collector could be expected to do. Since a tracing col-
lector must traverse live data, this requires putting a
bound on the amount of live data. In general, the
programmer of an application must ensure that the
program doesn’t have more than a certain amount of
live data to traverse, and the collector can then de-
termine how fast it must operate in order to meet its
deadline. It can then determine whether this requires
more CPU time than it is allowed to consume. Natu-
rally, this generally allows some tradeoffs to be made
in the parameter settings. If more memory is avail-
able, the collector generally needs a smaller fraction
of the CPU time to guarantee that it finishes before
memory is exhausted.

The usual strategy for ensuring that free memory is
not exhausted before collection is finished is to use an
allocation clock—for each unit of allocation, a corre-
sponding unit of collection work is done, and the lat-
ter unit is large enough to ensure that the traversal is
completed before the free space is exhausted [Bak78].
The simplest form of this is to key collection work di-
rectly to allocation—each time an object is allocated,
a proportional amount of garbage collection work is
done. This guarantees that no matter how fast a pro-
gram uses up memory, the collector is accelerated cor-
respondingly. (In actual implementations, the work
is usually batched up into somewhat larger units over
several allocations, for efficiency reasons.)

In the rest of this section, we show how to compute
the minimum safe tracing rate, starting with a non-
copying snapshot-at-beginning collector, which allo-
cates objects black (i.e., not subject to collection). We
make the simplifying assumption that all objects are of
a uniform size, so that there is a single pool of memory
that is allocated from and reclaimed. After describing
this simple case, we will explain how the safe tracing
rate differs for other incremental tracing algorithms.

For a snapshot-at-beginning algorithm, all of the
live data at the beginning of a collection must be tra-
versed by the end of the collection. Other algorithms
must do this too, in the worst case, because objects
may have to be traversed even if they are freed during
collection. In the absence of any other information
from the programmer, the collector must generally as-
sume that at the beginning of collection, the maximum
amount of live data is in fact live.



Since we assume that objects created during collec-
tion are allocated black, i.e., not subject to reclama-
tion, we need not traverse them—those objects will be
ignored until the next garbage collection cycle.

At first glance, it might appear that for a maxi-
mum amount of live data L and a memory size of
M, we would have (M — L) memory available to
allocate—this would imply a minimum safe tracing
rate of (M — L)/ L, to trace L data before this “head-
room” is exhausted. Unfortunately, though, we also
have to deal with floating garbage. The data that are
live at the beginning of collection may become gar-
bage during collection, but too late to be reclaimed
at this garbage collection cycle. The data we’ve al-
located may also be garbage, but since we allocate
black we don’t know that yet. If we were to use up
(M — L) memory, we might not get any space back
at this garbage collection cycle, and we would have
no headroom left to try another collection. the maxi-
mum data we should allocate is therefore only half the
headroom, or (M — L)/2. The minimum safe tracing
rate allows us to allocate that in the time it takes to
traverse the maximum live data, so the safe tracing
rate is (M — L)/2)/L, or (M — L)/2L. This is suffi-
cient for the worst case, in which all garbage floats for
an entire garbage collection cycle, but is reclaimed at
the next cycle.

As mentioned above, the situation is essentially the
same for other incremental tracing algorithms, so long
as they allocate new objects black, because in the
worst case they retain all of the same objects as a
snapshot-at-beginning algorithm. The minimum safe
tracing rate is proportional to the amount of live data
and inversely proportional to the amount of free mem-
ory; it therefore approaches zero as memory becomes
very large relative to the maximum amount of live
data.

For allocating white, however, the situation is con-
siderably worse. When allocating white, we are gam-
bling that newly-allocated data will be short-lived; we
therefore make them subject to garbage collection in
hopes of reclaiming their space at the current cycle.
This obliges us to traverse reachable white objects,
and in the worst case we traverse everything we allo-
cate before it becomes garbage. Even though we as-
sume that there is a bound on the amount of live data
(provided by the programmer), we must take into ac-
count the conservatism of the traversal process, and
the fact that any pointer may be traversed by the col-
lector before it’s broken by the mutator.

When allocating white, therefore, the worst-case
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safe traversal rate does not approach zero as mem-
ory becomes very large—it approaches the allocation
rate; the traversal must keep up with the allocation
rate, and go at least a little faster, to ensure that it
eventually catches up. If we increase the amount of
memory relative to the amount of live data, we reach
a point of diminishing returns—we must always trace
at least as fast as we allocate.

The above analysis applies to non-copying collectors
for uniform-sized objects. In copying collectors, more
memory is required to hold the new versions of objects
being copied; there must be another L units of mem-
ory available in the worst case to ensure that tospace
is not exhausted before fromspace is reclaimed. This
a major space cost if L is large relative to the ac-
tual amount of memory available. In non-copying
collectors for nonuniform-sized objects, fragmentation
must be taken into account. Fragmentation reduces
the effective memory available, requiring faster trac-
ing to complete collection in bounded memory. Com-
putations of worst-case fragmentation are intrinsically
program-specific [WJ93]; due to space limitations, we
will not discuss them here.

3.8.3 Trading worst-case performance for ex-
pected performance

When a collection phase is complete, the collector
can often determine a less conservative traversal rate,
slowing down the collection process and yielding more
CPU cycles to the mutator. This is possible because
at the end of the collection, the collector can deter-
mine how much live data was in fact traced, and revise
downward its worst-case estimate of what could be live
at the next collection. This may improve performance
somewhat, but usually not dramatically.
Alternatively, when the collector can determine that
it has less than the worst-case amount of work to do,
it may avoid GC activity entirely for a while, then
re-activate the collector in time to ensure that it will
meet its deadline. This is an attractive option if the
read or write barrier can be efficiently disabled on the

fly.

3.8.4 Discussion

The foregoing analysis assumes a fairly simple model
of real-time performance, with a single timescale for
hard real-time deadlines. More complex schemes are
certainly possible, in systems with mixed hard and soft
deadlines, or systems which have multiple timescales
for different kinds of goals. For example, the col-



lector’s infrequent but relatively expensive operations
(like root-set scanning) might be scheduled along with
the application’s own longer-term deadlines, in a com-
plementary pattern. This could achieve higher perfor-
mance overall while providing tight real-time guaran-
tees where necessary.?®

We have also assumed a fairly simple model of
garbage collection, in that there is a single pool of
memory available for all memory requests. In a non-
copying system with objects of widely differing sizes,
this will not be the case, because freeing several small
objects does not necessarily make it possible to al-
locate a larger one. On the other hand, it appears
that many applications’ memory usage is dominated
by a very few sizes of objects; reasoning about real-
time collection may not be as hard as it appears at
first glance, for the majority of programs [WJ93].
Still, such reasoning must be done on application-by-
application basis. For some programs, guaranteeing
real-time performance may cost considerable mem-
ory due to possible fragmentation, unless application-
level objects can be split into more uniform chunks.
Another possibility is to statically-allocate the most
troublesome datatypes, as is usually done in real-time
systems anyway, but rely on the garbage collector to
manage most of the objects automatically.

For fully general real-time garbage collection, with
reasonable worst-case memory usage, it appears that
fine-grained copying collection is required [Nil88]. As
mentioned above, copying collection can be quite ex-
pensive in the worst case, even if Lisp-machine style
hardware support is available to speed up the read bar-
rier [EV91, Wit91]. Nilsen and Schmidt have designed
and simulated hardware support which will guarantee
usefully real-time performance [NS92], but it is signif-
icantly more complex.??

3.9 Choosing an Incremental Algo-
rithm

In choosing an incremental strategy, it is important to
prioritize overall average performance and worst-case

26 Consider an autonomous robot, which might need to revise
its overall high-level planning only every second or so, but might
also need to respond “reflexively” to changes in its environment
within a few milliseconds. The low-level vision and reactive
adjustments might consume a fixed percentage of CPU time on
the scale of a few milliseconds, with the remainder available
alternately to the high-level planning functions and to the GC,
alternating every half-second.

27 Nilsen’s approach is interesting in that it requires relatively
complex memory controllers, but it is compatible with off-the-
shelf high-performance microprocessors.
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performance. Algorithms that are “less conservative”
may not be more attractive than others, because the
“less conservative” algorithms are just as conservative
in the worst case.

Even in the usual case, the less conservative algo-
rithms may not be desirable, because they may sim-
ply be slower (e.g., because their write barriers re-
quire more instructions.) Paradoxically, this can make
a “less conservative” algorithm more conservative in
practice, because its cost may keep it from being run
as often. Because of the higher overhead, the reduced
conservatism in terms of incremental strategies may
introduce greater conservativeness in how frequently
garbage is collected at all.

Overall system design goals are therefore important
to the choice of any garbage collection algorithm. As
we will explain in the next section, generational tech-
niques make the overheads of incremental collection
unnecessary for many systems, where hard real-time
response is not necessary, and it is sufficient for the
collector to be “nondisruptive” in typical operation.
For other systems, it may be desirable to combine in-
cremental and generational techniques, and careful at-
tention should be paid to how they are combined.

4 Generational Garbage Col-
lection

Given a realistic amount of memory, efficiency of sim-
ple copying garbage collection is limited by the fact
that the system must copy all live data at a collection.
In most programs in a variety of languages, most 0b-
jects live a very short time, while a small percentage
of them live much longer [LH83, Ung84, Sha88, Zor90,
DeT90, Hay91]. While figures vary from language to
language and from program to program, usually be-
tween 80 and 98 percent of all newly-allocated heap
objects die within a few million instructions, or before
another megabyte has been allocated; the majority of
objects die even more quickly, within tens of kilobytes
of allocation.

(Heap allocation is often used as a measure of pro-
gram execution, rather than wall clock time, for two
reasons. One is that it’s independent of machine and
implementation speed—it varies appropriately with
the speed at which the program executes, which wall
clock time does not; this avoids the need to continually
cite hardware speeds.?® It is also appropriate to speak

280ne must be careful, however, not to interpret it as the
ideal abstract measure. For example, rates of heap allocation



in terms of amounts allocated because the time be-
tween garbage collections is largely determined by the
amount of memory available.?® Future improvements
in compiler technology may reduce rates of heap allo-
cation by putting more “heap” objects on the stack;
this is not yet much of a problem for experimental
studies, because most current state-of-the-art compil-
ers don’t do much of this kind of lifetime analysis.)

Even if garbage collections are fairly close together,
separated by only a few kilobytes of allocation, most
objects die before a collection and never need to be
copied. Of the ones that do survive to be copied once,
however, a large fraction survive through many collec-
tions. These objects are copied at every collection,
over and over, and the garbage collector spends most
of its time copying the same old objects repeatedly.
This is the major source of inefficiency in simple gar-
bage collectors.

Generational collection [LH83] avoids much of this
repeated copying by segregating objects into multiple
areas by age, and collecting areas containing older ob-
jects less often than the younger ones. Once objects
have survived a small number of collections, they are
moved to a less frequently collected area. Areas con-
taining younger objects are collected quite frequently,
because most objects there will generally die quickly,
freeing up space; copying the few that survive doesn’t
cost much. These survivors are advanced to older sta-
tus after a few collections, to keep copying costs down.

For stop-and-collect (non-incremental) garbage col-
lection, generational garbage collection has an addi-
tional benefit in that most collections take only a short
time—collecting just the youngest generation is much
faster than a full garbage collection. This reduces the
frequency of disruptive pauses, and for many programs
without real-time deadlines, this is sufficient for ac-
ceptable interactive use. The majority of pauses are
so brief (a fraction of a second) that they are unlikely
to be noticed by users [Ung84]; the longer pauses for
multi-generation collections can often be postponed
until the system is not in use, or hidden within nonin-
teractive compute-bound phases of program operation
[WMB89]. Generational techniques are often used as an

are typically higher in Lisp and Smalltalk, because more control
information and/or intermediate data of computations may be
passed as pointers to heap objects, rather than as structures on
the stack.

29 Allocation-relative measures are still not the absolute
bottom-line measure of garbage collector efficiency, though, be-
cause decreasing work per unit of allocation is not nearly as
important if programs don’t allocate much; conversely, smaller
percentage changes in garbage collection work mean more for
programs whose memory demands are higher.
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Figure 9: A generational copying garbage collector
before garbage collection.

acceptable substitute for more expensive incremental
techniques, as well as to improve overall efficiency.
(For historical reasons and simplicity of explana-
tion, we will focus on generational copying collectors.
The choice of copying or marking collection is essen-
tially orthogonal to the issue of generational collec-

tion, however [DWHT90].)

4.1 Multiple Subheaps with Varying

Collection Frequencies

Consider a generational garbage collector based on the
semispace organization: memory is divided into areas
that will hold objects of different approximate ages,
or generations; each generation’s memory is further
divided into semispaces. In Fig. 9 we show a simple
generational scheme with just two age groups, a New
generation and an Old generation. Objects are allo-
cated in the New generation, until its current semis-
pace is full. Then the New generation (only) is col-
lected, copying its live data into the other semispace,
as shown in Fig. 10.

If an object survives long enough to be considered
old, it can be copied out of the new generation and
into the old, rather than back into the other semis-
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Figure 10: Generational collector after garbage collec-
tion.

pace. This removes it from consideration by single-
generation collections, so that it is no longer copied
at every collection. Since relatively few objects live
this long, old memory will fill much more slowly than
new. Eventually, old memory will fill up and have to
be garbage collected as well. Figure 11 shows the gen-
eral pattern of memory use in this simple generational
scheme. (Note the figure is not to scale—the younger
generation is typically several times smaller than the
older one.)

The number of generations may be greater than two,
with each successive generation holding older objects
and being collected considerably less often. (Tektronix
4406 Smalltalk is such a generational system, using
semispaces for each of eight generations [CWBS6].)

In order for this scheme to work, it must be possi-
ble to collect the younger generation(s) without col-
lecting the older one(s). Since liveness of data is a
global property, however, old-memory data must be
taken into account. For example, if there is a pointer
from old memory to new memory, that pointer must
be found at collection time and used as one of the
roots of the traversal. (Otherwise, an object that is
live may not be preserved by the garbage collector,
or the pointer may simply not be updated appropri-
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ately when the object is moved. Either event destroys
the integrity and consistency of data structures in the
heap.)

Ensuring that the collector can find pointers into
young generations requires the use of something like
the “write barrier” of an incremental collector—the
running program can’t freely store pointers into heap
objects at will. Each potential pointer store must
be accompanied by some extra bookkeeping, in case
an intergenerational pointer is being created. As in
an incremental collector, this is usually accomplished
by having the compiler emit a few extra instructions
along with each store of a (possible) pointer value into
an object on the heap.

The write barrier may do checking at each store,
or it may be as simple as maintaining dirty bits and
scanning dirty areas at collection time [Sha88, Sob88,
WM89, Wil90, HMS92]. The important point is that
all references from old to new memory must be located
at collection time, and used as roots for the copying
traversal.

Using these intergenerational pointers as roots en-
sures that all reachable objects in the younger gener-
ation are actually reached by the collector; in the case
of a copying collector, it also ensures that all pointers
to moved objects are appropriately updated.

As in an incremental collector, this use of a write
barrier results in a conservative approrimation of true
liveness; any pointers from old to new memory are
used as roots, but not all of these roots are necessarily
live themselves. An object in old memory may already
have died, but that fact is unknown until the next time
old memory is collected. Thus some garbage objects
may be preserved because they are referred to from
objects that are floating (undetected) garbage. This
appears not to be a problem in practice [Ung84, UJ88].

It would also be possible to track all pointers from
newer objects into older objects, allowing older objects
to be collected independently of newer ones. This is
more costly, however, because there are typically many
more pointers from new to old than from old to new.
Such flexibility is a consequence of the way references
are typically created—by creating a new object that
refers to other objects which already exist. Sometimes
a pointer to a new object is installed in an old object,
but this is considerably less common. This asymmetri-
cal treatment allows object-creating code (like Lisp’s
frequently-used cons operation) to skip the record-
ing of intergenerational pointers. Only non-initializing
stores into objects must be checked for intergenera-
tional references; writes that initialize objects in the
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Figure 11: Memory use in a generational copy collector with semispaces for each generation.
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youngest generation can’t create pointers into younger
ones.

Even if young-to-old pointers are not recorded, it
may still be feasible to collect a generation without
collecting younger ones. In this case, all data in the
younger generations may be considered possible roots,
and they may simply be scanned for pointers [LH83].
While this scanning consumes time proportional to the
amount of data in the younger generations, each gen-
eration is usually considerably smaller than the next,
and the cost may be small relative to the cost of ac-
tually collecting the older generation. (Scanning the
data in the younger generation may be preferable to
collecting both generations, because scanning is gener-
ally faster than tracing and copying; it may also have
better locality.)

The cost of recording intergenerational pointers is
typically proportional to the rate of program execu-
tion, i.e., it’s not particularly tied to the rate of ob-
ject creation. For some programs, it may be the major
cost of garbage collection, because several instructions
must be executed for every potential pointer store into
the heap. This may slow program execution down by
several percent.

Within the framework of the generational strategy
we’ve outlined, several important questions remain:

o Advancement policy. How long must an object
survive in one generation before it is advanced to
the next?

Heap organization. How should storage space be
divided and used between generations, and within
a generation? How does the resulting reuse pat-
tern affect locality at the virtual memory level,
and at the level of high-speed cache memories?

Collection scheduling. For a non-incremental col-
lector, how might we avoid or mitigate the effect
of disruptive pauses, especially in interactive ap-
plications? Can we improve efficiency by careful
“opportunistic” scheduling? Can this be adapted
to incremental schemes to reduce floating gar-
bage?

Intergenerational references. Since it must be
possible to collect younger generations without
collecting the older ones, we must be able to find
the live pointers from older generations into the
ones we're collecting. What is the best way to do
this?
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4.2 Advancement Policies

The simplest advancement policy is to simply advance
all live data into the next generation whenever they
are traversed. This has an advantage of ease of imp-
lementation, because it is not necessary to be able to
distinguish between objects of different ages within a
generation. In a copying collector, this allows the use
of a single contiguous area for a generation, with no
division into semispaces, and it does not require any
header fields to hold age information.

An additional advantage of advancing everything
out of a generation at the first traversal is that
it avoids the buildup of long-lived objects within a
generation—a long-lived object cannot be copied re-
peatedly at the same timescale, because it will be
quickly advanced to the next older generation, which
is collected less often.

The problem here is that objects may be advanced
too fast—short-lived objects allocated shortly before
a collection will be advanced to the next generation,
even though they are quite young and likely to die
almost immediately [Ung84, WM89]. This will cause
the older generation to fill up more quickly and be
collected more often. The problem of very short-lived
objects may be alleviated by delaying the advance-
ment of objects by just one garbage collection cycle;
this ensures that all objects are roughly the same age
(within a factor of two) when they are advanced to
an older generation. (In an incremental generational
collector, allocating black can have a similar effect if
incremental collection phases are of a sufficient dura-
tion [WJ93].)

It is unclear whether keeping objects within a gen-
eration for more than two collection cycles is worth
the extra copying cost. Under most conditions, it ap-
pears that successive copies do not greatly reduce the
amount of data advanced [WM89, Zor89], although
this is highly dependent on the nature of the applica-
tion; it may also be desirable to vary the advancement
policy dynamically [WM89, UJ88].

The desirability of keeping data in a generation for
multiple collection cycles is also affected by the num-
ber and size of older generations. In general, if there
are very few generations (e.g., two, as in Ungar’s Gen-
eration Scavenging system), it is more desirable to
retain data longer, to avoid filling up older genera-
tions. If intermediate generations are available, it is
usually preferable to advance things more quickly, be-
cause they are likely to die in an in-between genera-
tion and never be advanced to the oldest generation

[WM89, Zor89].



4.3 Heap Organization

A generational collector must treat objects of different
ages differently. While tracing, it must be able to
tell which generation an object belongs to, in order
to decide whether to trace its offspring, and whether
to advance it to another generation. The write barrier
must also be able to determine objects’ generations, to
detect whether a pointer to a younger object is being
stored into an older object.

In a copying collector, this is usually done by keep-
ing objects of different ages in different areas of mem-
ory. In many systems, these are contiguous areas; an
object’s generation can therefore be determined by
simple address comparisons. In other systems, the
“areas” may be noncontiguous sets of pages—an ob-
ject’s generation can be determined by using the page
number part of its address to index into a table that
says which generation that page belongs to.

In other systems, such as non-copying collectors,
each object belongs to a generation, but objects of
different generations may be interspersed in memory.
Typically, each object has a header field indicating
which generation it belongs to.

4.3.1 Subareas in copying schemes

Generational copying collectors divide each genera-
tions’ space into several areas. For example, each gen-
eration may consist of a pair of semispaces, so that
objects can be copied back and forth from one space
to another, to retain them within a generation over
multiple collections. (If only one space is used, objects
must be advanced to another generation immediately
because there’s nowhere to copy them to within the
same generation.)

The locality of semispace memory usage is poor—
only half of the memory of a generation can be in use
at a given time, yet both of the spaces are touched in
their entirety every two collection cycles. Lisp ma-
chine garbage collectors [Moo84, Cou88] avoid this
problem by using only a single space per generation.
Rather than copying objects from one semispace to
the other until they are advanced, garbage collection
of a generation advances all objects into the next gen-
eration. This avoids the need for a pair of semispaces,
except in the oldest generation, which has no place to
copy things to. Unfortunately, it has the drawback
that relatively young objects may be advanced along
with relatively old ones—objects allocated shortly be-
fore a collection are not given much time to die before
being advanced. These relatively young objects are

likely to die shortly after being advanced, needlessly
taking up space in the next generation and forcing it
to be collected again sooner.

Ungar’s solution to this problem in the Young gen-
eration (of his Generation Scavenging collector) is
to use three spaces instead of just two, with all ob-
jects being initially allocated in the third space. The
newly-created objects in this third space are copied
into a semispace, along with the objects from the
other semispace. The third space is emptied at ev-
ery garbage collection cycle, and can therefore be
reused immediately each time. It therefore has local-
ity characteristics similar to those of a single-space-
per-generation system. It might seem that this third
space would increase memory usage, since semispaces
are still required in that generation so that objects can
be kept in the generation for multiple collections. The
creation area is used in its entirety at each allocation-
and-collection cycle, while each semispace is used to
hold the survivors at every other collection cycle. Typ-
ically only a small minority of new objects typically
survives even a first collection, so only a small part of
each semispaces is actually used most of the time, and
the overall memory usage is lower.

Wilson’s Opportunistic Garbage Collector [WM89]
uses a variation on this scheme, with the subareas
within a generation used for the additional purpose
of deciding when to advance an object from one gen-
eration to another—objects are advanced out of the
semispaces to the next generation at each cycle, rather
than being copied back and forth from one semispace
to the other at successive collections. In effect, this
is a simple “bucket brigade” advancement mechanism
[Sha88], using the segregation of objects into subareas
to encode their ages for the advancement policy. It
avoids the need for age fields in object headers, which
may be advantageous in some systems, where some
objects do not have headers at all.3° It does provide
a guarantee that objects will not be advanced out of
a generation without surviving for at least one (and
up to two) collection cycles; this is sufficient to avoid
premature advancement of very short-lived data.

In several generational copying collection systems,
the oldest generation is treated specially. In the Lisp
machine collectors, this is necessitated by the fact that
most generations are emptied at every collection cycle,
and their contents copied to the next generation—for
the oldest generation there isn’t an older generation

30For example, in some high-performance Lisp systems, a spe-
cial pointer tag signifies a pointer to a cons cell, and the cons
cell itself has no header.
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to copy things into. The oldest generation (“dynamic
space”) is therefore structured as a pair of semispaces,
which are used alternately. A further enhancement is
to provide a special area, called “static space,” which
is not garbage collected at all during normal operation.
This area holds system data and compiled code that
are expected to change very rarely.

Some copying collectors based on Ungar’s Gener-
ation Scavenging system treat the oldest generation
specially by structuring it as a single space and using
a mark-compact algorithm. In these systems, all gen-
erations typically reside in RAM during normal execu-
tion, and the use of a single space reduces the RAM re-
quired to keep the oldest generation memory resident.
While the mark-compact algorithm is more expensive
than a typical copy collection, the ability to perform
a full collection without paging makes it worthwhile
for the oldest generation. Non-copying techniques can
be used for the same purpose, although they are more
subject to fragmentation problems.

4.3.2 Generations in Non-copying Schemes

In our discussion of generational collection thus far, we
have focused primarily on copying garbage collection
schemes, where generations can be viewed as “areas”
of memory holding objects of different ages. This is
unnecessary, however, as long as it is possible to dis-
tinguish objects of different ages and treat them dif-
ferently. Just as incremental collection algorithms are
best understood in terms of the abstraction of tricolor
marking, generational algorithms are best understood
in terms of sets of objects which are garbage collected
at different frequencies. (Each of these age sets, in
turn, can be divided into shaded and unshaded sets
for the purposes of the tracing traversal.)

The Xerox PARC PCR (Portable Common Run-
time) garbage collector is a generational mark-sweep
collector, with a header field per object indicating the
object’s age. Objects of different generations may be
allocated in the same page, although the system uses a
heuristic to minimize this for locality reasons3!. When
garbage collecting only young data, the PCR collec-
tor scans the root set and traverses objects whose age
fields signify that they are subject to collection. This
tracing continues transitively in the usual way, tracing
all reachable young objects. The generational write
barrier uses pagewise dirty bits maintained by virtual
memory access protection techniques; as will be ex-

#1Pages containing old objects are not used to hold young
objects unless they are more than half empty; this tends to
avoid gratuitously mixing older and younger data.

plained in Sect. 4.4.3, pages of older generations dirt-
ied since the previous collection are scanned in their
entirety, and any pointers to young generations are
noted and used as part of the root set.

4.3.3 Discussion

Many variations on generational collection are possi-
ble, and hybrids are common, to allow various trade-
offs to be adjusted.

It is common for copying collectors to manage
large objects differently, storing them in a special
large object area and avoiding actually copying them
[CWB86]. This essentially combines copying of small
objects (where it’s cheap) with mark-sweep for large
objects, to avoid the larger space and time overheads
of copying them. (Commonly, large objects are actu-
ally represented by a small copy-collected proxy ob-
ject, which holds an indirection pointer to the actual
storage for the object’s data fields.)

Objects known not to contain pointers may also be
segregated from other objects, to optimize the tracing
process and/or the scanning involved in some schemes
for tracking intergenerational pointers [Lee88]; this
may also improve locality of reference during tracing
if copy-collected proxies are used, because the actual
storage for non-pointer objects needn’t be touched at
all.

The ParcPlace Smalltalk-80 garbage collector com-
bines stop-and-copy collection of the young generation
(where the worst-case pause is not large) with incre-
mental mark-sweep collection of older data.3?

4.4 Tracking Intergenerational Refer-
ences

Generational collectors must detect pointers from
older to younger generations, requiring a write barrier
similar to that used by some incremental tracing algo-
rithms. That is, a program cannot simply store poin-
ters into heap objects—the compiler and/or hardware
must ensure that each potential store is accompanied
by checking or recording operations, to ensure that if
any pointers to younger generations are created, they
can be found later by the collector. Typically, the
compiler emits additional instructions along with each
potential pointer store instruction, to perform the re-
quired write barrier operations.

For many systems, this may be the largest cost
of generational garbage collection. For example, in

32David Ungar, personal communication, 1992.
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a modern Lisp system with an optimizing compiler,
pointer stores typically account for one percent or
so of the total instruction count [SH87, Zor89]. If
each pointer store requires twenty instructions for the
write barrier, performance will be degraded by roughly
twenty percent. Optimizing the write barrier is there-
fore very important to overall garbage collector per-
formance, and significantly faster write barriers have
been developed. Because of their key role in the overall
performance of a generational collector, we will discuss
write barriers in some detail.

Many write barrier techniques have been used, with
different performance tradeoffs on different hardware,
and for different languages and language implementa-
tion strategies.

Some systems use a collection strategy that is “al-
most generational” but without using a write barrier,
to get some of the benefit of generational collection.
Rather than keeping track of pointers from old data
to young data as they are created, old data are sim-
ply scanned for such pointers at collection time. This
requires more scanning work, and has worse local-
ity than true generational collection, but it may be
considerably faster than tracing all reachable data.
(Scanning is typically several times faster than trac-
ing, and has strong spatial locality of reference.) The
“Stratified Garbage Collector” for Austin Kyoto Com-
mon Lisp (an enhancement of Kyoto Common Lisp)
uses such a scheme to avoid the overhead of a write
barrier.®® Bartlett has used a similar technique in a
collector designed to work with off-the-shelf compilers
which do not emit write barrier instructions [Bar89].

4.4.1 Indirection Tables

The original generational collectors for Lisp Machines
[LH83] used specialized hardware and/or microcode
to speed up the checks for pointers into younger gen-
erations, and the pointers that were found were in-
directed (by a microcoded routine) through an entry
table. No pointers directly into a younger generation
were allowed, only pointers to a table entry holding
the actual pointer. Each generation had its own entry
table holding the actual pointers to objects. When the
mutator executed a store instruction, and attempted
to create a pointer into a younger generation, the store
instruction trapped to microcode. Rather than actu-
ally creating a pointer directly into the younger gen-
eration, an invisible forwarding pointer was created
and stored instead. The Lisp Machine hardware and

33William Schelter, personal communication 1991.

microcode detected and dereferenced the forwarding
pointers automatically, making the indirections invis-
ible to running programs.

When garbage collecting a particular generation, it
was therefore only necessary to use the entry table as
an additional set of roots, rather than actually finding
the pointers in other generations and updating them.

A somewhat different scheme was used in the TI Ex-
plorer system; rather than having a table of incoming
pointers per generation, a separate table of outgoing
pointers was maintained for each combination of older
and younger generation. (So, for example, the oldest
generation had a separate exit table for each younger
generation, holding its indirected pointers into each
of those generations.) This allowed the scanning of
tables to be more precise (i.e., only scanning the poin-
ters relevant to the generations being collected), and
made it simpler to garbage collect the table entries
themselves.

Unfortunately, the indirection table schemes were
not fast or efficient, especially on stock hardware with
no support for transparently dereferencing forwarded
pointers. (As with Baker-style incremental copying,
the cost of common pointer operations is greatly in-
creased if pointers must be checked for indirections.)
Recent generational collectors have therefore avoided
indirections, and allowed pointers directly from any
generation into any other. Rather than requiring such
pointers to be localized, they simply keep track of
where such pointers are, so that they can be found at
collection time. We refer to such schemes as pointer
recording schemes, because they simply record the lo-
cation of pointers.

4.4.2 Ungar’s Remembered Sets

Ungar’s Generation Scavenging collector used an ob-
jectwise pointer-recording scheme, recording which
objects had pointers to younger generations stored
into them. At each potential pointer store, the write
barrier would check to see if an intergenerational
pointer was being created—by checking to see if the
stored value was in fact a pointer, pointed into the
young generation, and was being stored into an ob-
ject in the old generation. If so, the stored-into object
was added to the remembered set of objects holding
such pointers, if it was not already there. (Each object
had a bit in its header saying whether it was already in
the remembered set, so that duplicate entries could be
avoided. This makes the collection-time scanning cost
dependent on the number and size of the stored-into
objects, not the actual number of store operations.)
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In the usual case, this scheme worked quite well
for a Smalltalk virtual machine. Unfortunately, in
the worst case, this checking and recording incurred
tens of instructions at a pointer store, and the relative
cost would have been appreciably higher in a higher-
performance language implementation.

A significant drawback of this scheme was that the
remembered set of objects must be scanned in its en-
tirety at the next garbage collection, which could be
expensive for two reasons. Some of the checking cost
was repeated, because a stored-into location might
be stored into many times between collections, being
checked each time, and because stored-into objects
had to be scanned again at collection time. Worse,
very large objects might be stored into regularly, and
have to be scanned in their entirety at each collec-
tion. (The latter was observed to cause large amounts
of scanning work—and even thrashing—for some pro-
grams running in Tektronix Smalltalk.3%)

4.4.3 Page Marking

Moon’s Ephemeral Garbage Collector for Symbol-
ics Lisp machines used a different pointer-recording
scheme [Moo84]. Rather than recording which ob-
jects had intergenerational pointers stored into them,
it recorded which virtual memory pages were stored
into. The use of the page as the granularity of record-
ing avoided the problem of scanning very large ob-
jects, although it increased costs for sparse writes to
small objects, because the entire page would still be
scanned. The scanning cost was not large on the Sym-
bolics hardware, because it had special tag support
to make generation checking very fast, and because
pages were fairly small. Much of the write-barrier was
also implemented directly in hardware (rather than
by additional instructions accompanying each pointer
write), so the time cost at each pointer store was small.
In this system, the information about pointers into
younger generations is held in a pagewise table. (This
has the advantage that the table implicitly eliminates
duplicates—a page may be stored into any number of
times, and the same bit set in the table, but the page
will only be scanned once at the next garbage collec-
tion. This duplicate elimination is equivalent to Un-
gar’s use of bits in object headers to ensure uniqueness
of entries in the remembered set. The time required
to scan the recorded items at a garbage collection is
therefore proportional to the number of stored-into
pages, and to the page size, but not the number of

34Patrick Caudill, personal communication 1988.

40

actual store operations.)

Unfortunately, this scheme would be considerably
slower if implemented on stock hardware, with larger
pages and no dedicated hardware for page scanning or
write checking. It also requires the ability to scan an
arbitrary stored-into page from the beginning, which
is more complicated on standard hardware than on the
Symbolics machines, in which every machine word had
extra bits holding a type tag.

More recently, virtual memory dirty bits have been
used as a coarse write barrier [Sha88]. The underlying
virtual memory system typically maintains a bit per
page that indicates whether the page has been dirtied
(changed in any way) since it was last written out to
disk. Most of the work done to maintain these bits
is done in dedicated memory hardware, so from the
point of view of the language implementor, it is free.
Unfortunately, most operating systems do not provide
facilities for examining dirty bits, so operating system
kernel modifications are required. Alternatively, vir-
tual memory protection facilities can be used to simu-
late dirty bits, by write-protecting pages so that writes
to them can be detected by the hardware and invoke
a trap handler [BDS91]; this technique is used in the
Xerox Portable Common Runtime garbage collector.
The trap handler simply records that the page has
been written to since the last garbage collection, and
un-protects the page so that program execution can
resume. (In the PCR collector, objects of different
generations may reside in the same page, so when a
dirtied page is scanned at collection time, objects of ir-
relevant generations are skipped.) As with the Appel,
Ellis, and Li collector, the use of virtual memory pro-
tections makes it impossible to satisfy hard real-time
requirements, and may incur significant trap overhead;
scanning costs may also be relatively high if write lo-
cality is poor. As we will explain in Sect. 6.2, however,
this kind of write barrier has advantages when deal-
ing with compilers that are uncooperative and do not
emit write barrier instructions.

4.4.4 Word marking

In adapting Moon’s collector for standard hardware,
Sobalvarro avoided the cost of scanning large pages by
the use of a word marking system, which used a bitmap
to record which particular machine words of memory
actually had pointers stored into them [Sob88]. This
avoided the need to be able to scan an arbitrary page
for pointers, because the locations of the relevant poin-
ters were stored exactly.

Sobalvarro also optimized the scheme for standard



hardware by making the write barrier simpler—most
write-barrier checking was eliminated, and deferred
until collection time. The stored-into locations are
checked at collection time to see whether the stored
items are intergenerational pointers. While this is less
precise than Moon’s or Ungar’s checking, and may
cause more words to be examined at collection time,
it also has the benefit that implicit duplicate elimina-
tion is performed first, and the other checks only need
to be performed once per stored-into word.

The drawback of Sobalvarro’s scheme is that for a
reasonably large heap, the table of bits is fairly large,
about three percent of the total size of memory. Scan-
ning this table would be relatively expensive if it were
represented as a simple linear array of bits. (Stor-
ing individual bits would also make the write bar-
rier expensive on some architectures, where sub-word
write instructions are slow, or must be synthesized us-
ing several other instructions.) Sobalvarro’s solution
to this was to use a sparse (two-level) representation
of the table; this incurred an additional write-barrier
cost, because operations on the sparse array are signif-
icantly slower than operations on a contiguous array.

4.4.5 Card Marking

An alternative to marking pages or words is to con-
ceptually divide memory into intermediate-sized units
called cards [Sob88]. The use of relatively small cards
has the advantage that a single store operation can
only cause a small amount of scanning at collection
time, making the cost smaller than page-marking on
average. As long as the cards aren’t extremely small,
the table used for recording stored-into cards is much
smaller than the corresponding table for word mark-
ing. For most systems, this makes it feasible to rep-
resent the table as a contiguous linear array, keeping
the write barrier fast.

One problem of using card marking on standard
hardware is that it requires that cards be scanned
for pointers, even if the card does not begin with the
beginning of an object. Wilson’s Opportunistic Gar-
bage Collector addresses this by maintaining a cross-
ing map, recording which cards begin with an un-
scannable part of an object [WM89]. In the case of a
card that’s not scannable from the beginning, the map
can be used to find a previous card that is scannable,
locate an object header on that card, and skip forward
object by object until it finds the headers of the ob-
jects on the card to be scanned. (This is a refinement
of the crossing maps used by Appel Ellis and Li to
support pagewise scanning in their incremental copy-
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ing collector [AEL88]). In Wilson’s scheme, the bit
corresponding to a card is left set if the card contains
a pointer into a younger generation. Such cards must
be scanned again at the next garbage collection, even
if they are not stored into again.

Ungar, Chambers, and Holzle have further refined
this card-marking scheme in a garbage collector for
the Self language. Rather than using a table of bits
to record stored-into cards, it uses a table of bytes—
even though only a bit is needed, a byte is used be-
cause byte stores are fast on most architectures. This
allows the write barrier to consist of only three instruc-
tions, which unconditionally store a byte into a byte
array. This comes at an increase in scanning costs,
because the byte array is eight times larger than a
bit array, but for most systems the decrease in write-
barrier cost is well worth it [Cha92, DMH92]. Holzle
has further refined this by relaxing the precision of the
write barrier’s recording, bringing the cost per store
down to two instructions (on a Sun SPARC proces-
sor) with a slight increase in scanning costs [H93]. (As
we will explain in the next section, card marking can
also be combined with store lists to reduce scanning
of cards which hold pointers into younger generations,
but aren’t stored into again.)

4.4.6 Store Lists

The simplest approach to pointer recording is simply
to record each stored-into address in a list of some
sort. This might be a linked list, or a pre-allocated
array that has successive locations stored into, much
like pushing items on a linear-array stack.

Appel’s very simple (500 lines of C code) gen-
erational collector for Standard ML of New Jersey
[App89b] uses such a list, which is simply scanned at
each collection, with good performance for typical ML
programs.

Simple store lists have a disadvantage for many
language implementations, however, in that they im-
plement bags (multisets) of stored-into locations, not
sets. That is, the same location may appear in the list
many times if it is frequently stored into, and the gar-
bage collector must examine each of those entries at
collection time. The collection-time cost is therefore
proportional to the number of pointer stores, rather
than to the number of stored-into locations. This
lack of duplicate elimination can also lead to exces-
sive space usage if pointer stores are very frequent.
(For ML, this is generally not a problem, because side
effects are used relatively infrequently.)

Moss et al. have devised a variation of the store list



technique which allows a bounded number of entries
in a special kind of list called a static store buffer, and
calls a special routine when this buffer is full. The spe-
cial routine processes the list, using a fast hash table
to remove duplicates. This technique [HMS92]reduces
space costs, and avoids doing all of the store-list pro-
cessing at garbage collection time, but it does not have
the same duplicate elimination advantage as the table-
based schemes—duplicates are eliminated, but only
after they’ve already been put in the store list. Each
pointer store creates an entry in the store list, which
must be fetched and examined later.3®

Hosking and Hudson [HH93] have combined some
of the best features of card marking and store
lists. Pointer stores are recorded by a card-marking
write barrier in the usual way, but when a card
is scanned, the individual locations containing poin-
ters into younger generations are recorded. This al-
lows subsequent collections to avoid re-scanning whole
cards if they are not stored into again.

4.4.7 Discussion

In choosing a write barrier strategy for a generational
collector, it is important to take into account interac-
tions with other aspects of the system’s implementa-
tion. For example, the Xerox PARC “mostly-parallel”
collector uses virtual memory techniques (to imple-
ment pagewise dirty bits) partly because it is designed
to work with a variety of compilers which may not co-
operate in the implementation of the write barrier—
e.g., off-the-shelf C compilers do not emit write-barrier
instructions along with each pointer store. In other
systems, especially systems with static type systems
and/or type inference capabilities, the compiler can
significantly reduce the cost of the write barrier, by
omitting the write barrier checks that can be done
statically by the compiler.

Another issue is whether real-time response is re-
quired. Table-based schemes such as page marking
and card marking may make it difficult to scan the
recorded pointers incrementally in real-time. Store
lists are easier to process in real time; in fact, the work
done for the write barrier may be similar to the work
done for an incremental update tracing technique, al-
lowing some of the costs to be optimized away [WJ93]
by combining the two write barriers.

35Ungar’s technique of using flag bits (to signify whether an
object is already in a set) could conceivably be used, but it
is probably not worthwhile to use a bit per memory word, as
opposed to a bit per object header, unless there is hardware
support to make it fast.

The actual cost of write barriers is somewhat con-
troversial. Several studies have measured write bar-
rier overheads for interpreted systems (e.g., [Ung84,
HMS92]), making them hard to relate to high-
performance systems using optimizing compilers
[Moo84, H93]. It may be more reasonable to combine
measurements of high-performance systems with an
analytic understanding of garbage collector costs, to
infer what the approximate cost of a well-implemented
collector would be for a well-implemented systems.

As mentioned earlier, compiled Lisp systems appear
to execute roughly one pointer store into a heap ob-
ject per hundred instructions; a card-marking write
barrier should only slow such a system down by about
four or five percent, executing two or three instruc-
tions at the time of each pointer store, plus a smaller
card-scanning cost at each collection. For many pro-
grams (with little live data, or lifetime distributions
favorable to generational collection), the tracing and
reclamation cost will be similarly low, and the cost of
garbage collection should be under ten percent.

This figure can vary considerably, however—and of-
ten upward—based on the workload, type informa-
tion in the programming language, data representa-
tions, and optimizations used by the compiler. (Sev-
eral implementation choices will be considered in later
sections.)

If a compiler generates faster code, the write bar-
rier cost may become a larger fraction of the (smaller)
overall running time. On the other hand, the compiler
may also be able to reduce write barrier costs by infer-
ring that some pointer recording is redundant, or that
some dynamically-typed values will never be pointers

(Sect. 6.4.3).

Unfortunately, the cost of write barriers in conven-
tional imperative statically-typed systems is poorly
understood. Static type systems generally distinguish
pointer and nonpointer types, which may help the
compiler, but type declarations may improve other
areas of the system’s performance even more, mak-
ing the relative performance of the garbage collector
worse. On the other hand, conventional statically-
and strongly-typed languages often have lower overall
rates of heap object allocation and mutation, reducing
both the write barrier and tracing costs as a fraction
of overall program running time.

Programming style can also have a significant im-
pact on write-barrier costs. In many languages de-
signed for use with garbage collection, allocation rou-
tines are primitives which take values as arguments,
and initialize fields of objects. In other languages,
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the programmer may be expected to initialize a new
objects’ fields explicitly. In the former case, the lan-
guage implementation can omit the write barrier for
initializing writes to pointer fields, but in the latter
it generally cannot. It is not clear whether this is a
problem; programs in such languages may typically
have lower rates of heap allocation and fewer pointer
fields in objects.

4.5 The Generational Principle Revis-
ited

Generational garbage collectors exploit the fact
that heap-allocated objects are typically short-lived.
Longer-lived objects are collected less often, on the
assumption that the minority objects which live for a
significant period are likely to live a while longer still.
This simple idea is widespread, but it is not obvious
that it is true in any strong sense [Hay91, Bak93a]; it is
also unclear that it must be true to make generational
collection worthwhile in practice.

Consider a system in which this property does not
hold—i.e., the probability that an object will die at
a particular moment is not correlated with its age.
Lifetimes distributions in such a system may still be
heavily skewed toward short-lived objects. A simple
example of such a system is one with a random ezpo-
nential decay property, where a fixed fraction of the
objects die in a fixed period of time, much like the
“half-life” property of radioactive isotopes.

In such a system, the lifetime distribution may ap-
pear ideally suited to generational collection, because
young objects die young. On closer examination, how-
ever, it turns out that picking any subset of the ob-
jects will yield an equal proportion of live and dead
objects over a given period of time. In that case, any
advantage of generational collection would be due to
restricting the scope of collection, not to a higher mor-
tality rate among the objects subject to collection.

This analogy appears to undermine the notion that
generational collection is a good idea, but in fact it
may not. Even under an exponential decay model,
generational collection may improve locality, despite
the fact that it won’t directly improve algorithmic
efficiency—reclaiming and reusing recently-allocated
space improves locality, compared to reusing memory
that has been idle for a significant period. Travers-
ing live objects is likely to be cheaper if the objects
were allocated—hence touched—recently; reclaiming
and reusing space of garbage objects is also likely to
be cheaper because that space will have been touched
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recently as well.

4.6 Pitfalls of Generational Collection

Generational collection attempts to improve perfor-
mance heuristically, taking advantage of characteris-
tics of typical programs; naturally, this cannot be suc-
cessful for all programs. For some programs genera-
tional collection will fail to improve performance, and
may decrease it.

4.6.1 The “Pig in the Snake” Problem

One problematic kind of data for generational collec-
tion is a cluster of relatively long-lived objects, which
are created at about the same time and persist for
a significant period. This often occurs because data
structures are built during one phase of execution,
then traversed during subsequent phases of execution,
and become garbage all at once (e.g., when the root
of a large tree becomes garbage). This kind of data
structure will be copied repeatedly, until the advance-
ment policy succeeds in advancing it to a generation
large enough to hold the whole cluster of related data
objects. This increases traversal costs first in the
youngest generation, then in the next generation, and
so on, like the bulge in a snake advancing along the
snake’s body after a large meal.36 Until the bulge is
advanced to a generation that will hold it until it dies,
the collector’s age heuristic will fail and cause addi-
tional tracing work.

The pig-in-the-snake problem therefore favors the
use of relatively rapid advancement from one genera-
tion to the next, which must be balanced against the
disadvantage of advancing too much data and forcing
the next generation to be collected more often than
necessary. Ungar and Jackson vary the advancement
policy dynamically in an attempt to advance large
clusters of data out of the youngest generation before
they incur too much copying cost; this appears to work
well for most programs, but may cause the older gen-
eration to fill rapidly in some cases. Wilson advocates
the use of more generations to alleviate this problem,
along with careful “opportunistic” scheduling of gar-
bage collections in an attempt to collect when little
data is live [WM89]. Hayes’s “key object” opportu-
nism refines this by using changes in the root set to

36Incidentally, this term was inspired by a similar descrip-
tion of the baby boom generation’s use of resources through
its life cycle—first requiring more kindergartens, then elemen-
tary schools, and so on, and ultimately causing an increase in
demand for retirement homes and funeral directors. (Jon L.
White, personal communication 1989.)



influence garbage collection policy [Hay91]. (These
techniques appear to be beneficial but more experi-
mentation is needed in larger systems.)

4.6.2 Small Heap-allocated Objects

One of the assumptions behind the generational
heuristic is that there will be few pointers from old ob-
jects to young ones; some programs may violate this
assumption, however. One example is programs that
use large arrays of pointers to small, heap-allocated
floating point numbers. In many dynamically-typed
systems, floating point numbers do not fit in a ma-
chine word, and in the general case must be repre-
sented as tagged pointers to heap-allocated objects.
Updating the values in an array of floating point num-
bers may actually cause new floating point objects to
be allocated, and pointers to them to be installed in
the array. If the array is large and not short-lived,
it is likely to reside in an older generation, and each
update of a floating point value will create a young
object and an intergenerational pointer. If a large
number of elements of the array are updated (e.g.,
by a sequential pass through the whole array), each
floating point number object is likely to live a sig-
nificant period of time—Ilong enough to be traced by
several youngest-generation collections, and advanced
to an older generation. Thus these large numbers of
intermediate-lifetime number objects will cause con-
siderable overhead, both in the write barrier and in
tracing. (In the case of systems using Ungar’s original
remembered set scheme, the remembered set scanning
costs may be very large if large objects hold intergen-
erational pointers.)

To avoid these costs, two approaches are common—
the use of short floating-point formats which can be
represented as tagged immediate values, and the use of
arrays with typed fields, which can contain raw float-
ing point values rather than pointers to heap-allocated
objects.

The problem with short floating point values is that
they may not have the desired numerical characteris-
tics. In the first place, numbers short enough to fit in
a machine word may not have sufficient precision for
some applications. In addition, some bits must be sac-
rificed for the tag field, further reducing the precision
or the range of the number. The simplest scheme is
to sacrifice bits of precision by removing bits from the
mantissa, but this has the problem that the resulting
number does not map well onto typical floating-point
hardware, which has very carefully designed precision
and rounding characteristics. (Without the expected
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rounding properties, some algorithms may compute
incorrect answers, or even fail to terminate. Simulat-
ing these characteristics in software is extremely ex-
pensive.) The alternative is to sacrifice bits from the
exponent part of the hardware-supported format, and
restrict the range of numbers that can be represented.
This introduces several instructions extra overhead
in converting between the hardware-supported format
and the tagged format [Wil90, Cha92].

Using arrays with typed fields introduce irregulari-
ties into dynamically-typed systems (e.g., most arrays
can hold any kind of data, but some can’t), but this
strategy is easy to implement efficiently, and is fre-
quently used in Lisp systems.

Unfortunately, neither of these solutions fixes the
problem in the general case, because floating point
numbers are not the only possible data type that can
cause this problem. Consider complex numbers, or 3D
point objects: it’s unlikely that such objects are going
to be crammed into a machine word. Similarly, the
problem doesn’t only occur with arrays—any aggre-
gate data structure (such as a binary tree) can exhibit
the same problem. In such cases, the programmer may
choose to use a different representation (e.g., parallel
arrays of real and imaginary components, rather than
an array of complex numbers) to avoid unnecessary
garbage collection overhead.

4.6.3 Large Root Sets

Another potential problem with generational collec-
tion is the handling of root sets. (This is essentially
the same problem that occurs for incremental collec-
tion.) Generational techniques reduce the scope of
tracing work at most collections, but that does not in
itself reduce the number of roots that must be scanned
at each collection. If the youngest generation is small
and frequently collected, and global variables and the
stack are scanned each time, that may be a significant
cost of garbage collection in large systems. (Large sys-
tems may have tens of thousands of global or module
variables.)

An alternative is to consider fewer things to be part
of the usual root set, and treat most variables like heap
objects, with a write barrier. Stores into such objects
that may create pointers into young generations are
then recorded in the usual way, so that the pointers
can be found at collection time. The problem with
this approach is that it may significantly increase the
cost of stores into local variables. (This cost can be
reduced if the compiler can determine types at compile
time, and omit the write barrier code for nonpointer



writes.)

Treatment of local variables is more complicated
in languages that support closures—procedures which
can capture local variable binding environments, forc-
ing local variables to be allocated on the garbage
collected heap, rather than a stack. If all variable
bindings are allocated on the heap, this requires that
pointer stores into local variables use a write barrier;
this may significantly increase write barrier costs for
many programs, where side-effects to local variables
are relatively common. For such systems, it is desir-
able to have compiler optimizations which avoid the
heap allocation of local variables that are never ref-
erenced from closures and hence can be allocated on
a stack or in registers. (Such techniques are valuable
in themselves for improving the speed of code operat-
ing on those variables [Kra88], as well as for reducing
overall heap allocation.)

In most application programs, root set scanning
time is negligible, because there are only a few thou-
sand global or module variables. In large, integrated
programming environments, however, this root set
may be very large; to avoid large amounts of scan-
ning at every garbage collection, it may be desirable
to use a write barrier for some variables, so that only
the stored-into variables are actually scanned at col-
lection time. It is easy to imagine a large integrated
development system which uses a write barrier for
most variables, but which can also generate stripped-
down standalone application code for which the root
set is scanned atomically to avoid the write-barrier
cost when programs are distributed.

4.7 Real-time Generational Collection

Generational collection can be combined with incre-
mental techniques, but the marriage is not a particu-
larly happy one [WJ93]. Typically, real-time garbage
collection is oriented toward providing absolute worst-
case guarantees, while generational techniques im-
prove expected performance at the expense of worst-
case performance. If the generational heuristic fails,
and most data are long-lived, garbage collecting the
young generation(s) will be a waste of effort, because
no space will be reclaimed. In that case, the full-scale
garbage collection must proceed just as fast as if the
collector were a simple, non-generational incremental
scheme.

Real-time generational collection may still be desir-
able for many applications, however, provided that the
programmer can supply guarantees about object life-
times, to ensure that the generational scheme will be
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effective. Alternatively, the programmer may supply
weaker “assurances,” at the risk of a failure to meet a
real-time deadline if an assurance is wrong. The for-
mer reasoning is necessary for mission-critical hard-
real time systems, and it is necessarily application-
specific. The latter “near-real-time” approach is suit-
able for many other applications such as typical inter-
active audio and video control programs, where the
possibility of a reduction in responsiveness is not fa-
tal.

When it is desirable to combine generational and in-
cremental techniques, the details of the generational
scheme may be important to enabling proper incre-
mental performance. For example, the (Symbolics,
LMI, and TT) Lisp machines’ collectors are the best-
known “real-time” generational systems, but the in-
teractions between their generational and incremental
features turn out to have a major effect their worst-
case performance.

Rather than garbage collecting older generations
slowly over the course of several collections of younger
generations, only one garbage collection is ongoing
at any time, and that collection collects only the
youngest generation, or the youngest two, or or the
youngest three, etc. That is, when an older genera-
tion is collected, it and all younger generations are ef-
fectively regarded as a single generation, and garbage
collected together. This makes it impossible to bene-
fit from younger generations’ generational effect while
garbage collecting older generations; in the case of a
full garbage collection, it effectively degenerates into a
simple non-generational incremental copying scheme.

During such large-scale collections, the collector
must operate fast enough to finish tracing before
the available free space is exhausted—there are no
younger generations that can reclaim space and re-
duce the safe tracing rate. Alternatively, the collection
speed can be kept the same, but space requirements
will be much larger during large scale collections. For
programs with a significant amount of long-lived data,
therefore, this scheme can be expected to have system-
atic and periodic performance losses, even if the pro-
gram has an object lifetime distribution favorable to
generational collection, and the programmer can pro-
vide the appropriate guarantees or assurances to the
collector. Either the collector must operate at a much
higher speed during full collections, or memory usage
will go up dramatically. The former typically causes
major performance degradation because the collector
uses most of the CPU cycles; the latter either requires
very large amounts of memory—mnegating the advan-



tage of generational collection—or incurs performance
degradation due to virtual memory paging.

5 Locality Considerations

Garbage collection strategies have a major effect on
the way memory is used and reused; naturally, this
has a significant effect on locality of reference.

5.1 Varieties of Locality Effects

The locality effects of garbage collection can be
roughly divided into three classes:

o Effects on programming style which change the
way data structures are created and manipulated

e Direct effects of the garbage collection process it-

self, and

e Indirect effects of garbage collection, especially
patterns of reallocation of free memory and clus-
tering of live data.

The first of these—effects of programming style—
is poorly understood. In systems with an efficient
garbage collector, programmers are likely to adopt
a programming style that is appropriate to the task
at hand, often an object-oriented or functional ap-
proach. New data objects will be dynamically allo-
cated to hold newly computed data, and the objects
will be discarded when the data are no longer interest-
ing. Ideally, the programmer expresses the computa-
tion in the most natural form, with application-level
data mapping fairly directly onto language-level data
objects.

In contrast, explicit allocation and deallocation of-
ten encourage a distorted programming style where
the programmer reuses language-level objects to rep-
resent conceptually distinct data over time, simply be-
cause it’s too expensive to deallocate an object and
reallocate another one. Similarly, in systems with in-
efficient garbage collection (such as many older Lisp
implementations) programmers often resort to similar
language-level object reuse, for example destructively
side-effecting list structures to avoid allocating new
list elements, or allocating a single large array used to
hold several sets of data over time. Explicit dealloca-
tion often leads to distortions of the opposite variety,
as well—mapping a single conceptual data object onto
multiple language-level objects. Programmers may al-
locate many exira objects to simplify explicit dealloca-
tion. Any module interested in a data structure may
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copy the data structure, so that it can make a local de-
cision as to when its memory can be reclaimed. Such
distortions make it extremely difficult to compare the
locality of garbage collected and non-garbage-collected
systems directly. (Typical studies that attempt to do
so compare use programs written without garbage col-
lection in mind, in both their original form and with
explicit deallocation replaced by garbage collection.
This implicitly hides the effects of distorted program-
ming style, because the garbage collected version of
the program inherits the distortions.)

The second category of locality effects—locality of
the garbage collection process itself—is the one that
usually comes immediately to mind. It is sometimes
quite significant, although it may be the least impor-
tant of the three. For a full garbage collection, all
live data must be traced, and this can interact very
poorly with conventional memory hierarchies. Most
live objects will be touched only once during tracing,
so there will be little temporal locality, i.e., few re-
peated touches to the same data over a short period
of time. On the other hand, there may be considerable
spatial locality—touches to several different nearby ar-
eas of memory (e.g., within the same virtual memory
page) over short periods of time.

The third category of effects is probably the most
important, although its significance is not widely ap-
preciated. The strategy for memory reallocation im-
poses locality characteristics on the way memory is
touched repeatedly, even if the objects themselves die
quickly and are therefore never touched again. This is,
of course, one of the main reasons for generational gar-
bage collection—to reuse a small area of memory (the
youngest generation) repeatedly by allocating many
short-lived objects there. It is also the reason that
activation stacks typically have excellent locality of
reference—near the top of the stack, memory is reused
very frequently by allocating many very short-lived
activation records there. (A generational garbage col-
lector can be seen as imposing a roughly stack-like
memory reuse pattern on a heap, by exploiting the
fact that the lifetime distributions are roughly simi-

lar.)

As pointed out earlier, a simple,
generational garbage collector has very poor locality
if allocation rates are high, simply because too much
memory is touched in any reasonable period of time.
As Ungar has pointed out [Ung84], simply paging out
the resulting garbage (to make room in memory for
new data) would typically be an unacceptable cost
in a high-performance system. A generational gar-

we non-



bage collector restricts the scope of this locality dis-
aster to a manageable area—the youngest generation
or two. This allows the “real” locality characteris-
tics (of repeated access to longer-lived data) to show
up in the older generation(s). Because of this effect,
the overall locality characteristics of garbage collected
systems appear to be roughly comparable to that of
non-garbage collected systems—the youngest genera-
tion filters out most of the heap-allocated data that
might be stack-allocated in other languages.

Direct comparisons are difficult, however, because
of the large number of design choices involved in both
garbage collectors and explicit heap management.

With copying garbage collection, there is obviously
another indirect locality effect—by moving data ob-
jects around in memory, the collector affects the local-
ity of the program’s own accesses—that is, it affects
the mapping between a program’s logical references
to language-level data and the resulting references to
particular memory locations.

This kind of effect is not restricted to copying col-
lection. Noncopying collectors also have considerable
latitude in deciding how to map language-level objects
onto the available free memory. When the program
requests a piece of memory of a given size, the allo-
cator is free to return any suitably-sized piece of free
memory. It is unclear what rules should govern this
decision.37

The importance of different locality effects is, nat-
urally, dependent on the relative size of the data used
by a system and the main memory of the hardware
it runs on. For many systems, the full system heap
fits in main memory, including an editor, a browser,
a compiler, and application code and data; the nor-
mal mode of such systems is to have enough RAM
that programs typically do not page at all. In other
systems, however, the oldest generation or two is too
large to fit in typical main memories, either because
the system itself includes large complex software, or
because application data or code are very large.

In a copying collector, there is therefore a binary
distinction between generations that are effectively
memory-resident and those that are so large they must
truly rely on virtual memory caching. For the former,
which may include the whole system, locality of alloca-
tion and collection are essentially irrelevant to virtual
memory performance—the space cost is the fixed cost

37 This occurs in explicit heap management systems as well, of
course, but it has not been systematically studied there either.
Most studies of explicit techniques have studied fragmentation
and CPU costs, but have ignored effects on caching in hierar-
chical memories.

of keeping everything in RAM. For the latter, in con-
trast, locality at the level of virtual memory may be
crucial.

In a nonmoving collector, the situation is some-
what different—the space cost of the youngest gen-
eration also depends on the degree of fragmentation
and how data from various generations are intermin-
gled in memory. The extent of these problems is not
well understood, but they may be less serious than is

widely believed [Hay91, BZ93, Boe93].

5.2 Locality of Allocation and Short-
lived objects

As noted above, the pattern of allocation often has
the most important effect on locality in a simple col-
lector. In a generational copy collector, this effect
is much reduced from the point of view of virtual
memory—the pages that make up the youngest gener-
ation or two are reused so frequently that they simply
stay in RAM and effectively incur a fixed space cost.
On the other hand, the frequent reuse of the whole
youngest generation may have a deleterious effect on
the next smaller level of the memory hierarchy—high-
speed CPU caches. The cycle of memory reuse has
been made much smaller, but if the cycle does not fit
in cache, the cache will suffer extra misses in much the
same way that main memory does for a simple collec-
tor. The effects of such misses are not as dramatic as
those for virtual memory, however, because the ratio
of cache to main memory speeds is not nearly as large
as the ratio of main memory to disk speeds. Also, in
copying collection at least, the pattern of reallocation
is so strongly sequential that misses can be reduced
considerably by simple prefetching strategies, or even
just the use of large block sizes. On current processors,
the cost appears to be no more than a few percent of
overall run time, even when allocation rates are rela-
tively high. Faster processors may suffer more from
this effects, however, if cache-to-memory bandwidths
do not scale with processor speeds, or if bus bandwidth
is at a premium as in shared-bus multiprocessors.
Zorn has shown that relatively large caches can be
quite effective for generationally garbage-collected sys-
tems [Zor89]. Wilson has shown that the relative sizes
of the cache and the youngest generation are especially
important, the particulars of the cache replacement
policy may be important as well, due to peculiarities
in the access patterns due to reallocation [WLM92].%®

38The effect of associativity is very dependent of the ratio of
cache size to youngest generation size, and lower associativities
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Several researchers have suggested optimizations to
avoid the fetching of garbage data in areas about to
be re-allocated; this can cut cache-to-memory band-
width requirements nearly in half. Koopman et al.
first illustrated this in a functional programming lan-
guage implementation based on combinator reduction
[KLS92], and showed that some conventional cache
designs can achieve this effect.3® Tarditi and Diwan
show that the same effect can be achieved in a more
conventional language implementation using genera-
tional garbage collection, and demonstrate the value
of a cache-to-memory interface supporting high write
rates [DTM93].

The difference in locality between moving and non-
moving collectors does not appear to be large at the
scale of high-speed cache memories—the type of col-
lector is not as important as rate of allocation and the
size of the youngest generation, i.e., how quickly mem-
ory is used, reclaimed and reused in the usual case.
[Zor90] shows that a non-copying collector can have
better locality than a copying collector using semi-
spaces, simply because it only needs a single space
per generation; [WLM92] shows that Ungar’s tech-
nique of using a special creation area can yield similar
benefits at the level of large caches, just as it does
at the level of virtual memory. [WLM92] also shows
that the allocation of variable binding environments
and activation records on the heap can greatly exac-
erbate cache-level locality problems due to a youngest
generation that won’t fit in the cache. This is borne
out by simulation studies of Standard ML of New Jer-
sey [DTM93] on high-performance processors. It sug-
gests that activation information and binding environ-
ments should be allocated on a stack using compile
time analysis [KKR*86] or in a software stack cache
[CHO88, WM89, Kel93]. (Software stack caches can
be used in languages like ML and Scheme, where bind-
ing environments may be captured by first-class proce-
dures and/or activation chains may be captured with
first-class continuations. The cache takes advantage

may actually perform better when the two are nearly equal.

39The essential feature is the use a of a write-allocate policy,
in combination with sub-block placement. Write-allocate means
that if a block is written to without first writing, it is allocated a
block of cache memory, rather than having the write bypass the
cache and simply update the block out in main memory. This
ensures that when objects are allocated (and hence written),
they will be in cache when they are referenced shortly thereafter.
Sub-block placement means that the cache block is divided into
several independent lines which can be valid or invalid in the
cache. This allows writes to one word to avoid triggering a
fetch of the rest of the block. Objects can thus be allocated
and initialized without stalling the processor and fetching the
old contents of the storage they occupy.

of the fact that while environments and continuations
can be captured, the vast majority of them are not
and needn’t be put on the heap.)

5.3 Locality of Tracing Traversals

The locality of GC tracing traversals is difficult to
study in isolation, but it appears to have some obvi-
ous characteristics. Most objects in the generation(s)
being collected will be touched exactly once, because
most objects are pointed to by exactly one other ob-
ject [Rov85, DeT90]—typical data structures do not
contain a large number of cycles, and many cycles are
small enough to have little impact on traversal local-
ity.

Given this, the main characteristic of the traversal
is to exhaustively touch all live data, but for the most
part very briefly. There is very little temporal locality
of reference i.e., repeated touching of the same data.
(Most objects are referenced by exactly one pointer at
any given time, and will therefore only be reached once
by the tracing traversal.) The major locality charac-
teristic that can be exploited is the spatial locality of
data structures layouts in memory—if closely-linked
objects are close to each other in memory, touching
one object may bring several others into fast memory
shortly before they are traversed.

Experience with the Xerox PCR system indicates
that even in a non-copying collector (i.e., without
compaction) there is useful locality in objects’ initial
layouts in memory; related objects are often created
and/or die at about the same time, so simple alloca-
tion strategies result in useful clustering in memory.
The PCR collector enhances this by sorting its root
set before traversing data, so that root pointers into
the same area are traversed at about the same time.
This has been observed to significantly reduce paging
during full garbage collections.*°

In a copying collector, it would seem that traver-
sals usually have good spatial locality, in that objects
are typically organized by the traversal ordering when
they are first copied, and then are traversed in the
same order by subsequent traversals. (At the first
traversal, of course, the match between objects’ ini-
tial allocation layout and the traversal order may also
be significant.)

Because of the high spatial locality and low tem-
poral locality, it may be desirable to limit the mem-
ory used by a tracing traversal, to avoid needlessly
displacing the contents of memory by large amounts

40Carl Hauser, personal communication 1991.
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of data that are only briefly touched during tracing
[Wil90, Bak91la]. Incremental tracing may yield some
of the same benefit, by allowing the mutator to touch
data during the tracing phase, keeping the most active
data in fast memory.*!

5.4 Clustering of Longer-Lived Ob-
jects

Several studies have addressed copying collection’s in-
direct effect on locality—i.e., the effect of reorganizing
the data which are subsequently accessed by the run-
ning program.

5.4.1 Static Grouping

Stamos [Sta82, Sta84] Blau [Bla83] studied the ef-
fects of using different copying traversal algorithms
to reorganize long-lived system data and code in
Smalltalk systems. While these algorithms reorganize
data during program execution (i.e., at garbage col-
lection time), they are referred to as static grouping
algorithms because they reorganize data according to
how objects are linked at the time garbage collection
occurs—clustering is not based on the dynamic pat-
tern of the program’s actual accesses to data objects.
Both studies concluded that depth-first reorganiza-
tion was preferable to breadth-first reorganization, but
not by a large margin; there is useful locality infor-
mation in the topology of data structures, but any
reasonable traversal will do a decent job of organizing
the data. (Breadth- and depth-first traversals both
dramatically outperform a random reorganization.)
Wilson et al. performed a similar study for a Lisp
system [WLM91], and showed that traversal algo-
rithms can make an appreciable difference. The most
important difference in those experiments was not be-
tween traversal algorithms per se, however, but in how
large hash tables were treated. System data are often
stored in hash tables which implement large variable
binding environments, such as a global namespace, or
a package. Hash tables store their items in pseudo-
random order, and this may cause a copying collec-
tor to reach and copy data structures in a pseudo-
random fashion. This greatly reduces locality, but
is easy to avoid by treating hash tables specially.*

41This benefit may not be large relative to the additional
space cost of incremental collection—the deferred reuse of mem-
ory that can’t be reclaimed until the end of the incremental
tracing phase.

420ne technique is to modify the hash tables’ structure to
record the order in which entries are made, or impose some
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Once hash tables are treated properly, further locality
gains can be made by using an algorithm that clusters
data structures hierarchically. (Similar results were
reported for the Symbolics Lisp Machine system, in a
master’s thesis by D.L. Andre [And86]. While those
experiments were not particularly well-controlled, the
results were strikingly positive, and this is particu-
larly significant because the results were obtained for
a large, commercial system.)

5.4.2 Dynamic Reorganization

In 1980, White proposed a system in which garbage
collection was deferred for long periods of time, but
in which Baker’s read-barrier incremental copier was
enabled to copy data for its locality effects [Whi80];
the goal was not to reclaim empty space, but instead
to simply cluster the active data so that it could be
kept in fast memory. One interesting property of this
scheme is that it reorganizes data in the order in which
they are touched by the mutator, and if subsequent
access patterns are similar, it should greatly improve
locality.

This scheme is impractical in its original form (be-
cause the sheer volume of garbage would swamp the
write bandwidth of typical disks if memory were not
reclaimed [Ung84]), but the same basic idea has been
incorporated into the garbage collector of the Texas
Instruments Explorer Lisp machines [Cou88, Joh91].
This collector avoids performing exhaustive back-
ground scavenging until toward the end of the gar-
bage collection cycle, to enhance the odds that objects
will be reached first by the mutator, and copied in a
locality-enhancing order.

A similar approach has been used in simulations by
the MUSHROOM project at the University of Manch-
ester [WWHS87]. Rather than relying on the garbage
collector, however, this system is triggered by cache
misses; it can therefore respond more directly to the
locality characteristics of a program, rather than to
the interaction between the program and the garbage
collector.

Unfortunately, such schemes rely on specialized
hardware to be worthwhile. The Explorer system ex-
ploits Lisp machines’ hardware support for a Baker-
style read barrier, and the MUSHROOM system is

other nonrandom ordering, and then modify the collector to
use this information to order its examination of the entries.
Another technique is to make hash tables indirect indexes into
an ordered array of entries; this has the advantage that it can be
implemented without modifying the collector, and can therefore
be used for user-defined table structures.



based on a novel “object-oriented” architecture.

Wilson [Wil91] casts these techniques as a form
of adaptive prefetching, and argues that as memo-
ries continue to grow, such fine-grained reorganiza-
tion may be overkill; reorganization of virtual memory
pages within larger units of disk transfer may yield
good results on stock hardware. (This is supported
by data such as those from the LOOM object-oriented
virtual memory for Smalltalk [Sta82], which show that
finer-grained caching strategies are helpful primarily
when memories are very small. As memories get
larger, the optimal unit of caching gets larger as well,
and pagewise schemes tend to work roughly as well
as objectwise schemes.) Wilson also argues that the
improvements due to fine-grained reorganization may
be mostly due to deficiencies in the static-graph algo-
rithms used for comparison—in particular, treatment
of large hash tables. However, Llames has reported
[Lla91] that dynamic reorganization can significantly
improve locality, even after roots are treated appro-
priately and a good background scavenging traversal
is used.*3

5.4.3 Coordination with Paging

Several systems have coordinated the garbage collec-
tor with the virtual memory system to improve paging
performance.

The Symbolics Lisp machines have had perhaps the
most comprehensive coordination of garbage collec-
tion with virtual memory. The Symbolics allocator
could notify the virtual memory system when a page
no longer contained any useful data, allocate pages
of virtual memory without paging their old (garbage)
contents into memory when the page was first touched.

Virtual memory cooperation was also used in the
intergenerational pointer recording mechanism. Be-
fore paging out a page holding pointers to younger
generations, the page was scanned and the intergen-
erational pointers found [Moo84]. This allowed the
garbage collector to avoid paging in data just to scan
them for pointers into younger generations. Virtual
memory mapping techniques were also used to opti-
mize the copying of large objects—rather than actu-
ally copying the data within a large object, the pages
holding the data could simply be mapped out of the
old range of virtual addresses and into the new range

[Wit91].

43Llames added dynamic grouping to Moon'’s Ephemeral Gar-
bage Collector, which uses the static grouping techniques de-

scribed in [And86].
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More recently, microkernel operating systems have
offered the ability to modify virtual memory policies
without actually modifying the kernel. The kernel
calls user-specified routines to control the paging of
a process, rather than hard-coding the entire paging
policy into the kernel itself. In the Mach system, for
example external pager processes can be used to con-
trol paging activity; this feature has been used to re-
duce paging for Standard ML of New Jersey in ways
similar to those used in the Symbolics system [Sub91].

6 Low-level Implementation Is-
sues

So far, we have mostly discussed basic issues of gar-
bage collector design, and basic performance tradeoffs.
In addition to these primary considerations, a garbage
collector designer is faced with many design choices
which can have a significant impact on the ultimate
performance of the system, and on how easily the gar-
bage collector can be integrated with other compo-
nents of the system. In this section we discuss these
low-level implementation questions in more detail.

6.1 Pointer Tags and Object Headers

For most of this paper, we have assumed that pointers
are tagged with small tags and that pointed-to objects
have header fields that encode more specific type in-
formation; this specific type information can be used
to determine objects’ layouts, including the locations
of embedded pointer fields. This is the most common
scheme in dynamically-typed languages such as Lisp
and Smalltalk. It is common in such languages that
objects are divided into two major categories: objects
that can be stored within a machine word as tagged
immediate values, and objects which are allocated on
the heap and referred to via pointers. Heap-allocated
objects are often further divided into two categories:
those which contain only tagged values (immediates
and pointers) which must be examined by the collec-
tor to find the pointers, and those which contain only
nonpointer fields which can be ignored by the garbage
collector.

Another possibility is that each field contains both
the object (if it’s a small immediate value) or pointer,
and the detailed type information. This generally re-
quires fields to be two words—one word long enough
to hold a raw pointer or raw immediate, and another
to hold a bit pattern long enough to encode all of the
types in the system. Generally, a whole word is used



for the latter field, because of alignment constraints
for load and store operations.** Despite the waste of
space, this scheme may be attractive on some archi-
tectures, especially those with wide buses.

For a language with a static type system, still an-
other possibility is that all objects have headers, and
that pointer fields contain no tags. (This requires a
static type system which ensures that immediate val-
ues can’t be stored in the same fields as pointers—if
they could, it would require a tag to tell the differ-
ence.) Simply knowing which fields of objects may
contain pointers is sufficient, if the pointed-to ob-
jects have headers to decode their structure. Some
dynamically-typed systems use this representation as
well, and avoid having immediate values within a
word—even short integers are represented as objects
with headers.*®

If strictly static typing is used, even the headers
can be omitted—once a pointer field is found, and the
type of the pointer is known, the type of the object it
points to is obvious [App89a, Gol91]. To allow trac-
ing traversals, it is only necessary that the types of
the root pointers (e.g., local variables in an activation
stack) be known. (This can be accomplished in sev-
eral ways, as we will explain later.) From there, we
can determine the types of their referents, and thus
their referents’ pointer fields, and so on transitively.
Still, some systems with static typing put headers on
objects anyway, because the cost is not that large and
it simplifies some aspects of the implementation.*®

The choice of tag and pointer schemes is usually
made with some regard to garbage collection, but
most often the main consideration is making nor-
mal program operations efficient. Tagging schemes
are usually chosen primarily to make type dispatch-
ing, arithmetic operations, and pointer dereferencing
as fast as possible; which scheme is best depends
largely on the language semantics and the strategy
for ensuring that the most frequent operations are fast
[KKR*86, GG86, SH87, Ros88, Gud93].

In some systems, individual objects do not have
headers, and type information is encoded by segre-
gating objects of particular types into separate sets of
pages. This “big bag of pages” or BiBOP technique
associates types with pages, and constrains the allo-

44On many architectures, normal loads and stores must be
aligned on word boundaries, and on others there is a time
penalty for unaligned accesses.

45This typically requires clever implementation strategies to
optimize away the heap allocation of most integers [Yua90a].

46For example, if using page marking or card marking for
generational collection, headers make it much simpler to scan
pages.

cator to allocate objects in the appropriate pages. A
type test requires masking and shifting a pointer to
derive the page number, and a table lookup to find
the type descriptor for objects in that page. BiBOP
encoding can save space by letting a tag per page suf-
fice to encode the types of many objects.

Another variation on conventional tagging schemes
is to avoid putting object headers directly on the ob-
jects, and to store them in a parallel array; this may
have advantages for locality of reference by separating
out the data relevant to normal program operation
from those that are only of interest to the collector
and allocator.

6.2 Conservative Pointer Finding

An extreme case of catering to other aspects of a lan-
guage implementation is conservative pointer-finding,
which is a strategy for coping with compilers that
don’t offer any support for runtime type identifica-
tion or garbage collection [BW88].47 In such a system,
the collector treats anything that might be a pointer
as a pointer—e.g., any properly-aligned bit pattern
that could be the address of an object in the heap.
The collector may mistake other values (such as an
integer with the same bit pattern) for pointers, and
retain objects unnecessarily, but several techniques
can be used to make the probability of such mistakes
very small. Surprisingly, these techniques are effec-
tive enough that most C programs can be garbage
collected fairly efficiently, with little or no modifica-
tion [Boe93]. This simplifies the garbage collection of
programs written without garbage collection in mind,
and programs written in multiple languages, some of
which are uncooperative [WDH89].

(Making such a collector generational requires spe-
cial techniques, due to the lack of compiler cooperation
in implementing a write barrier to detect intergenera-
tional pointers. Virtual memory dirty bits or access-
protection traps can be used to detect which pages
are written to, so that they can be scanned at collec-
tion time to detect pointers into younger generations
[DWH*90].)

Conservative pointer finding imposes additional
constraints on the garbage collector. In particular, the
collector is not free to move objects and update poin-
ters, because a non-pointer might be mistaken for a
pointer and mistakenly updated. (This could result in

47These techniques are usually associated with Boehm and
his associates, who have developed them to a high degree, but
similar techniques appear to have been used earlier in the Kyoto
Common Lisp system and perhaps elsewhere.
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mysterious and unpredictable changes to nonpointer
data like integers and character strings.) Conservative
collectors therefore can’t use a straightforward copy-
ing traversal algorithm.

Conservative pointer finding can be combined with
other techniques to cope with language implementa-
tions that are only partly cooperative. For example,
Barlett’s and Detlefs’ “mostly-copying” collectors use
headers to decode fields of objects in the heap, but
rely on conservative techniques to find pointers from
the activation stack [Bar88, Det91]. This supports
copying techniques that relocate and compact most
(but not all) objects. Objects conservatively identi-
fied as being pointed to from the stack are “pinned”
in place, and cannot be moved.*®

The choice of conservative stack scanning and more
precise heap tracing is often reasonable, because it is
usually easier to retrofit object headers into a language
than it is to modify the compiler to make stack frame
formats decodable. Headers can be added to objects
by a heap allocation routine, which may simply be
a library routine that can be changed or substituted
easily. Compilers often record enough information to
decode record layouts, for debugging purposes, and
that information can be captured and massaged into
runtime type identification for heap-allocated objects
[WJ93].

Conservative pointer-finding can be defeated by
language-level facilities such as the ability to cast poin-
ters to integers, destroy the original pointer, and per-
form arbitrary arithmetic on the integer value. If
the original value is then restored and cast back to a
pointer, the referred-to object may no longer exist—
the garbage collector may have reclaimed the object
because it couldn’t tell that the integer value “pointed
to” the object, even when viewed as a pointer value.
Fortunately, most programs do not perform this se-
quence of operations—they may cast a pointer to an
integer, but the original pointer is likely to still be
present, and the object will therefore be retained.

Compiler optimizations can perform similar opera-
tions on pointers, and this is unfortunately harder for
the programmer to avoid—the compiler may use alge-
braic transformations on pointer expressions, disguis-
ing the pointers, or they may perform operations on

48Such objects are pinned in place in memory, but can be
advanced to an older generation by changing the set to which
a page belongs—that is, objects belong to pages, and pages
belong to generations, but an entire page can be moved to a
different generation simply by changing the tables that record
which pages belong to which generations. In essence, objects’
ages are encoded using something like a BiBOP tagging scheme.

52

subword parts of a pointer, with temporary inconsis-
tencies in the state of the pointer. While most compil-
ers don’t perform these optimizations very often, they
do occur, and a few compilers do them regularly. For
most compilers, it is sufficient to turn off the highest
levels of optimization to avoid such pointer-mangling
optimizations, but this is not reliable across compil-
ers, and typically costs a few percent in runtime effi-
ciency due to missed optimizations. Since most com-
pilers do not provide the ability to selectively turn
off only the optimizations that are troublesome for
garbage collectors, it is usually necessary to turn off
several optimizations, i.e., the “high level” optimiza-
tions. To avoid this problem, garbage collector design-
ers have proposed a set of constraints that compilers
can preserve to ensure that garbage collection is pos-
sible; these constraints do not require major changes
to existing compilers [Boe91, BCI1].

Similarly, programming guidelines have been pro-
posed to ensure that programmers in C4++ avoid con-
structions that make correct garbage collection im-
possible [ED93]; by programming in a very slightly
restricted subset of C4++, it is possible to ensure that
a cooperative compiler can support correct garbage
collection. By using a slightly more restricted (“safe”)
subset of C++, it is possible to ensure that even buggy
programs do not break the basic memory abstractions
and produce hard-to-diagnose errors.

Some people object to conservative pointer-finding
techniques because they are known not to be
“correct” —it is possible, for example, for an integer
to be mistaken for a pointer, causing garbage to be
retained. In the worst case, this may cause consider-
able garbage to go unreclaimed, and a program may
simply run out of memory and crash. Advocates of
conservative pointer-finding counter that the proba-
bility of such an occurrence can be made very small,
and that such errors are much less likely than fatal er-
rors due to programmers’ mistakes in explicit heap
management. In practice, therefore, the use of an
“incorrect” technique may be better than having pro-
grammers write programs that are even less correct.
In the long run, it is hoped, conservative pointer find-
ing will make garbage collection widely usable, and
once it’s widely used, compiler vendors will provide
some degree of support for more precise techniques.



6.3 Linguistic Support and Smart

Pointers

Another approach to retrofitting garbage collection
into existing systems is to use the extension facili-
ties provided by the language, and implement gar-
bage collection within the language itself. The most
common form of this is to implement a special set of
garbage-collected data types with a restricted set of
access functions that preserve the garbage collector
constraints. For example, a reference-counted data
type might be implemented, and accessor functions
(or macros) used to perform assignments—the acces-
sor functions maintain the reference counts as well as
performing the actual assignments.

A somewhat more elegant approach is to use ex-
tension mechanisms such as operator overloading to
allow normal program operators to be used on gar-
bage collected types, with the compiler automatically
selecting the appropriate user-defined operation for
given operands. In C++4, it is common to define
“smart pointer” classes that can be used with garbage-
collectible classes [Str87], with appropriately defined
meanings for pointer-manipulating operations (such as
* and ->) and for the address-taking operation (&) on
collectible objects. Unfortunately, these user-defined
pointer types can’t be used in exactly the same ways
as built-in pointer types, for several reasons [Ede92].
One reason is that there is no way to define all of the
automatic coercions that the compiler performs auto-
matically for built-in types. Another problem is that
not all operators can be overloaded in this way. C++
provides most, but not all, of the extensibility neces-
sary to integrate garbage collection into the language
gracefully. (It is apparently easier in Ada [Bak93b],
because the overloading system is more powerful and
the builtin pointer types have fewer subtleties which
must be emulated.) Yet another limitation is that it is
impossible to re-define operations on built-in classes,
making it difficult to enhance the existing parts of the
language—only user-defined types can be garbage col-
lected gracefully.

Still another limitation is that garbage collection
is difficult to implement efficiently within the lan-
guage, because it is impossible to tell the compiler
how to compile for certain important special cases
[Det92, Ede92] For example, in C++ or Ada, there
is no way to specialize an operation for objects that
are known at compile time not to be allocated in the
heap.4?

4%Tn C++ terminology, operators can only be specialized on

Recent work in reflective systems has explored lan-
guages with very powerful and regular extension mech-
anisms, and which expose some of the underlying
implementation to allow efficient reimplementation of
existing language features [KdRB91, MN88, YS92].
While most existing reflective languages supply gar-
bage collection as part of the base language, it is possi-
ble to imagine implementing garbage collection within
a small, powerful reflective language. As in any reflec-
tive system, however, it is important to expose only
the most important low-level issues, to avoid limiting
the choices of the base language implementor; this is
an area of active research.

6.4 Compiler Cooperation and Opti-
mizations

In any garbage-collected system, there must be a set of
conventions used by both the garbage collector and the
rest of the system (the interpreter or compiled code),
to ensure that the garbage collector can recognize ob-
jects and pointers. In a conservative pointer-finding
system, the “contract” between the compiler and col-
lector is very weak indeed, but it’s still there—if the
compiler avoids strange optimizations that can defeat
the collector. In most systems, the compiler is much
more cooperative, ensuring that the collector can find
pointers in the stack and from registers.

6.4.1 GC-Anytime vs. Safe-Points Collection

Typically, the contract between the collector and run-
ning code takes one of two forms, which we call the
gc-anytime and safe-points strategies. In a gc-anytime
system, the compiler ensures that running code can be
interrupted at any point, and it will be safe to perform
a garbage collection—information will be available to
find all of the currently active pointer variables, and
decode their formats so that reachable objects can be
found.

In a safe-points system, the compiler only ensures
that garbage collection will be possible at certain
selected points during program execution, and that
these points will occur reasonably frequently and reg-
ularly. In many systems, procedure calls and back-
ward branches are guaranteed to be safe points, en-
suring that the program cannot loop (or recurse) in-
definitely without reaching a safe point—the longest
possible time between safe points is the time to take
the longest noncalling forward path through any pro-

the types of their arguments, not the arguments’ storage class.
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cedure. (Finer-grained responsiveness can be guaran-
teed by introducing intermediate safe points, if neces-
sary.)

The advantage of a safe-points scheme is that the
compiler is free to use arbitrarily complex optimiza-
tions within the unsafe regions between safe points,
and it is not obligated to record the information nec-
essary to make it possible to locate and de-optimize
pointer values.’® One disadvantage of a safe points
scheme is that it restricts implementation strategies
for lightweight processes (threads). If several threads
of control are executing simultaneously in the same
garbage-collected heap, and one thread forces a gar-
bage collection, the collection must wait until all
threads have reached a safe point and stopped.

One implementation of this scheme is to mask hard-
ware interrupts between safe points; a more common
one is to provide a small routine which can handle
the actual low-level interrupt at any time by sim-
ply recording basic information about it, setting a
flag, and resuming normal execution. Compiled code
checks the flag at each safe point, and dispatches to
a high-level interrupt handler if it is set. This intro-
duces a higher-level notion of interrupts, somewhat
insulated from actual machine interrupts—and with a
somewhat longer latency.

With either a safe-points or a gc-anytime strategy,
there are many possible conventions for ensuring that
pointers can be identified for garbage collection; with
a safe-points system, however, the compiler is free to
violate the convention in between safe points.

6.4.2 Partitioned Register Sets vs. Variable

Representation Recording

In many systems, the compiler respects a simple con-
vention as to which registers can be used for holding
which kinds of values. In the T system (using the
Orbit compiler [KKR*86, Kra88]), for example, some
registers are used only for tagged values, and others
only for raw nonpointer values. The pointers are as-
sumed to be in the normal format—direct pointers to
known offset within the object, plus a tag; headers
can thus be extracted from the pointed-to objects by
a simple indexed load instruction.

Other register set partitionings and conventions are
possible. For example, it would be possible to have
registers holding raw pointers, perhaps pointers any-

50 This is particularly important when using a high-level lan-
guage such as C as an intermediate language, and it is un-
desirable or impossible to prevent the C compiler from using
optimizations that mask pointers.

94

where within an object, if the collector ensures that
headers of objects can be derived from them using
alignment constraints. If a non-copying collector is
used, “untraced” registers might be allowed to hold
optimized pointers (which might not actually point
within an object at all, due to an algebraic transforma-
tion), as long as an unoptimized pointer to the same
object is in a “traced” register in a known format.

The main problem with partitioned register sets is
that it reduces the compiler’s freedom to allocate pro-
gram variables and temporaries in whichever registers
are available. Some code sequences might require sev-
eral pointer registers and very few nonpointer regis-
ters, and other code sequences might require the oppo-
site. This would mean that more variables would have
to be “spilled,” i.e., allocated in the stack or heap in-
stead of in registers, and code would run more slowly.

An alternative to partitioned register sets is to give
the compiler more freedom in its use of registers, but
require it to communicate more information to the
garbage collector—i.e., to tell it where the pointers
are and how to interpret them properly. We call this
strategy variable representation recording, because the
compiler must record its decisions about which reg-
isters (or stack variables) hold pointers, and how to
recover the object’s address if the pointer has been
transformed by an optimization. For each range of in-
structions where pointer variable representations dif-
fer, the compiler must emit an annotation. This in-
formation is similar to that required for debugging
optimized code, and most optimizations can be sup-
ported with little overhead. The space requirements
for this additional information (which essentially an-
notates the executable code) may not be negligible,
however, and it may be desirable in some cases to
change the compiler’s code generation strategy slightly
[DMH92].

6.4.3 Optimization of Garbage Collection It-
self

While garbage collectors can be constrained by their
relationship to the compiler and its optimizations, it
is also possible for the compiler to assist in making the
garbage collector efficient. For example, an optimizing
compiler may be able to optimize away unnecessary
or redundant read-or write-barrier operations, or to
detect that a heap object can be safely stack-allocated
instead.

In most generational and incremental algorithms,
the write barrier is only necessary when a pointer is
being stored, but it may not be obvious at compile



time whether a value will be a pointer or not. In
dynamically typed languages, variables may be able
to take on either pointer or nonpointer values, and
even in statically typed languages, pointer variables
may be assigned a null value. Compilers may perform
dataflow analysis which may allow the omission of a
write barrier for more non-pointer assignment opera-
tions. In the future, advanced type-flow analysis such
as that used in the Self compiler [CU89, CU91] may
provide greater opportunities for read and write bar-
rier optimizations.

The compiler may also be able to assist by eliminat-
ing redundant checks or marking when a write barrier
tests the same pointer or marks the same object mul-
tiple times. (To the best of our knowledge, no exist-
ing compilers currently do this.) For this to be pos-
sible, however, the optimizer must be able to assume
that certain things are not changed by the collector in
ways that aren’t obvious at compile time. For exam-
ple, with a gc-anytime collector and multiple threads
of control, a thread could be pre-empted at any time,
and a garbage collection could occur before the thread
is resumed. In such a system, there are fewer opportu-
nities for optimization because the collector can be in-
voked between any two consecutive instructions. With
a safe-points system, however, the optimizer may be
able to perform more optimizations across sequences
of instructions that execute atomically with respect to
garbage collection.

Several researchers have investigated compiler op-
timizations related to heap-allocated structures, both
to detect potential aliasing and to allow heap objects
to be stack allocated when it is possible to infer that
they become garbage at a particular point in a pro-
gram [Sch75a, Sch75b, Hud86, JM81, RM8&8, LHS8,
HPR89, CWZ90, Bak90]. [Cha87] discusses interac-
tions between conventional optimizations and garbage
collection, and when garbage collection-oriented opti-
mizations are safe. These topics are beyond the scope
of this survey, and to the best of our knowledge no
actual systems use these techniques for garbage col-
lection optimizations; still, such techniques may lead
to important improvements in garbage collector per-
formance by shifting much of the garbage detection
work to compile time.

Certain restricted forms of lifetime analysis—for lo-
cal variable binding environments only—can be sim-
ple but effective in avoiding the need to heap-allocate
most variable bindings in languages with closures

[Kra88].
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6.5 Free Storage Management

Nonmoving collectors must deal with the fact that
freed space may be distributed through memory, in-
terspersed with the live objects. The traditional way
of dealing with this is to use one or more free lists,
but it is possible to adapt any of the free storage
management techniques which have been developed
for explicitly-managed heaps [Knu69, Sta80].

The simplest scheme, used in many early Lisp inter-
preters, is to support only one size of heap-allocated
object, and use a single free list to hold the freed items.
When garbage is detected (e.g., during a sweep phase
or when reference counts go to zero), the objects are
simply strung together into a list, using one of the
normal data fields to hold a list pointer.

When generalizing this scheme to support multi-
ple object sizes, two basic choices are possible: to
maintain separate lists for each object size (or ap-
proximate object size), or to keep a single list hold-
ing various sizes of freed spaces. Techniques with
separate lists for different-sized objects include seg-
regated storage and buddy systems [PNTT]. Systems
with a unified free list include sequential fit meth-
ods and bitmapped techniques. An intermediate strat-
egy 1s to use a single data structure, but use a tree
or similar structure sorted by the sizes (and/or ad-
dresses) of the free spaces [Ste83] to reduce search
times. Most of these systems and several hybrids
(e.g., [BBDT84, OA85, WW88, GZ93]) are already de-
scribed in the literature on memory management, and
we will not describe them here. An exception to this
is bitmapped memory management, which has been
used in several garbage collectors, but is not usually
discussed in the literature.

Bitmapped memory management simply maintains
a bitmap corresponding to units of memory (typically
words, or pairs of words if objects are always aligned
on two-word boundaries), with the bit’s value indicat-
ing whether the unit is in use or not. The bitmap is
updated when objects are allocated or reclaimed. The
bitmap can be scanned to construct a free list (as in
[BDS91]) or it can be searched at allocation time in
a manner analogous to the search of a free list in a
sequential fit algorithm.

6.6 Compact Representations of Heap
Data

Representations of heap data are often optimized for
speed, rather than for space. In dynamically typed
languages, for example, most fields of most objects



are typically of a uniform size, large enough to hold a
tagged pointer. Pointers, in turn, are typically repre-
sented as full-size virtual addresses in a flat (nonseg-
mented) address space. Much of this space is “wasted”
in some sense, because many nonpointer values could
be represented in fewer bits, and because pointers typ-
ically contain very little information due to limited
heap sizes and locality of reference.

At least two mechanisms have been developed to ex-
ploit the regularities in data structures and allow them
to be stored in a somewhat compressed form most of
the time, and expanded on demand when they are
operated on. One of these is a fine-grained mecha-
nism called cdr coding, which is specific to list cells
such as Lisp cons cells [Han69, BC79, LH86]. The
other is compressed paging, a more general-purpose
mechanism that operates on virtual memory pages
[Wil91, Dou93, WB94]. Both mechanisms are invis-
ible at the language level.

Cdr-coding was used in many early Lisp systems,
when random-access memory was very expensive. Un-
fortunately, it tended to be rather expensive in CPU
time, because the changeable representations of list
complicate basic list operations. Common operations
such as CDR require extra instructions to check to
see what kind of list cell they are traversing—is it a
normal cell, or one that has been compressed?

The compressed representation of a list in a cdr-
coded system is really an array of items correspond-
ing to the items of the original list. The cdr-coding
system works in concert with the garbage collector,
which linearizes lists and packs consecutive items into
arrays holding the CAR values (list items); the CDR
values—the pointers that link the lists—are omitted.
To make this work, it is necessary to store a bit some-
where (e.g., a special extra bit in the tag of the field
holding the CAR value) saying that the CDR value
is implicitly a pointer to the next item in memory.
Destructive updates to CDR values require the gen-
eration of actual cons cells on demand, and the for-
warding of references from the predecessor part of the
array.

This scheme is really only worthwhile with special
hardware and/or microcoded routines, as found on
Lisp Machines. On current general-purpose proces-
sors, it is seldom worth the time for the savings that
can be gained. (Roughly half the data in a Lisp sys-
tem consists of cons cells, so compressing them from
two words to one can only save about 25% at best.)

More recently, compressed paging has been proposed
as a means of reducing memory requirements on stock
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hardware. The basic idea is to devote some fraction of
main memory to storing pages in a compressed form,
so that one main memory page can hold the data for
several virtual memory pages. Normal virtual memory
access-protection hardware is used to detect references
to compressed pages, and trap to a routine that will
uncompress them. Once touched, a page is cached in
normal (uncompressed) form for a while, so that the
program can operate on it. After a page has not been
touched for some time, it is re-compressed and access
protected. The compression routine is not limited to
compressing CDR fields—it can be designed to com-
press other pointers, and non-pointer data (such as
integers and character strings, or executable code).

In effect, compressed paging adds a new level to the
memory hierarchy, intermediate in cost between nor-
mal RAM and disk. This may not only decrease over-
all RAM requirements, but actually improve speed
by reducing the number of disk seeks. Using simple
and fast (but effective) compression algorithms, heap
data can typically be compressed by a factor of two
to four—in considerably less time than it would take
to do a disk seek, even on a relatively slow processor
[WB94]. As processor speed improvements continue to
outstrip disk speed improvements, compressed paging
becomes increasingly attractive.

7 GC-related Language Fea-
tures

The main use of garbage collection is to support the
simple abstraction that infinite amounts of uniform
memory are available for allocation, so that objects
can simply be created at will and can conceptually
“live forever”. Sometimes, however, it is desirable to
alter this view. It is sometimes desirable to have poin-
ters which do not prevent the referred-to objects from
being reclaimed, or to trigger special routines when an
object is reclaimed. It can also be desirable to have
more than one heap, with objects allocated in different
heaps being treated differently.

7.1 Weak Pointers

A simple extension of the garbage collection abstrac-
tion is to allow programs to hold pointers to objects
without those pointers preventing the objects from be-
ing collected. Pointers that do not keep objects from
being collected are known a weak pointers, and they
are useful in a variety of situations. One common ap-
plication is the maintenance of tables which make it



possible to enumerate all of the objects of a given kind.
For example, it might be desirable to have a table of
all of the file objects in a system, so that their buffers
could be flushed periodically for fault tolerance. An-
other common application is the maintenance of col-
lections of auxiliary information about objects, where
the information alone is useless and should not keep
the described objects alive. (Examples include prop-
erty tables and documentation strings about objects—
the usefulness of the description depends on the de-
scribed object being otherwise interesting, not vice
versa.)

Weak pointers are typically implemented by the use
of a special data structure, known to the garbage col-
lector, recording the locations of weak pointer fields.
The garbage collector traverses all other pointers in
the system first, to determine which objects are reach-
able via normal paths. Then the weak pointers are tra-
versed; if their referents have been reached by normal
paths, the weak pointers are treated normally. (In a
copying collector, they are updated to reflect the new
location of the object.) If their referents have not been
reached, however, the weak pointers are treated spe-
cially, typically replaced with a nonpointer value (such
as null) to signal that their referents no longer exist.

7.2 Finalization

Closely related to the notion of weak pointers is the
concept of finalization, i.e., actions that are performed
automatically when an object is reclaimed. This is es-
pecially common when an object manages a resource
other than heap memory, such as a file or a network
connection. For example, it may be important to close
a file when the corresponding heap object is reclaimed
In the example of annotations and documentation, it
is often desirable to delete the description of an object
once the object itself is reclaimed. Finalization can
thus generalize the garbage collector, so that other re-
sources are managed in much the same way as heap
memory, and with similar program structure. This
makes it possible to write more general and reusable
code, rather than having to treat certain kinds of ob-
jects very differently than “normal” objects. (Con-
sider a routine that iterates over a list, applying an
arbitrary function to each item in the list. If file de-
scriptors are garbage collected, the very same iteration
routine can be used for a list of file descriptors as for
a list of heap objects. If the list becomes unreachable,
the garbage collector will reclaim the file descriptors
along with the list structure itself.)

Finalization is typically implemented by marking fi-
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nalizable objects in some way and registering them in
a data structure much like that used for weak poin-
ters. (They may in fact use the same data structure.)
Rather than simply nilling the pointers if the objects
aren’t reached by the primary traversal, however, the
pointers are recorded for special treatment after the
collection is finished. After the collection is complete
and the heap is once again consistent, the referred-to
objects have their finalization operations invoked.

Finalization is useful in a variety of circumstances,
but it must be used with care. Because finalization oc-
curs asynchronously—i.e., whenever the collector no-
tices the objects are unreachable and does something
about it—it is possible to create race conditions and
other subtle bugs. For a more thorough discussion of
both weak pointers and finalization, see [Hay92].

7.3 Multiple
Heaps

Differently-Managed

In some systems, a garbage collected heap is provided
for convenience, and a separate, explicitly-managed
heap is provided to allow very precise control over the
use of memory.

In some languages, such as Modula-3 [CDG*89] and
an extended version of C++ [ED93], a garbage col-
lected heap coexists with an explicitly-managed heap.
This supports garbage collection, while allowing pro-
grammers to explicitly control deallocation of some
objects for maximum performance or predictability.
Issues in the design of such multiple-heap systems are

discussed in [Del92] and [ED93].

In other systems, such as large persistent or dis-
tributed shared memories, it may also be desirable to
have multiple heaps with different policies for distri-
bution (e.g., shared vs. unshared), access privileges,
and resource management [Mos89, Del92].

Many language implementations have had such fea-
tures internally, more or less hidden from normal pro-
grammers, but there is little published information
about them, and little standardization of program-
mer interfaces. (The terminology is also not stan-
dardized, and these heaps are variously called “heaps,”
“zones,” “areas,” “arenas,” “segments,” “pools,” “re-
gions,”

and so on.)



8 Overall Cost of Garbage Col-
lection

The costs of garbage collection have been studied in
several systems, especially Lisp and Smalltalk sys-
tems. Most of these studies have serious limitations,
however. A common limitation is the use of a slow lan-
guage implementation, e.g., an interpreter, or an inter-
preted virtual machine, or a poor compiler. When pro-
grams execute unrealistically slowly, the CPU costs of
garbage collection appear very low. Another common
limitation of cost studies is the use of “toy” programs
or synthetic benchmarks. Such programs often be-
have very differently from large, real-world applica-
tions. Often, they have little long-lived data, making
tracing collection appear unrealistically efficient. This
may also affect measurements of write barrier costs in
generational collectors, because programs with little
long-lived data do not create many intergenerational
pointers.

Yet another difficulty is that most studies are now
somewhat dated, because of later improvements in
garbage collection implementations. The most valu-
able studies are therefore the ones with detailed statis-
tics about various events, which can be used to infer
how different strategies would fare.

Perhaps the best study to date is Zorn’s investi-
gation of GC cost in a large commercial Common
Lisp system, using eight large programs [Zor89]. Zorn
found the time cost of generational garbage collection
to be 5% to 20%. (We suspect those numbers could
be improved significantly with the use of a fast card-
marking write barrier.) Shaw’s thesis provides similar
performance numbers [Sha88], and Steenkiste’s thesis
contains similar relevant statistics [Ste87].

Zorn has also studied simple non-generational col-
lector using conservative pointer-finding [Zor93]; this
allowed him to study garbage collection using a high-
performance implementation of the C language, and
compare the costs of garbage collection to those of
various implementations of explicit deallocation. Un-
fortunately, the garbage collector used was not state-
of-the art, partly due to the lack of compiler coopera-
tion. Zorn found that, when compared to using a well-
implemented malloc() and free(), programs using
a simple conservative GC used between 0% and 36%
more CPU time, and between 40% and 280% more
memory. Zorn’s test programs were unusually heap
allocation-intensive, however, and the costs would pre-
sumably be lower for a more typical workload. We also
believe these figures could be improved considerably
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with a state-of-the art generational collector and com-
piler cooperation.

Tarditi and Diwan [TD93] studied garbage collec-
tion costs in Standard ML®! of NJ and found the total
time cost of garbage collection between 22% and 40%.
While this is a very interesting and informative study,
we believe these numbers to be unnecessarily high,
due to extreme load on the garbage collector, caused
by allocating tremendous amounts of activation infor-
mation and binding environments on the heap, rather
than on a stack (Sect. 5.2). We also believe their write
barrier could be improved.

Our own estimate of the typical cost of garbage col-
lection in a well-implemented non-incremental gener-
ational system (for a high-performance language imp-
lementation) is that it should cost roughly ten percent
of running time over the cost of a well-implemented
explicit heap management system, with a space cost
of roughly a factor of two in data memory size. (Nat-
urally, increased CPU costs could be traded for re-
duced space costs.) This must be taken as an educated
guess, however, compensating for what we perceive as
deficiencies in existing systems and limitations of the
studies to date.

Clearly, more studies of garbage collection in high-
performance systems are called for, especially for good
implementations of strongly-typed languages.

9 Conclusions and Areas for
Research

We have argued that garbage collection is an essen-
tial for fully modular programming, to allow flexible,
reusable code and to eliminate a large class of ex-
tremely dangerous coding errors.

Recent advances in garbage collection technology
make automatic storage reclamation affordable for use
in high-performance systems. Even relatively sim-
ple garbage collectors’ performance is often compet-
itive with conventional explicit storage management
[App87, Zor93]. Generational techniques reduce the
basic costs and disruptiveness of collection by exploit-
ing the empirically-observed tendency of objects to die
young. Incremental techniques may even make gar-
bage collection relatively attractive for hard real-time
systems.

We have discussed the basic operation of several
kinds of garbage collectors, to provide a framework

51ML is a statically typed, general-purpose mostly-functional
language.



for understanding current research in the field. A key
point is that standard textbook analyses of garbage
collection algorithms usually miss the most important
characteristics of collectors—namely, the constant fac-
tors associated with the various costs, such as write
barrier overhead and locality effects. Similarly, “real-
time” garbage collection is a more subtle topic than is
widely recognized. These factors require garbage col-
lection designers to take detailed implementation is-
sues into account, and be very careful in their choices
of features. Pragmatic decisions (such as the need
to interoperate with existing code in other languages)
may also outweigh small differences in performance.

Despite these complex issues, many systems actu-
ally have fairly simple requirements of a garbage col-
lector, and can use a collector that consists of a few
hundred lines of code. Systems with large, complex
optimizing compilers should have more attention paid
to garbage collection, and use state-of-the-art tech-
niques. (One promising development is the availabil-
ity of garbage collectors written in portable high-level
languages (typically C) and adaptable for use with
various implementations of various languages.5?)

Garbage collector designers must also keep up with
advances in other aspects of system design. The tech-
niques described in this survey appear to be suffi-
cient to provide good performance in most relatively
conventional uniprocessor systems, but continual ad-
vances in other areas introduce new problems for gar-
bage collector design.

Persistent object stores [ABCT83, DSZ90, AM92]
allow large interrelated data structures to be saved in-
definitely without writing them to files and re-reading
them when they are needed again; by automatically
preserving pointer-linked data structures, they relieve
the programmer of tedious and error-prone coding of
input/output routines. Large persistent object stores
can replace file systems for many purposes, but this in-
troduces problems of managing large amounts of long-
lived data. It is very desirable for persistent stores to
have garbage collection, so that storage leaks do not
result in a large and permanent accumulation of un-
reclaimed storage. Garbage collecting a large persis-
tent store is a very different task from garbage col-
lecting the memory of a single process of bounded du-
ration. In effect, a collector for a conventional sys-
tem can avoid the problem of very long-lived data,
because data written to files “disappear” from the col-

52Examples of this include the UMass Garbage Collection
Toolkit [HMDW91] and Wilson and Johnstone’s real-time gar-
bage collector, which has been adapted for use with C++, Eiffel,
Scheme, and Dylan [WJ93].
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lector’s point of view. A persistent store keeps those
data within the scope of garbage collection, offering
the attractive prospect of automatic management of
long-lived data—as well as the challenge of doing it
efficiently.

Parallel computers raise new issues for garbage col-
lectors, as well. It is desirable to make the collector
concurrent, i.e., able to run on a separate processor
from the application, to take advantage of processors
not in use by the application. It is also desirable to
make the collector itself parallel, so that it can be sped
up to keep up with the application. Concurrent collec-
tors raise issues of coordination between the collector
and the mutator which are somewhat more difficult
than those raised by simple incremental collection.
Parallel collectors also raise issues of coordination of
different parts of the garbage collection process, and
of finding sufficient parallelism, despite potential bot-
tlenecks due to the topologies of the data structures
being traversed.

Distributed systems pose still more problems
[AMR92]; the limitations on parallelism are partic-
ularly severe when the collection process must pro-
ceed across multiple networked computers, and com-
munication costs are high. In large systems with
long-running applications, networks are typically un-
reliable, and distributed garbage collection strategies
for such systems—Ilike the applications running on
them—must be robust enough to tolerate computer
and network failures.

In large persistent or distributed systems, data in-
tegrity is particularly important; garbage collection
strategies must be coordinated with checkpointing and
recovery, both for efficiency and to ensure that the col-

lector itself does not fail [Kol90, Det91, ONG93].

As high-performance graphics and sound capabil-
ities become more widely available and economical,
computers are likely to be used in more graphical and
interactive ways. Multimedia and virtual reality ap-
plications will require garbage collection techniques
that do not impose large delays, making incremen-
tal techniques increasingly desirable. Increasing use
of embedded microprocessors makes it desirable to fa-
cilitate programming of hard real-time applications,
making fine-grained incremental techniques especially
attractive.

As computer systems become more ubiquitous, net-
worked, and heterogeneous, it is increasingly desirable
to integrate modules which run on different comput-
ers and may have been developed in extremely differ-
ent programming languages; interoperability between



diverse systems is an important goal for the future,
and garbage collection strategies must be developed
for such systems.

Garbage collection is applicable to many current

general-purpose and specialized programming sys-
tems, but considerable work remains in adapting it

to new, ever-more advanced paradigms.

Acknowledgments
References
[ABCt83] M.P. Atkinson, P.J. Bailey, K.J. Chisholm,

[AELSS]

[AM92]

[AMR92]

[And86]

[APS7]

[App8T]

[App89a]

[App89b]

P. W. Cockshott, and R. Morrison. An ap-
proach to persistent programming. Computer
Journal, 26(4):360-365, December 1983.

Andrew W. Appel, John R. Ellis, and Kai
Li. Real-time concurrent garbage collection
on stock multiprocessors. In Proceedings of
the 1988 SIGPLAN Conference on Program-
ming Language Design and Implementation
[PLD88], pages 11-20.

Antonio Albano and Ron Morrison, editors.
Fifth International Workshop on Persistent
Object Systems, San Miniato, Italy, Septem-
ber 1992. Springer-Verlag.

Saleh E. Abdullahi, Eliot E. Miranda, and
Graem A. Ringwood. Distributed garbage
collection. In Bekkers and Cohen [BC92],
pages 43-81.

David L. Andre. Paging in Lisp programs.
Master’s thesis, University of Maryland, Col-
lege Park, Maryland, 1986.

S. Abraham and J. Patel. Parallel gar-
bage collection on a virtual memory sys-
In E. Chiricozzi and A. D’Amato,

editors, International Conference on Paral-

tem.

lel Processing and Applications, pages 243—
246, L’Aquila, Italy, September 1987. Elsevier
North-Holland.

Andrew W. Appel. Garbage collection can
be faster than stack allocation. Information
Processing Letters, 25(4):275-279, June 1987.

Andrew W. Appel. Runtime tags aren’t neces-
sary. Lisp and Symbolic Computation, 2:153—
162, 1989.

Andrew W. Appel. Simple generational gar-
bage collection and fast allocation. Soft-
ware Practice and Ezperience, 19(2):171-183,
February 1989.

60

[App91]

[Bak78]

[Bak90]

[Bak91a]

[Bak91b]

[Bak93a]

[Bak93b]

[Bar88]

[Bar89]

[BBDTS84]

[BCT9]

[BCY1]

[BC92]

Andrew W. Appel. Garbage collection. In Pe-
ter Lee, editor, Topics in Advanced Language
Implementation, pages 89-100. MIT Press,
Cambridge, Massachusetts, 1991.

Henry G. Baker, Jr. List processing in real

time on a serial computer. Communications
of the ACM, 21(4):280-294, April 1978.

Henry G. Baker, Jr. Unify and conquer: (gar-
bage, updating, aliasing ...) in functional
languages. In Conference Record of the 1990
ACM Symposium on LISP and Functional
Programming [LFP90], pages 218-226.

Henry G. Baker, Jr. Cache-conscious copy-
ing collection. In OOPSLA 91 Workshop on
Garbage Collection in Object-Oriented Sys-
tems [OOP91]. Position paper.

Henry G. Baker, Jr. The Treadmill: Real-
time garbage collection without motion sick-
In OOPSLA 91 Workshop on Gar-
bage Collection in Object-Oriented Systems
[OOP91]. Position paper. Also appears as
SIGPLAN Notices 27(3):66-70, March 1992.

ness.

Henry G. Baker. Infant mortality and genera-
tional garbage collection. SIGPLAN Notices,
28(4):55-57, April 1993.

Henry G. Baker, Jr. Safe and leakproof
resource management using Ada83 limited
types. Unpublished, 1993.

Joel F. Bartlett. Compacting garbage collec-
tion with ambiguous roots. Technical Report
88/2, Digital Equipment Corporation West-
ern Research Laboratory, Palo Alto, Califor-
nia, February 1988.

Joel F. Bartlett. Mostly-copying garbage col-
lection picks up generations and C++. Tech-
nical Note TN-12, Digital Equipment Corpo-
ration Western Research Laboratory, October
1989.

G. Bozman, W. Buco, T. P. Daly, and W. H.
Tetzlaff. Analysis of free storage algorithms—
revisited. ITBM Systems Journal, 23(1):44-64,
1984.

Daniel G. Bobrow and Douglas W. Clark.
Compact encodings of list structure. ACM
Transactions on Programming Languages and
Systems, 1(2):266-286, October 1979.

Hans-Juergen Boehm and David Chase. A
proposal for garbage-collector-safe compila-
tion. The Journal of C Language Translation,
4(2):126-141, December 1991.

Yves Bekkers and Jacques Cohen, editors. In-
ternational Workshop on Memory Manage-



[BDS91]

[Bla83]

[Bob&0]

[Boe91]

[Boe93]

[Brog4]

[BWsS]

[BZ93]

[CDGY89]

ment, number 637 in Lecture Notes in Com-
puter Science, St. Malo, France, September
1992. Springer-Verlag.

Hans-J. Boehm, Alan J. Demers, and Scott
Shenker. Mostly parallel garbage collection.
In Proceedings of the 1991 SIGPLAN Confer-
ence on Programming Language Design and
Implementation [PLD91], pages 157-164.

Ricki Blau. Paging on an object-oriented per-
sonal computer for Smalltalk. In Proceedings
of the ACM SIGMFETRICS Conference on
Measurement and Modeling of Computer Sys-
tems, Minneapolis, Minnesota, August 1983.
Also available as Technical Report UCB/CSD
83/125, University of California at Berkeley,
Computer Science Division (EECS), August
1983.

Daniel G. Bobrow. Managing reentrant struc-
tures using reference counts. ACM Trans-
actions on Programming Languages and Sys-
tems, 2(3):269-273, July 1980.

Hans-Juergen Boehm. Hardware and oper-
ating system support for conservative gar-
bage collection. In International Workshop
on Memory Management, pages 61-67, Palo
Alto, California, October 1991. IEEE Press.

Hans-Juergen Boehm. Space-efficient conser-
vative garbage collection. In Proceedings of
the 1993 SIGPLAN Conference on Program-
ming Language Design and Implementation
[PLD93], pages 197-206.

Rodney A. Brooks. Trading data space for re-
duced time and code space in real-time collec-
tion on stock hardware. In Conference Record
of the 1984 ACM Symposium on LISP and
Functional Programming [LFP84], pages 108—
113.

Hans-Juergen Boehm and Mark Weiser. Gar-
bage collection in an uncooperative environ-
ment.  Software Practice and Fzxperience,
18(9):807—820, September 1988.

David A. Barrett and Bejamin G. Zorn. Using
lifetime predictors to improve memory alloca-
tion performance. In Proceedings of the 1993
SIGPLAN Conference on Programming Lan-
guage Design and Implementation [PLD93],
pages 187-196.

Luca Cardelli, James Donahue, Lucille Glass-
man, Mick Jordan, Bill Kalso, and Greg Nel-
son. Modula-3 report (revised). Research Re-
port 52, Digital Equipment Corporation Sys-
tems Research Center, November 1989.

61

[CGTT]

[Cha87]

[Cha92]

[Che70]

[CHOSS]

[Cla79]

[ONS83]

[Coh81]

[Col60]

[Cous8]

[CU89]

[CU91]

[CW BS6]

Douglas W. Clark and C. Cordell Green.
An empirical study of list structure in LISP.
Communications of the ACM, 20(2):78-87,
February 1977.

David Chase. Garbage Collection and Other
Optimizations. PhD thesis, Rice University,
Houston, Texas, August 1987.

Craig Chambers. The Design and Imple-
mentation of the SELF Compiler, an Opti-
mizing Compiler for an Object-Oriented Pro-
gramming Language. PhD thesis, Stanford
University, March 1992.

C. J. Cheney. A nonrecursive list compact-
ing algorithm. Communications of the ACM,
13(11):677-678, November 1970.

Will Clinger, Anne Hartheimer, and Erik Ost.
Implementation strategies for continuations.
In Conference Record of the 1988 ACM Sym-
postum on LISP and Functional Program-
ming, pages 124-131, Snowbird, Utah, July
1988. ACM Press.

Douglas W. Clark. Measurements of dynamic
list structure use in Lisp. IEFFE Transactions
on Software Engineering, 5(1):51-59, January
1979.

Jacques Cohen and Alexandru Nicolau. Com-
parison of compacting algorithms for garbage
collection. ACM Transactions on Program-
ming Languages and Systems, 5(4):532-553,
October 1983.

Jacques Cohen. Garbage
linked data structures. Computing Surveys,
13(3):341-367, September 1981.

George E. Collins. A method for overlapping
and erasure of lists. Communications of the
ACM, 2(12):655-657, December 1960.

Robert Courts. Improving locality of refer-
ence in a garbage-collecting memory manage-
ment system. Communications of the ACM,
31(9):1128-1138, September 1988.

Craig Chambers and David Ungar. Cus-
tomization: Optimizing compiler technology
for Self, a dynamically-typed object-oriented
language. In Proceedings of SIGPLAN 89,
pages 146-160, 1989.

Craig Chambers and David Ungar. Making
pure object-oriented languages practical. In
Paepcke [Pae91], pages 1-15.

Patrick J. Caudill and Allen Wirfs-Brock.
A third-generation Smalltalk-80 implementa-
tion. In Conference on Object Oriented Pro-
gramming Systems, Languages and Applica-
tions (OOPSLA ’86) Proceedings, pages 119—
130. ACM Press, October 1986.

collection of



[CWZ90]

[Daw82]

[DB76]

[Del92]

[DeT90]

[Det91]

[Det92]

[DLM* 78]

[DMH92]

[Dou93]

[DSZ90]

David R. Chase, Mark Wegman, and F. Ken-
neth Zadeck. Analysis of pointers and struc-
In  Proceedings of the 1990 SIG-
PLAN Conference on Programming Language
Design and Implementation, pages 296-310,
White Plains, New York, June 1990. ACM

Press.

tures.

Jeffrey L. Dawson. Improved effectiveness
from a real-time LISP garbage collector. In
Conference Record of the 1982 ACM Sym-
postum on LISP and Functional Program-
ming, pages 159-167, Pittsburgh, Pennsylva-
nia, August 1982. ACM Press.

L. Peter Deutsch and Daniel G. Bobrow.
An efficient, incremental, automatic garbage
collector. Communzications of the ACM,
19(9):522-526, September 1976.

V. Delacour. Allocation regions and imple-
mentation contracts. In Bekkers and Cohen
[BCI2], pages 426-439.

John DeTreville. Experience with concurrent
garbage collectors for Modula-24. Techni-
cal Report 64, Digital Equipment Corpora-
tion Systems Research Center, Palo Alto, Cal-
ifornia, August 1990.

David L. Detlefs. Concurrent, Atomic Gar-
bage Collection. PhD thesis, Dept. of Com-
puter Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, November 1991.
Technical report CMU-CS-90-177.

David L. Detlefs. Garbage collection and run-
time typing as a C+4++ library. In USENIX
C++ Conference [USE92].

Edsger W. Dijkstra, Leslie Lamport, A. J.
Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in
cooperation. Communications of the ACM,
21(11):966-975, November 1978.

Amer Diwan, Eliot Moss, and Richard Hud-
son. Compiler support for garbage collection
in a statically-typed language. In Proceedings
of the 1992 SIGPLAN Conference on Pro-
gramming Language Design and Implementa-
tion, pages 273-282, San Francisco, Califor-
nia, June 1992. ACM Press.

Fred Douglis. The compression cache: Using
on-line compression to extend physical mem-
ory. In Proceedings of 1993 Winter USENIX
Conference, pages 519-529, San Diego, Cali-
fornia, January 1993.

Alan Dearle, Gail M. Shaw, and Stanley B.
Zdonik, editors. Implementing Persistent Ob-
ject Bases: Principles and Practice (Proceed-
ings of the Fourth International Workshop on

62

[DTM93]

[DWH'90]

[ED93]

[Ede92]

[EV91]

[FY69]

[GC93]

[GGS6]

[Gol91]

[Gre84]

Persistent Object Systems), Martha’s Vine-
yvard, Massachusetts, September 1990. Mor-
gan Kaufman.

Amer Diwan, David Tarditi, and Eliot Moss.
Memory subsystem performance of programs
with intensive heap allocation. Submitted for
publication, August 1993.

Alan Demers, Mark Weiser, Barry Hayes,
Daniel Bobrow, and Scott Shenker. Combin-
ing generational and conservative garbage col-
lection: Framework and implementations. In
Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Program-
ming Languages, pages 261-269, San Fran-
cisco, California, January 1990. ACM Press.

John R. Ellis and David L. Detlefs. Safe, ef-
ficient garbage collection for C++. Technical
Report 102, Digital Equipment Corporation
Systems Research Center, 1993.

Daniel Ross Edelson. Smart pointers: They’re
smart, but they’re not pointers. In USENIX
C++ Conference [USE92], pages 1-19. Tech-
nical Report UCSC-CRL-92-27, University of
California at Santa Cruz, Baskin Center for
Computer Engineering and Information Sci-
ences, June 1992.

Steven Engelstad and Jim Vandendorp. Au-
tomatic storage management for systems with
OOPSLA 91
Workshop on Garbage Collection in Object-
Oriented Systems [OOP91]. Position paper.

Robert R. Fenichel and Jerome C. Yochelson.
A LISP garbage-collector for virtual-memory
computer systems. Communications of the
ACM, 12(11):611-612, November 1969.

Edward Gehringer
and Ellis Chang. Hardware-assisted memory
management. In OOPSLA 93 Workshop on
Memory Management and Garbage Collection
[OOP93]. Position paper.

Ralph E. Griswold and Madge T. Griswold.
The Implementation of the Icon Program-
ming Language. Princeton University Press,
Princeton, New Jersey, 1986.

real time constraints. In

Benjamin Goldberg. Tag-free garbage col-
lection for strongly-typed programming lan-
guages. In Proceedings of the 1991 SIGPLAN
Conference on Programming Language De-
sign and Implementation [PLD91], pages 165—
176.

Richard Greenblatt. The LISP machine. In
D.R. Barstow, H.E. Shrobe, and E. Sande-

wall, editors, Interactive Programming Fnuvi-
ronments. McGraw Hill, 1984.



[Gud93]

[GZ93]

[H93]

[Han69]

[Hay91]

[Hay92]

[FH93]

[[792]

[HL93]

[HMDW91]

[HMS92]

David Gudeman. Representing type informa-
tion in dynamically-typed languages. Techni-
cal Report TR93-27, University of Arizona,
Department of Computer Science, Tucson,
Arizona, 1993.

Dirk

Grunwald and Benjamin Zorn. CustoMalloc:
Efficient synthesized memory allocators. Soft-
ware Practice and Ezperience, 23(8):851-869,
August 1993.

Urs Holzle. A fast write barrier for gener-
ational garbage collectors. In OOPSLA 93
Workshop on Memory Management and Gar-
bage Collection [OOP93]. Position paper.

Wilfred J. Hansen. Compact list representa-
tion: Definition, garbage collection, and sys-
tem implementation. Communications of the
ACM, 12(9):499-507, September 1969.

Barry Hayes. Using key object opportunism
to collect old objects. In Paepcke [Pae91],
pages 33—46.

Barry Hayes. Finalization in the garbage
collector interface. In Bekkers and Cohen
[BCI2], pages 277-298.

Antony Hosking and Richard Hudson. Re-
membered sets can also
play cards. In OOPSLAGC [OOP93]. Avail-
able for anonymous FTP from cs.utexas.edu

in /pub/garbage/GC93.

Reed Hastings and Bob Joyce. Purify: Fast
detection of memory leaks and access errors.
In USENIX Winter 1992 Technical Confer-
ence, pages 125-136. USENIX Association,
January 1992.

Lorenz Huelsbergen and James R. Larus. A
concurrent copying garbage collector for lan-
guages that distinguish (im)mutable data. In
Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of
Parallel Programming (PPOPP), pages 73—
82, San Diego, California, May 1993. ACM
Press. Published as SIGPLAN Notices 28(7),
July 1993.

Richard L. Hudson, J. Eliot B. Moss,
Amer Diwan, and Christopher F. Weight.
A language-independent garbage collector
toolkit. CoINs  Technical Report 91-
47, University of Massachusetts, Ambherst,
MA 01003, September 1991.

Antony L. Hosking, J. Eliot B. Moss, and
Darko Stefanovi¢. A comparative perfor-
mance evaluation of write barrier implemen-
tations. In Andreas Paepcke, editor, Confer-

63

[HPRS9]

[Hud86]

[1J92]

[TMs1]

[Joh91]

[Joh92]

[KdRB91]

[Kel93]

[KKR*86]

ence on Object Oriented Programming Sys-
tems, Languages and Applications (OOP-
SLA ’92), pages 92-109, Vancouver, British
Columbia, October 1992. ACM Press. Pub-
lished as SIGPLAN Notices 27(10), October
1992.

Susan Horwitz, P. Pfeiffer, and T. Reps. De-
pendence analysis for pointer variables. In
Proceedings of the SIGPLAN 89 SIGPLAN
Symposium on Compiler Construction, June

1989. Published as SIGPLAN Notices 24(7).

Paul Hudak. A semantic model of refer-
ence counting and its abstraction. In Con-
ference Record of the 1986 ACM Symposium
on LISP and Functional Programming, pages
351-363, Cambridge, Massachusetts, August
1986. ACM Press.

Niels Christian Juul and Eric Jul. Compre-
hensive and robust garbage collection in a
distributed system. In Bekkers and Cohen
[BC92], pages 103-115.

Neil D. Jones and Steven S. Muchnick. Flow
analysis and optimization of LISP-like struc-
In Steven S. Muchnik and Neil D.
Jones, editors, Program Flow Analysis, pages
102-131. Prentice-Hall, 1981.

tures.

Douglas Johnson. The case for a read barrier.
In Fourth International Conference on Archi-
tectural Support for Programming Languages
and Operating Systems (ASPLOS 1V), pages
96-107, Santa Clara, California, April 1991.

Ralph E. Johnson. Reducing the latency
of a real-time garbage collector. ACM Let-

ters on Programming Languages and Systems,
1(1):46-58, March 1992.

Gregor Kiczales, Jim des Rivieres, and
Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, Massachu-
setts, 1991.

Richard Kelsey. Tail recursive stack dis-
ciplines interpreter. Available
via anonymous FTP from nexus.yorku.ca
in /pub/scheme/txt/stack-gc.ps. Slightly en-
hanced version of Technical Report NU-
CCS93-03, College of Computer Science,
Northeastern University, 1992., 1993.

David A. Kranz, Richard Kelsey, Jonathan
Rees, Paul Hudak, James Philbin, and Nor-
man Adams. ORBIT: An optimizing com-
piler for Scheme. In SIGPLAN Symposium on
Compiler Construction, pages 219-233, Palo
Alto, California, June 1986. Published as
ACM SIGPLAN Notices 21(7), July 1986.

for an



[KLS92]

[Knu69]

[Kol90]

[Kra88]

[Lar77]

[LD87]

[Lee88]

[LFP84]

[LEP90]

[LHS3]

[LHS6]

[LHSS]

[L1a91]

Phillip J. Koopman, Jr., Peter Lee, and
Daniel P. Siewiorek. Cache performance of
combinator graph reduction. ACM Trans-
actions on Programming Languages and Sys-
tems, 14(2):265-297, April 1992.

Donald E. Knuth. The Art of Computer
Programming, volume 1: Fundamental Algo-
rithms. Addison-Wesley, Reading, Massachu-
setts, 1969.

Elliot Kolodner. Atomic incremental garbage
collection and recovery for large stable heap.
In Dearle et al. [DSZ90], pages 185-198.

David A. Kranz. ORBIT: An Opltimizing
Compiler For Scheme. PhD thesis, Yale Uni-
versity, New Haven, Connecticut, February
1988.

R. G. Larson. Minimizing garbage collection
as a function of region size. SIAM Journal on
Computing, 6(4):663—667, December 1977.

Bernard Lang and Francis Dupont. Incremen-
tal incrementally compacting garbage collec-
In SIGPLAN 1987 Symposium on In-
terpreters and Interpretive Techniques, pages
253-263, Saint Paul, Minnesota, June 1987.
ACM Press. Published as SIGPLAN Notices
22(7), July 1987.

Elgin Hoe-Sing Lee. Object storage and in-
heritance for SELF, a prototype-based object-
oriented programming language. Engineer’s
thesis, Stanford University, Palo Alto, Cali-
fornia, December 1988.

Conference Record of the 1984 ACM Sympo-
stum on LISP and Functional Programming,
Austin, Texas, August 1984. ACM Press.

Conference Record of the 1990 ACM Sympo-
stum on LISP and Functional Programming,
Nice, France, June 1990. ACM Press.

Henry Lieberman and Carl Hewitt. A real-
time garbage collector based on the lifetimes
of objects. Communications of the ACM,
26(6):4197429, June 1983.

Kai Li and Paul Hudak. A new list com-
paction method. Software Practice and Fax-
perience, 16(2), February 1986.

James R. Larus and Paul N. Hilfinger. De-
tecting conflicts between record accesses. In
Proceedings of the 1988 SIGPLAN Confer-
ence on Programming Language Design and
Implementation [PLD88], pages 21-34.

Rene Llames. Performance Analysis of Gar-
bage Collection and Dynamic Reordering in a
Lisp System. PhD thesis, Department of Elec-
trical and Computer Engineering, University
of Mllinois, Champaign-Urbana, Illinois, 1991.

tion.

64

[McB63]

[McC60]

[Mey88]

[Min63]

[MN88]

[Moo84]

[Mos89]

[Nil8s]

[NOPH92]

[NRST7]

[NS90]

J. Harold McBeth. On the reference counter
method. Communications of the ACM,
6(9):575, September 1963.

John McCarthy. Recursive functions of sym-
bolic expressions and their computation by
machine. Communications of the ACM,
3(4):184-195, April 1960.

Norman Meyrowitz, editor. Conference on
Object Oriented Programming Systems, Lan-
guages and Applications (OOPSLA ’88) Pro-
ceedings, San Diego, California, September
1988. ACM Press. Published as SIGPLAN
Notices 23(11), November 1988.

Marvin Minsky. A LISP garbage collector al-
gorithm using serial secondary storage. A.l
Memo 58, Massachusetts Institute of Tech-
nology Project MAC, Cambridge, Massachu-
setts, 1963.

Pattie

Maes and Daniele Nardi, editors. Meta-Level
Architectures and Reflection. North-Holland,
Amsterdam, 1988.

David Moon. Garbage collection in a large
Lisp system. In Conference Record of the
1984 ACM Symposium on LISP and Func-
tional Programming [LFP84], pages 235-246.

J. Eliot B. Moss. Addressing large distributed
collections of persistent objects: The Mneme
project’s approach. In Second International
Workshop on Database Programming Lan-
guages, pages 269—-285, Glenedon Beach, Ore-
gon, June 1989. Also available as Techni-
cal Report 89-68, University of Massachusetts
Dept. of Computer and Information Science,
Ambherst, Massachusetts, 1989.

Kelvin Nilsen. Garbage collection of strings
and linked data structures in real time. Soft-
ware Practice and Ezperience, 18(7):613-640,
July 1988.

Scott Nettles, James O’Toole, David Pierce,
and Nicholas Haines. Replication-based in-

cremental copying collection. In Bekkers and
Cohen [BC92], pages 357-364.

S. C. North and J. H. Reppy. Concurrent gar-
bage collection on stock hardware. In Gilles
Kahn, editor, ACM Conference on Functional
Programming Languages and Computer Arch-
ttecture, number 274 in Lecture Notes in
Computer Science, pages 113-133. Springer-
Verlag, September 1987.

Kelvin Nilsen and William J. Schmidt. A
high-level overview of hardware assisted real-

time garbage collection. Technical Report



[NS92]

[OA85]

[ONG93]

[0OP91]

[0OP93]

[Pae91]

[PLDS3]

[PLD91]

[PLD93]

[PN77]

[PS89]

TR 90-18a, Dept. of Computer Science, lowa
State University, Ames, lowa, 1990.

Kelvin Nilsen and William J. Schmidt.
Cost-effective object space management for
hardware-assisted real-time garbage collec-
tion. ACM Letters on Programming Lan-
guages and Systems, 1(4):338-355, December
1992.

R. R. Oldehoeft and S. J. Allan. Adaptive
exact-fit storage management. Communica-
tions of the ACM, 28(5):506-511, May 1985.

James O’Toole, Scott Nettles, and David Gif-
ford. Concurrent compacting garbage collec-
tion of a persistent heap. In Proceedings of the
Fourteenth Symposium on Operating Systems
Principles, Asheville, North Carolina, Decem-
ber 1993. ACM Press. Published as Operating
Systems Review 27(5).

OOPSLA 91 Workshop on Garbage Col-
lection in Object-Oriented Systems, October
1991. Available for anonymous FTP from
cs.utexas.edu in /pub/garbage/GCI1.

OOPSLA °98 Workshop on Memory Man-
agement and Garbage Collection, October
1993. Available for anonymous FTP from
cs.utexas.edu in /pub/garbage/GC93.

Andreas Paepcke, Conference on
Object Oriented Programming Systems, Lan-

editor.

guages and Applications (OOPSLA ’91),
Phoenix, Arizona, October 1991. ACM
Press. Published as SIGPLAN Notices

26(11), November 1991.
Proceedings of the 1988 SIGPLAN Confer-

ence on Programming Language Design and
Implementation, Atlanta, Georgia, June 1988.
ACM Press.

Proceedings of the 1991 SIGPLAN Con-
ference on Programming Language Design
and Implementation, Toronto, Ontario, June
1991. ACM Press. Published as SIGPLAN
Notices 26(6), June 1992.

Proceedings of the 1998 SIGPLAN Confer-
ence on Programming Language Design and
Implementation, Albuquerque, New Mexico,

June 1993. ACM Press.
J. L. Peterson and T. A. Norman. Buddy

systems. Communications of the ACM,
20(6):421-431, June 1977.

C.-J. Peng and Gurindar S. Sohi. Cache
memory design considerations to support lan-
guages with dynamic heap allocation. Tech-
nical Report 860, Computer Sciences Dept.
University of Wisconsin, Madison, Wisconsin,
July 1989.

65

[RM8S8]

[Ros88]

[Rov85]

[Sch75a]

[Sch75b]

[SCN84]

[SH87]

[Sha88]

[Sob83]

[Sta80]

[Sta82]

Christina Ruggieri and Thomas P. Murtagh.
Lifetime analysis of dynamically allocated ob-
jects. In Conference Record of the Fifteenth
Annual ACM Symposium on Principles of
Programming Languages, pages 285-293, San
Diego, California, January 1988. ACM Press.

John R. Rose. Fast dispatch mechanisms for
stock hardware. In Meyrowitz [Mey88], pages
27-35.

Paul Rovner. On adding garbage collection
and runtime types to a strongly-typed, stati-
cally checked, concurrent language. Technical

Report CSL-84-7, Xerox Palo Alto Research
Center, Palo Alto, California, July 1985.

Jacob T. Schwartz. Optimization of very high
level languages—I. Value transmission and its
corollaries. Journal of Computer Languages,
1:161-194, 1975.

Jacob T. Schwartz. Optimization of very high
level languages—II. Deducing relationships of
inclusion and membership. Journal of Com-
puter Languages, 1:197-218, 1975.

W. R. Stoye, T. J. W. Clarke, and A. C.
Norman. Some practical methods for rapid
combinator reduction. In Conference Record
of the 1984 ACM Symposium on LISP and
Functional Programming [LFP84], pages 159-
166.

Peter Steenkiste and John Hennessy. Tags
and type checking in Lisp. In Second In-
ternational Conference on Architectural Sup-
port for Programming Languages and Operat-
ing Systems (ASPLOS II), pages 50-59, Palo
Alto, California, October 1987.

Robert A. Shaw. EFmpirical Analysis of a Lisp
System. PhD thesis, Stanford University, Palo
Alto, California, February 1988. Technical
Report CSL-TR-88-351, Stanford University
Computer Systems Laboratory.

Patrick G. Sobalvarro. A lifetime-based gar-
bage collector for LISP systems on general-
purpose computers. B.S. thesis, Massachu-
setts Institute of Technology EECS Depart-
ment, Cambridge, Massachusetts, 1988.

Thomas Standish. Data Structure Tech-
niques. Addison-Wesley, Reading, Massachu-
setts, 1980.

James William Stamos. A large object-
Grouping strate-
gies, measurements, and performance. Tech-
nical Report SCG-82-2, Xerox Palo Alto Re-
search Center, Palo Alto, California, May

1982.

oriented virtual memory:



[Sta84]

[SteT5]

[Sted3]

[Ste8T]

[Str87]

[Sub91]

[TD93]

[UJT88]

[Ung84]

[USE92]

[Wan89]

[WB94]

James William Stamos.  Static grouping
of small objects to enhance performance of
a paged virtual memory. ACM Transac-
tions on Programming Languages and Sys-

tems, 2(2):155-180, May 1984.

Guy L. Steele Jr. Multiprocessing compacti-
fying garbage collection. Communications of
the ACM, 18(9):495-508, September 1975.

C. J. Stephenson. Fast fits: New methods for
dynamic storage allocation. In Proceedings of
the Ninth Symposium on Operating Systems
Principles, pages 30-32, Bretton Woods, New
Hampshire, October 1983. ACM Press. Pub-
lished as Operating Systems Review 17(5), Oc-
tober 1983.

Peter Steenkiste. Lisp on a Reduced-
Instruction-Set Processor: Characterization
and Optimization. PhD thesis, Stanford Uni-
versity, Palo Alto, California, March 1987.
Technical Report CSL-TR-87-324, Stanford

University Computer System Laboratory.

Bjarne Stroustrup. The evolution of C++4,
1985 to 1987. In USENIX C++ Workshop,
pages 1-22. USENIX Association, 1987.

Indira Subramanian. Managing discardable
pages with an external pager. In USENIX
Mach Symposium, pages 77-85, Monterey,

California, November 1991.
David Tarditi and Amer Diwan. The full

cost of a generational copying garbage collec-
tion implementation. Unpublished, Septem-
ber 1993.

David Ungar and Frank Jackson. Tenuring
policies for generation-based storage reclama-
tion. In Meyrowitz [Mey88], pages 1-17.

David M. Ungar.
ing: A non-disruptive high-performance stor-
age reclamation algorithm. In ACM SIG-
SOFT/SIGPLAN Software Engineering Sym-
postum on Practical Software Development
Environments, pages 157-167. ACM Press,
April 1984. Published as ACM SIGPLAN No-
tices 19(5), May, 1987.

USENIX Association. USENIX C++ Confer-
ence, Portland, Oregon, August 1992.

Generation scaveng-

Thomas Wang. MM garbage collector for
C++. Master’s thesis, California Polytechnic
State University, San Luis Obispo, California,
October 1989.

Paul R. Wilson and V. B. Balayoghan. Com-
pressed paging. In preparation, 1994.

66

[WDHS9]

[WF77]

[WH91]

[Whi8o0]

[Wil90]

[Wil91]

[Wis85]

[Wit91]

[WJ93]

[WLM91]

Mark Weiser, Alan Demers, and Carl Hauser.
The portable common runtime approach to
interoperability. In Proceedings of the Twelfth
Symposium on Operating Systems Principles,
December 1989.

David S. Wise and Daniel P. Friedman. The
one-bit reference count. BIT, 17(3):351-359,
September 1977.

Paul R. Wilson and Barry Hayes. The 1991
OOPSLA Workshop on Garbage Collection in
Object Oriented Systems (organizers’ report).
In Jerry L. Archibald, editor, OOPSLA ’91
Addendum to the Proceedings, pages 63-71,
Phoenix, Arizona, October 1991. ACM Press.
Published as OOPS Messenger 3(4), October
1992.

Jon L. White. Address/memory management
for a gigantic Lisp environment, or, GC con-
sidered harmful. In LISP Conference, pages
119-127, Redwood Estates, California, Au-
gust 1980.

Paul R. Wilson. Some issues and strategies
in heap management and memory hierarchies.
In OOPSLA/ECOOP ’90 Workshop on Gar-
bage Collection in Object-Oriented Systems,
October 1990. Also appears in SIGPLAN No-
tices 23(1):45-52, January 1991.

Paul R. Wilson. Operating system support
for small objects. In International Workshop
on Object Orientation in Operating Systems,
pages 80-86, Palo Alto, California, October
1991. IEEE Press. Revised version to appear
in Computing Systems.

David S. Wise.  Design for a multipro-
cessing heap with on-board reference count-
ing. In Functional Programming Languages
and Computer Architecture, pages 289-304.
Springer-Verlag, September 1985.
Notes in Computer Science series, no. 201.

Lecture

P. T. Withington. How real is “real time” gar-
bage collection? In OOPSLA ’91 Workshop
on Garbage Collection in Object-Oriented
Systems [OOP91]. Position paper.

Paul R. Wilson and Mark S. Johnstone. Truly
real-time non-copying garbage collection. In
OOPSLA ’93 Workshop on Memory Manage-
ment and Garbage Collection [OOP93]. Ex-
panded version of workshop position paper
submitted for publication.

Paul R. Wilson, Michael S. Lam, and
Thomas G. Moher. Effective static-graph re-
organization to improve locality in garbage-
collected systems. In Proceedings of the 1991



[WLM92]

[WM89]

[WW8S]

[WWHS7]

[YS92]

[Yua90a]

[Yua90b]

[Zor89]

[Zor90]

SIGPLAN Conference on Programming Lan-
guage Design and Implementation [PLD91],
pages 177-191. Published as SIGPLAN No-
tices 26(6), June 1992.

Paul R. Wilson, Michael S. Lam,
Thomas G. Moher. Caching considerations
for generational garbage collection. In Con-
ference Record of the 1992 ACM Symposium
on LISP and Functional Programming, pages
32-42, San Francisco, California, June 1992.
ACM Press.

Paul R. Wilson and Thomas G. Moher. De-
sign of the Opportunistic Garbage Collec-
tor. In Conference on Object Oriented Pro-
gramming Systems, Languages and Applica-
tions (OOPSLA ’89) Proceedings, pages 23—
35, New Orleans, Louisiana, 1989. ACM
Press.

Charles B. Weinstock and William A. Wulf.
Quickfit: an efficient algorithm for heap stor-
age allocation. ACM SIGPLAN Notices,
23(10):141-144, October 1988.

Ifor W. Williams, Mario I. Wolczko,
Trevor P. Hopkins. Dynamic grouping in an
object-oriented virtual memory hierarchy. In
FEuropean Conference on Object Oriented Pro-
gramming, pages 87-96, Paris, France, June
1987. Springer- Verlag.

and

and

Akinori Yonezawa and Brian C. Smith, ed-
Reflection and Meta-Level Architec-
ture: Proceedings of the International Work-
shop on New Models for Software Architecture
’92, Tokyo, Japan, November 1992. Research
Institute of Software Engineering (RISE) and
Information-Technology Promotion Agency,
Japan (IPA), in cooperation with ACM SIG-
PLAN, JSSST, IPSJ.

itors.

Taichi Yuasa. The design and implementation
of Kyoto Common Lisp. Journal of Informa-
tion Processing, 13(3), 1990.

Taichi Yuasa. Real-time garbage collection
on general-purpose machines. Journal of Sys-
tems and Software, 11:181-198, 1990.

Benjamin Zorn. Comparative Performance
Evaluation of Garbage Collection Algorithms.
PhD thesis, University of California at Berke-
ley, EECS Department, December 1989.
Technical Report UCB/CSD 89/544.

Benjamin Zorn. Comparing mark-and-sweep
and stop-and-copy garbage collection. In
Conference Record of the 1990 ACM Sympo-
stum on LISP and Functional Programming
[LFP90], pages 87-98.

67

[Zor93]

Benjamin Zorn. The measured cost of conser-
vative garbage collection. Software—Practice
and Ezperience, 23(7):733-756, 1993.



