
Domain Theory:

An Introduction

Robert Cartwright

Rebecca Parsons

Rice University

This monograph is an unauthorized revision of “Lectures On A Mathematical Theory
of Computation” by Dana Scott [3]. Scott’s monograph uses a formulation of domains
called neighborhood systems in which finite elements are selected subsets of a master
set of objects called “tokens”. Since tokens have little intuitive significance, Scott has
discarded neighborhood systems in favor of an equivalent formulation of domains called
information systems [4]. Unfortunately, he has not rewritten his monograph to reflect
this change.

We have rewritten Scott’s monograph in terms of finitary bases (see Cartwright [2])
instead of information systems. A finitary basis is an information system that is closed
under least upper bounds on finite consistent subsets. This convention ensures that
every finite answer is represented by a single basis object instead of a set of objects.

1 The Rudiments of Domain Theory

Motivation

Programs perform computations by repeatedly applying primitive operations to data values. The
set of primitive operations and data values depends on the particular programming language.
Nearly all languages support a rich collection of data values including atomic objects, such as
booleans, integers, characters, and floating point numbers, and composite objects, such as arrays,
records, sequences, tuples, and infinite streams. More advanced languages also support functions
and procedures as data values. To define the meaning of programs in a given language, we must first
define the building blocks—the primitive data values and operations—from which computations in
the language are constructed.

Domain theory is a comprehensive mathematical framework for defining the data values and
primitive operations of a programming language. A critical feature of domain theory (and expressive
programming languages like Scheme and ML) is the fact that program operations are also data
values; both operations and values are elements of computational domains.

In a language implementation, every data value and operation is represented by a finite config-
uration of symbols (e.g., a bitstring). But the choice of data representations should not affect the
observable behavior of programs. Otherwise, a programmer cannot reason about the behavior of
programs independent of their implementations.

To achieve this goal, we must abandon finite representations for some data values. The abstract
meaning of a procedure, for example, is typically defined as a function from an infinite domain to an
infinite codomain. Although the graph of this function is recursively enumerable, it does not have
an effective finite canonical representation; otherwise we could decide the equality of recursively
enumerable sets by generating their canonical descriptions and comparing them.

Data values that do not have finite canonical representations are called infinite data values.
Some common examples are functions over an infinite domain, infinite streams, and infinite trees.
To describe an infinite data value, we must use an infinite sequence of progressively better finite
approximations. Each finite approximation obviously has a canonical representation.

We can interpret each finite approximation as a proposition asserting that a certain property is
true of the approximated value. By stating enough different properties (a countably infinite number
in general), every higher order data value can be uniquely identified.

Higher order data domains also contain ordinary finite values. There are two kinds of finite
values.

• First, the finite elements used to approximate infinite values are legitimate data values them-
selves. Even though these approximating elements are only “partially defined”, they can be
produced as the final results fo computations. For example, a tree of the form cons(α, β),
where α and β are arbitrary values, is a data value in its own right, because a computation
yielding cons(α, β) may subsequently diverge without producing any information about the
values α and β.

• Second, higher order domains may contain “maximal” finite elements that do not approximate
any other values. These “maximal” values correspond to conventional finite data objects. For
example, in the domain of potentially infinite binary trees of integers, the leaf consisting of
the integer 42 does not approximate any element other than itself.

In summary, a framework for defining data values and operations must accommodate infinite
elements, partially defined elements, and finite maximal elements. In addition, the framework

1

should support the construction of more complex values from simpler values, and it should support a
notion of computation on these objects. This paper describes a framework—called domain theory—
satisfying all of these properties.

Notation

The following notation is used throughout the paper:

⇒ means logical implication
⇐⇒ means if and only if, used in mathematical formulas
iff means if and only if, used in text
v means approximation ordering
N means the natural numbers

Basic Definitions

To support the idea of describing data values by generating “better and better” approximations, we
need to specify an ordering relation among the finite approximations to data values. The following
definitions describe the structure of the sets of finite approximations corresponding to domains;
these sets of finite approximations are called finitary bases.

Definition 1.1: [Partial Order] A partial order B is a pair 〈B,v〉 consisting of (i) a set B
called the universe and (ii) a binary relation v on the set B called the approximation ordering that
is

• reflexive: ∀x ∈ B[x v x],

• antisymmetric: ∀x, y ∈ B[x v y] and [y v x] implies x = y, and

• transitive: ∀x, y, z ∈ B[x v y] and [y v z] implies x v z.

Definition 1.2: [Upper bounds, Lower bounds, Consistency] Let S be a subset of a partial
order B. An element b ∈ B is an upper bound of S iff ∀s ∈ S s v b. An element b ∈ B is a lower
bound of S iff ∀s ∈ S b v s. S is consistent (sometimes called bounded) iff S has an upper bound.
An upper bound b of S is the least upper bound of S (denoted

⊔
S) iff b approximates all upper

bounds of S. A lower bound b of S is the greatest lower bound of S (denoted uS) iff every lower
bound of S approximates b.

Remark 1.3: Upper bounds are much more important in domain theory than lower bounds.

Definition 1.4: [Directed Subset] A subset S of a partial order B is directed iff every finite
subset of S has an upper bound in S. A directed subset of B is progressive iff it does not contain
a maximum element. A directed subset of B is a chain iff it is totally ordered: ∀a, b ∈ Ba v b or
b v a.

Claim 1.5: The empty set ∅ is directed.

Definition 1.6: [Complete Partial Order] A complete partial order , abbreviated cpo, is a
partial order 〈B,v〉 such that every directed subset has a least upper bound in B.

2

Claim 1.7: A cpo has a least element.

Definition 1.8: [Finitary Basis] A finitary basis B is a partial order 〈B,v〉 such that B is
countable and every finite consistent subset S ⊆ B has a least upper bound in B.

We call the elements of a finitary basis B propositions because they can be interpreted as
logical assertions about domain elements. In propositional logic, the least upper bound of a set of
propositions is the conjunction of all the propositions in the set. Since the empty set, ∅, is a finite
consistent subset of B, it has a least upper bound, which is denoted ⊥B. The ⊥ proposition holds
for all domain elements; hence it does not give any “information” about an element.

Example 1.9: Let B = {⊥, 0⊥, 1⊥, 00, 01, 10, 11} where 0⊥ describes strings that start with 0 and
are indeterminate past that point; 00 describes the string that consisting of two consecutive 0’s.
The other propositions are defined similarly. Let v denote the obvious approximation (implication)
relation between propositions. Thus, 0⊥ v 00 and 0⊥ v 01. In pictorial form, the partial order
〈B,v〉 looks like: �� ��00

�� ��01
�� ��10

�� ��11�� ��0⊥
�� ��1⊥�� ��⊥

@ � @ �

HH ��

〈B,v〉 is clearly a partial order. To show that 〈B,v〉 is a finitary basis, we must show that B
is countable and that all finite consistent subsets of B have least upper bounds.

Since B is finite, it is obviously countable. It is easy to confirm that every finite consistent
subset has a least upper bound by inspection. In fact, the least upper bound of any consistent
subset S of B is simply the greatest element of S.1 Thus, 〈B,v〉 is a finitary basis. 2

Example 1.10: Let B = {(n,m) |n,m ∈ N∪{∞}, n ≤ m} where the proposition (n,m) represents
an integer x such that n ≤ x ≤ m. ⊥ in this example is the proposition (0,∞). Let v be defined
as

(n,m) v (j, k) ⇐⇒ n ≤ j and m ≥ k

For example, (1, 10) v (2, 6) but (2, 6) and (7, 12) are incomparable, as are (2, 6) and (4, 8).
It is easy to confirm that B is countable and that 〈B,v〉 is a partial order. A subset S of B is
consistent if there is an integer for which the proposition in S is true. Thus, (2, 6) and (4, 8) are
consistent since either 4, 5, or 6 could be represented by these propositions. The least upper bound
of these elements is (4, 6). In general, for a consistent subset S = {(ni,mi) | i ∈ I} of B, the least
upper bound of S is defined as⊔

S = (max {ni | i ∈ I},min {mi | i ∈ I}) .

Therefore, 〈B,v〉 is a finitary basis. 2

Given a finitary basis B, the corresponding domain DB is constructed by forming all consistent
subsets of B that are “closed” under implication (where a v b corresponds to b ⇒ a and a t b
corresponds to a∧ b). More precisely, a consistent subset S ⊆ B is an element of the corresponding
domain DB iff

1This is a special property of B. It is not true of finitary bases in general.

3

• ∀s ∈ S ∀b ∈ B b v s ⇒ b ∈ S

• ∀r, s ∈ S r t s ∈ S

In DB, there is a unique element Ip corresponding to each proposition p ∈ B: Ip = {b ∈ B | b v p}.
In addition, DB contains elements (“closed” subsets of B) corresponding to the “limits” of all
progressive directed subsets of B. This construction “completes” the finitary basis B by adding
limit elements for all progressive directed subsets of B.

In DB, every element d is represented by the set of all the propositions in the finitary basis B
that describe d. These sets are called ideals.

Definition 1.11: [Ideal] For finitary basis B, a subset I of B is an ideal over B iff

• I is downward closed: e ∈ I ⇒ (∀b ∈ B b v e ⇒ b ∈ I)

• I is closed under least upper bounds on finite subsets (conjunction).

We construct domains as partially ordered sets of ideals.

Definition 1.12: [Constructed Domain] Let B be a finitary basis. The domain DB determined
by B is the partial order 〈D,vD〉 where D is the set of all ideals I over B and vD is the subset
relation. We will frequently write D instead of DB.

The proof of the following two claims are easy; they are left to the reader.

Claim 1.13: The least upper bound of two ideals I1 and I2, if it exists, is found by closing I1∪I2

to form an ideal over B.

Claim 1.14: The domain D determined by a finitary basis B is a complete partial order .

Each proposition b in a finitary basis B determines an ideal consisting of the set of propositions
implied by b. An ideal of this form called a principal ideal of B.

Definition 1.15: [Principal Ideals] For finitary basis B = 〈B,v〉, the principal ideal determined
by b ∈ B, is the ideal Ib such that

Ib = {b′ ∈ B | b′ v b} .

We will use the notation Ib to denote the principal ideal determined by b throughout the monograph.

Since there is a natural one-to-one correspondence between the propositions of a finitary basis
B and the principal ideals over B, the following theorem obviously holds.

Theorem 1.16: The principal ideals over a finitary basis B form a finitary basis under the subset
ordering.

Within the domain D determined by a finitary basis B, the principal ideals are characterized
by an important topological property called finiteness.

Definition 1.17: [Finite Elements] An element e of a cpo D = 〈D,v〉 is finite2 iff for every
directed subset S of D, e =

⊔
S implies e ∈ S. The set of finite elements in a cpo D is denoted D0.

2This property is weaker in general than the corresponding property (called isolated or compact) that is widely
used in topology. In the context of cpos, the two properties are equivalent.

4

The proof of the following theorem is left to the reader.

Theorem 1.18: An element of the domain D of ideals determined by a finitary basis B is finite
iff it is principal.

In D, the principal ideal determined by the least proposition ⊥ is the set {⊥}. This ideal is
the least element in the domain (viewed as a cpo). In contexts where there is no confusion, we will
abuse notation and denote this ideal by the symbol ⊥ instead of I⊥.

The next theorem identifies the relationship between an ideal and all the principal ideals that
approximate it.

Theorem 1.19: Let D be the domain determined by a finitary basis B. For any I ∈ D, I =⊔
{I ′ ∈ D0 | I ′ v I} .

Proof See Exercise 9. 2

The approximation ordering in a partial order allows us to differentiate partial elements from
total elements.

Definition 1.20: [Partial and Total Elements] Let B be a partial order. An element b ∈ B
is partial iff there exists an element b′ ∈ B such that b 6= b′ and b v b′. An element b ∈ B is total
iff for all b′ ∈ B, b v b′ implies b = b′ .

Example 1.21: The domain determined by the finitary basis defined in Example 1.9 consists
only of elements for each proposition in the basis. The four total elements are the principal ideals
for the propositions 00, 01, 10, and 11. In general, a finite basis determines a domain with this
property. 2

Example 1.22: The domain determined by the basis defined in Example 1.10 contains total
elements for each of the natural numbers. These elements are the principal ideals for propositions
of the form (n, n). In this case as well, there are no ideals formed that are not principal. 2

Example 1.23: Let Σ = {0, 1} and Σ? be the set of all finite strings over Σ with ε denoting the
empty string. Σ? forms a finitary basis under the prefix ordering on strings. ε is the least element
in the Σ?. The domain S determined by Σ? contains principal ideals for all the finite bitstrings. In
addition, S contains nonprincipal ideals corresponding to all infinite bitstrings. Given any infinite
bitstring s, the corresponding ideal Is is the set of all finite prefixes of s. In fact, these prefixes
form a chain.3 2

If we view cpos abstractly, the names we associate with particular elements in the universe are
unimportant. Consequently, we introduce the notion of isomorphism: two domains are isomorphic
iff they have exactly the same structure.

Definition 1.24: [Isomorphic Partial Orders] Two partial orders A and B are isomorphic,
denoted A ≈ B, iff there exists a one-to-one onto function m : A→ B that preserves the approxi-
mation ordering:

∀a, b ∈ A a vA b ⇐⇒ m(a) vB m(b) .
3Nonprincipal ideals in other domains are not necessarily chains. Strings are a special case because finite elements

can “grow” in only one direction. In contrast, the ideals corresponding to infinite trees—other than vines—are not
chains.

5

Theorem 1.25: Let D be the domain determined by a finitary basis B. D0 forms a finitary basis
B′ under the approximation ordering v (restricted to D0). Moreover, the domain E determined by
the finitary basis B′ is isomorphic to D.

Proof Since the finite elements of D are precisely the principal ideals, it is easy to see that B′ is
isomorphic to B. Hence, B′ is a finitary basis and E is isomorphic to D. The isomorphism between
D and E is given by the mapping δ : D → E is defined by the equation

δ(d) = {e ∈ D0 | e v d} .

2

The preceding theorem justifies the following comprehensive definition for domains.

Definition 1.26: [Domain] A cpo D = 〈D,v〉 is a domain iff

• D0 forms a finitary basis under the approximation ordering v restricted to D0, and

• D is isomorphic to the domain E determined by D0.

In other words, a domain is a partial order that is isomorphic to a constructed domain.
To conclude this section, we state some closure properties on D to provide more intuition about

the approximation ordering.

Theorem 1.27: Let D the the domain determined by a finitary basis B. For any subset S of D,
the following properties hold:

1.
⋂
S ∈ D and

⋂
S = uS .

2. if S is directed, then
⋃
S ∈ D and

⋃
S =

⊔
S .

Proof The conditions for ideals specified in Definition 1.11 must be satisfied for these properties
to hold. The intersection case is trivial. The union case requires the stated restriction since ideals
require closure under lubs. 2

For the remainder of this monograph, we will ignore the distinction between principal ideals
and the corresponding elements of the finitary basis whenever it is convenient.

Exercises

1. Let
B = {sn | sn = {m ∈ N | m ≥ n}, n ∈ N}

What is the approximation ordering for B? Verify that B is a finitary basis. What are the
total elements of the domain determined by B. Draw a partial picture demonstrating the
approximation ordering in the basis.

2. Example 1.9 can be generalized to allow strings of any finite length. Give the finitary basis
for this general case. What is the approximation ordering? What does the domain look like?
What are the total elements in the domain? Draw a partial picture of the approximation
ordering.

3. Let B be all finite subsets of N with the subset relation as the approximation relation. Verify
that this is a finitary basis. What is the domain determined by B. What are the total
elements? Draw a partial picture of the domain.

6

4. Construct two non-isomorphic infinite domains in which all elements are finite but there are
no infinite chains of elements (〈xn〉∞n=0 with xn v xn+1 but xn 6= xn+1 for all n).

5. Let B be the set of all non-empty open intervals on the real line with rational endpoints plus
a “bottom” element. What would a reasonable approximation ordering be? Verify that B is
a finitary basis. For any real number t, show that

{x ∈ B | t ∈ x} ∪ {⊥}

is an ideal element. Is it a total element? What are the total elements? (Hint: When t is
rational consider all intervals with t as a right-hand end point.)

6. Let D be a finitary basis for domain D. Define a new basis, D′ = {↓ X | X ∈ D} where
↓ X = {Y ∈ D | X v Y }. Show that D′ is a finitary basis and that D and D′ are isomorphic.

7. Let 〈B,v〉 be a finitary basis where

B = {X0, X1, . . . , Xn, . . .}.

Suppose that consistency of finite sequences of elements is decidable. Let

Y0 = X0

Yn+1 =
{
Xn+1 if Xn+1 is consistent with Y0, Y1, . . . , Yn

Yn otherwise .

Show that {Y0, . . . , Yn, . . .} is a total element in the domain determined by B. (Hint: Show
that Y0, . . . , Yn−1 is consistent for all n.) Show that all ideals can be determined by such
sequences.

8. Devise a finitary basis B with more than two elements such that every pair of elements in B
is consistent, but B is not consistent.

9. Prove Theorem 1.19.

2 Operations on Data

Since program operations perform computations incrementally on data values that correspond to
sets of approximations (ideals), they obey some critical topological constraints. For any approxima-
tion x′ to the input value x, a program operation f must produce the output f(x′). Since program
output cannot be withdrawn, every program operation f is a monotonic function: x1 v x2 implies
f(x1) v (x2).

We can decribe this process in more detail by examining the structure of computations. Recall
that every value in a domain D can be interpreted as a set of finite elements in D that is closed
under implication. When an operation f is applied to the input value x, f gathers information
about x by asking the program computing x to generate a countable chain of finite elements C
where

⊔
{Ic | c ∈ C} = x. For the sake of simplicity, we can force the chain C describing the input

value x to be infinite: if C is finite, we can convert it to an equivalent infinite chain by repeating
the last element. Then we can view f as a function on infinite streams that repeatedly “reads” the
next element in an infinite chain C and “writes” the next element element in an infinite chain C ′

where
⊔
{Ic′ | c′ ∈ C ′} = f(x). Any such function f on D is clearly monotonic. In addition, f

7

obeys the stronger property that for any directed set S, f(
⊔
S) =

⊔
{f(s) | s ∈ S}. This property

is called continuity.
This formulation of computable operations as functions on streams of finite elements is concrete

and intuitive, but it is not canonical. There are many different functions on streams of finite
elements corresponding to the same continuous function f over a domain D. For this reason, we
will use a slightly different model of incremental computation as the basis for defining the form of
operations on domains.

To produce a canonical representation for computable operations, we must represent values as
ideals rather than chains of finite elements. In addition, we must perform computations in parallel,
producing finite answers incrementally in non-deterministic order. It is important to emphasize
that the result of every computation, which is an ideal I, is still deterministic; only the order in
which the elements of I are enumerated is non-deterministic. When an operation f is applied
to the input value x, f gathers information about x by asking x to enumerate the ideal of finite
elements Ix = {d ∈ D0 | d v x}. In response to each input approximation d v x, f enumerates the
ideal If(d) = {e ∈ D0 | e v f(d)}. Since If(d) may be infinite, each enumeration is an independent
computation. The operation f merges all of these enumerations yielding an enumeration of the
ideal If(x) = {e ∈ D0 | e v f(x)}.

A computable operation f mapping A into B can be formalized as a consistent relation F ⊆
A×B such that

• the image F (a) = {b ∈ B|aF b} of any input element a ∈ A is an ideal

• F is monotonic: a v a′ ⇒ F (a) ⊆ F (a′).

These closure properties ensure that the relation F uniquely identifies a continuous function f on
D. Relations satisfying these closure properties are called approximable mappings.

The following set of definitions restates the preceding descriptions in more rigorous form.

Definition 2.1: [Approximable Mapping] Let A and B be the domains determined by finitary
bases A and B, respectively. An approximable mapping F ⊆ A×B is a binary relation over A×B
such that

1. ⊥A F ⊥B

2. If aF b and aF b′ then aF (b t b′)

3. If aF b and b′ vB b, then aF b′

4. If aF b and a vA a′, then a′ F b

The partial order of approximable mappings F ⊆ A × B under the subset relation is denoted by
the expression Map(A,B).

Conditions 1, 2, and 3 force the image of an input ideal to be an ideal. Condition 4 states that the
function on ideals associated with F is monotonic.

Definition 2.2: [Continuous Function] Let A and B be the domains determined by finitary
bases A and B, respectively. A function f : A → B is continuous iff for any ideal I in A,
f(I) =

⊔
{f(Ia) | a ∈ I}. The partial ordering vB from B determines a partial ordering v on

continuous functions:
f v g ⇐⇒ ∀x ∈ A f(x) vA g(x) .

The partial order consisting of the continuous functions from A to B under the pointwise ordering
is denoted by the expression Fun(A,B).

8

It is easy to show that continuous functions satisfy a stronger condition than the definition
given above.

Theorem 2.3: If a function f : A → B is continuous, then for every directed subset S of A,
f(

⊔
S) =

⊔
{f(I) | I ∈ S}.

Proof By Theorem 1.27,
⊔
S is simply

⋃
S. Since f is continuous, f(

⊔
S) =

⊔
{f(Ia) | ∃I ∈

S a ∈ I}. Similarly, for every I ∈ A, f(I) =
⊔
{f(Ia) | a ∈ I}. Hence,

⊔
{f(I) | I ∈ S} =⊔

{
⊔
{f(Ia) | a ∈ I} | I ∈ S} =

⊔
{f(Ia) | ∃I ∈ S a ∈ I}. 2

Every approximable mapping F over the finitary bases A×B determines a continuous function
f : A → B. Similarly, every continuous function f : A → B determines a an approximable mapping
F over the finitary bases A×B.

Definition 2.4: [Image of Approximable Mapping] For approximable mapping

F ⊆ A×B

the image of d ∈ A under F (denoted apply(F, d)) is the ideal {b ∈ B | ∃a ∈ A, a ∈ d, ∧aF b} .
The function f : A → B determined by F is defined by the equation:

f(d) = apply(F, d) .

Remark 2.5: It is easy to confirm that apply(F, d) is an element of B and that the function f
is continuous. Given any ideal d ∈ A, apply(F, d) is the subset of B consisting of all the elements
related by F to finite elements in d. The set apply(F, d) is an ideal in B since (i) the set {b ∈ B|aF b}
is downward closed for all a ∈ A, and (ii) aF b ∧ aF b′ implies aF (b t b′). The continuity of f is
an immediate consequence of the definition of f and the definition of continuity.

The following theorem establishes that the partial order of approximable mappings over A×B
is isomorphic to the partial order of continuous functions in A → B.

Theorem 2.6: Let A and B be finitary bases. The partial order Map(A,B) consisting of the set
of approximable mappings over A and B is isomorphic to the partial order A →c B of continuous
functions mapping A into B. The isomorphism is produced by the function F : Map(A,B) →
(A →c B) defined by

F(F) = f

where f is the function defined by the equation

f(d) = apply(F, d)

for all d ∈ A.

Proof The theorem is an immediate consequence of the following lemma. 2

Lemma 2.7:

1. For any approximable mappings F,G ⊆ A×B

(a) ∀a ∈ A, b ∈ B aF b ⇐⇒ Ib v F(F)(Ia).

(b) F ⊆ G ⇐⇒ ∀a ∈ A F(F)(a) v F(G)(a)

9

2. The function F : Map(A,B) → (A →c B) is one-to-one and onto.

Proof (lemma)

1. Part (a) is the immediate consequence of the definition of f (b ∈ f(Ia) ⇐⇒ aF b) and the
fact that f(Ia) is downward closed. Part (b) follows directly from Part (a): F ⊆ G ⇐⇒ ∀a ∈
A {b | aF b} ⊆ {b | aG b}. But the latter holds iff ∀a ∈ A (f(a) ⊆ g(a) ⇐⇒ f(a) v g(a)).

2. Assume F is not one-to-one. Then there are distinct approximable mappings F and G such
that F(F) = F(G). Since F(F) = F(G),

∀a ∈ A, b ∈ B (Ib v F(F)(Ia) ⇐⇒ Ib v F(G)(Ia)) .

By Part 1 of the lemma,

∀a ∈ A, b ∈ B (aF b ⇐⇒ Ib v F(F)(Ia) ⇐⇒ Ib v F(G)(Ia) ⇐⇒ aG b) .

We can prove that F is onto as follows. Let f be an arbitary continuous function in A → B.
Define the relation F ⊆ A×B by the rule

a F b ⇐⇒ Ib v f(Ia) .

It is easy to verify that F is an approximable mapping. By Part 1 of the lemma,

a F b ⇐⇒ Ib v F(F)(Ia) .

Hence
Ib v f(Ia) ⇐⇒ Ib v F(F)(Ia) ,

implying that f and F(F) agree on finite inputs. Since f and F(F) are continuous, they are equal.
2

The following examples of show how approximable mappings and continuous functions are
related.

Example 2.8: Let B be the domain of infinite strings from the previous section and let T be
the truth value domain with two total elements, true and false where ⊥T denotes that there is
insufficient information to determine the outcome. Let p : B → T be the function defined by the
equation:

p(x) =


true if x = 0n1y where n is even
false if x = 0n1y where n is odd
⊥T otherwise

The function p determines whether or not there are an even number of 0’s before the first 1 in
the string. If there is no one in the string, the result is ⊥T . It is easy to show that p is continuous.
The corresponding binary relation P is defined by the rule:

a P b ⇐⇒ b vT ⊥T ∨ 02n1 vB a ∧ b vT true ∨ 02n+11 vB a ∧ b vT false

The reader should verify that P is an approximable mapping and that p is the continuous
function determined by P . 2

10

Example 2.9: Given the domain B from the previous example, let g : B → B be the function
defined by the equation:

g(x) =
{

0n+1y if x = 0n1k0y
⊥D otherwise

The function g eliminates the first substring of the form 1k (k > 0) from the input string x.
If x = 1∞, the infinite string of ones, then g(x) = ⊥D. Similarly, if x = 0n1∞, then g(x) =
⊥D. The reader should confirm that g is continuous and determine the approximable mapping G
corresponding to g. 2

Approximable mappings and continuous functions can be composed and manipulated just like
any other relations and functions. In particular, the composition operators for approximable map-
pings and continuous functions behave as expected. In fact, both the approximable mappings and
the continuous functions form a category .

Theorem 2.10: The approximable mappings form a category over finitary bases where the identity
mapping for finitary basis B, IB ⊆ B×B, is defined for a, b ∈ B as

a IB b ⇐⇒ b v a

and the composition G ◦F ⊆ B1×B3 of approximable mappings F ⊆ B1×B2 and G ⊆ B2×B3

is defined for a ∈ B1 and c ∈ B3 by the rule:

a (G ◦ F) c ⇐⇒ ∃b ∈ B2 aF b ∧ bG c .

To show that this structure is a category, we must establish the following properties:

1. the identity mappings are approximable mappings,

2. the identity mappings composed with an approximable mapping defines the original mapping,

3. the mappings formed by composition are approximable mappings, and

4. function composition is associative.

Proof Let F ⊆ D1 × D2 and G ⊆ D2 × D3 be approximable mappings. Let I1, I2 be identity
mappings for B1 and B2 respectively.

1. The verification that the identity mappings satisfy the requirements for approximable map-
pings is straightforward and left to the reader.

2. To show F ◦ I1 and I2 ◦ F are approximable mappings, we prove the following equivalence:

F ◦ I1 = I2 ◦ F = F

For a ∈ B1 and b ∈ B2,

a (F ◦ I1) b ⇐⇒ ∃c ∈ D1 (c v a ∧ c F b) .

By the definition of approximable mappings, this property holds iff aF b, implying that F
and F ◦ I1 are the same relation. The proof of the other half of the equivalence is similar.

11

3. We must show that the relation G ◦ F is approximable given that the relations F and G
are approximable. To prove the first condition, we observe that ⊥1 F ⊥2 and ⊥2G⊥3 by
assumption, implying that ⊥1 (G ◦ F)⊥3. Proving the second condition requires a bit more
work. If a (G ◦ F) c and a (G ◦ F) c′, then by the definition of composition, aF b and bG c
for some b and aF b′ and b′Gc′ for some b′. Since F and G are approximable mappings,
aF (bt b′) and since b′ v (bt b′), it must be true that (bt b′)Gc. By an analogous argument,
(b t b′)Gc′. Therefore, (b t b′)G (c t c′) since G is an approximable mapping, implying that
a (G ◦ F) (c t c′). The final condition asserts that G ◦ F is monotonic. We can prove this as
follows. If a v a′, c′ v c and a (G ◦ F) c, then aF b and bG c for some b. So a′ F b and bG c′

and thus a′ (G ◦ F) c′. Thus, G ◦ F satisfies the conditions of an approximable mapping.

4. Associativity of composition implies that for approximable mapping H with F,G as above
and H : D3 → D4, H ◦ (G ◦ F) = (H ◦G) ◦ F . Assume a (H ◦ (G ◦ F)) z. Then,

a (H ◦ (G ◦ F)) z ⇐⇒ ∃c ∈ D3 a (G ◦ F) c ∧ cH z
⇐⇒ ∃c ∈ D3 ∃b ∈ D2 aF b ∧ bG c ∧ cH z
⇐⇒ ∃b ∈ D2 ∃c ∈ D3 aF b ∧ bG c ∧ c H z
⇐⇒ ∃b ∈ D2 aF b ∧ b (H ◦G) z
⇐⇒ a ((H ◦G) ◦ F) z

2

Since finitary bases correspond to domains and approximable mappings correspond to contin-
uous functions, we can restate the same theorem in terms of domains and continuous functions.

Corollary 2.11: The continuous functions form a category over domains determined by finitary
bases; the identity function for domain B, IB : B → B, is defined for by the equation

IB(d) = d

and the composition g ◦ f ∈ B1 → B3 of continuous functions f : B1 → B2 and g : B2 → B3 is
defined for a ∈ B1 by the equation

(g ◦ f)(a) = g(f(a)) .

Proof The corollary is an immediate consequence of the preceding theorem and two facts:

• The partial order of finitary bases is isomorphic to the partial order of domains determined
by finitary bases; the ideal completion mapping established the isomorphism.

• The partial order of approximable mappings over A×B is isomorphic to the partial order of
continuous functions in A → B.

2

Isomorphisms between domains are important. We briefly state and prove one of their most
important properties.

Theorem 2.12: Every isomorphism between domains is characterized by an approximable map-
ping between the finitary bases. Additionally, finite elements are always mapped to finite elements.

12

Proof Let f : D → E be a one-to-one and onto function that preserves the approximation ordering.
Using the earlier theorem characterizing approximable mappings and their associated functions, we
can define the mapping as aF b ⇐⇒ Ib v f(Ia) where Ia, Ib are the principal ideals for a, b.
As shown in Exercise 2.7, monotone functions on finite elements always determine approximable
mappings. Thus, we need to show that the function described by this mapping, using the function
image construction defined earlier, is indeed the original function f . To show this, the following
equivalence must be established for a ∈ D:

f(a) = {b ∈ E | ∃a′ ∈ a Ib v f(Ia′)}

The right-hand side of this equation, call it e, is an ideal—for a proof of this, see Exercise 2.10.
Since f is an onto function, there must be some d ∈ D such that f(d) = e. Since a′ ∈ a, Ia′ v a
holds. Thus, f(Ia′) v f(a). Since this holds for all a′ ∈ a, f(d) v f(a). Now, since f is an
order-preserving function, d v a. In addition, since a′ ∈ a, f(Ia′) v f(d) by the definition of f(d)
so Ia′ v d. Thus, a′ ∈ d and thus a v d since a′ is an arbitrary element of a. Thus, a = d and
f(a) = f(d) as desired.

To show that finite elements are mapped to finite elements, let Ia ∈ D for a ∈ D. Since f is
one-to-one and onto, every b ∈ f(Ia) has a unique Ib′ v Ia such that f(Ib′) = Ib. This element is
found using the inverse of f which must exist. Now, let

z =
⊔

{Ib′ | b ∈ f(Ia)}

Since p v q implies Ip′ v Iq′ , z is also an ideal (see Exercise 2.10 again). Since Ib′ v Ia holds for
each Ib′ , z v Ia must also hold. Also, since each Ib′ v z, Ib = f(Ib′) v f(z). Therefore, b ∈ f(z).
Since b is an arbitrary element in f(Ia), f(Ia) v f(z) must hold and thus Ia v z. Therefore,
Ia = z and a ∈ z. But then a ∈ Ic′ for some c ∈ f(Ia) by the definition of z. Thus, Ia v Ic′ and
f(Ia) v Ic. Since c was chosen such that Ic v f(Ia), Ic′ v Ia and therefore Ic = f(Ia) and f(Ia)
is finite. The same argument holds for the inverse of f ; therefore, the isomorphism preserves the
finiteness of elements. 2

Exercises

Exercise 2.13: Show also that partial order of monotonic functions mapping D0 to E0 (using the
pointwise ordering) is isomorphic to the partial order of approximable mappings over f : D×E.

Exercise 2.14: Prove that, if F ⊆ D × E is an approximable mapping, then the corresponding
function f : D → E satisfies the following equation:

f(x) =
⊔

{e | ∃d ∈ x dFe}

for all x ∈ D.

Exercise 2.15: Prove the following claim: if F,G ⊆ D×E are approximable mappings, then there
exists H ⊆ D×E such that H = F ∩G = F uG.

Exercise 2.16: Let 〈I,≤〉 be a non-empty partial order that is directed and let 〈D,v〉 be a finitary
basis. Suppose that a : I → D is defined such that i ≤ j ⇒ a(i) v a(j) for all i, j ∈ I. Show that⋃

{a(i) | i ∈ I}

13

is an ideal in D. This says that the domain is closed under directed unions. Prove also that for
f : D → E an approximable mapping, then for any directed union,

f(
⋃
{a(i) | i ∈ I}) =

⋃
{f(a(i)) | i ∈ I}

This says that approximable mappings preserve directed unions. If an elementwise function pre-
serves directed unions, must it come from an approximable mapping? (Hint: see Exercise 2.8).

Exercise 2.17: Let 〈I,≤〉 be a directed partial order with fi : D → E as a family of approximable
mappings indexed by i ∈ I. We assume i ≤ j ⇒ fi(x) v fj(x) for all i, j ∈ I and all x ∈ D. Show
that there is an approximable mapping g : D → E where

g(x) =
⋃
{fi(x) | i ∈ I}

for all x ∈ D.

Exercise 2.18: Let f : D → E be an isomorphism between domains. Let φ : D → E be the
one-to-one correspondence from Theorem 2.6 where

f(Ia) = Iφ(a)

for a ∈ D. Show that the approximable mapping determined by f is the relationship φ(x) v b.
Show also that if a and a′ are consistent in D then φ(a t a′) = φ(a) t φ(a′). Show how this
means that isomorphisms between domains correspond to isomorphisms between the bases for the
domains.

Exercise 2.19: Show that the mapping defined in Example 2.9 is approximable. Is it uniquely
determined by the following equations or are some missing?

g(0x) = 0g(x)
g(11x) = g(1x)
g(10x) = 0x
g(1) = ⊥

Exercise 2.20: Define in words the affect of the approximable mapping h : B → B using the bases
defined in Example 2.9 where

h(0x) = 00h(x)
h(1x) = 10h(x)

for all x ∈ B. Is h an isomorphism? Does there exist a map k : B → B such that k ◦ h = IB and is
k a one-to-one function?

Exercise 2.21: Generalize the definition of approximable mappings to define a mapping

f : D1 ×D2 → D3

of two variables. (Hint: f can be a ternary relation f ⊆ D1×D2×D3 where the relation among the
basis elements is denoted (a, b)F c. State a modified version of the theorem characterizing these
mappings and their corresponding functions.

14

Exercise 2.22: Modify the construction of the domain B from Example 2.8 to construct a domain
C with both finite and infinite total elements (B ⊆ C). Define an approximable map, C, on this
domain corresponding to the concatenation of two strings. (Hint: Use 011 as an finite total element,
011⊥ as the corresponding finite partial element). Recall that ε, the empty sequence, is different
from ⊥, the undefined sequence. Concatenation should be defined such that if x is an infinite
element from C, then ∀y ∈ C (x, y)C x. How does the concatenation behave on partial elements
on the left?

Exercise 2.23: Let A and B be arbitrary finitary bases. Prove that the partial order of approx-
imable mappings over A × B is a domain. (Hint: the finite elements are the closures of finite
consistent relations.) Prove that the partial order of continuous functions in A → B is a domain.

3 Domain Constructors

Now that the notion of a domain has been defined, we need to develop convenient methods for
constructing specific domains. The strategy that we will follow is to define flat domains directly (as
term algebras) and construct more complex domains by applying domain constructors to simpler
domains. Since domains are completely determined by finitary bases, we will focus on how to
construct composite finitary bases from simpler ones. These constructions obviously determine
corresponding constructions on domains.

The two most important constructions on finitary bases are Cartesian products of finitary bases
and approximable mappings on finitary bases.

Definition 3.1: [Product Basis] Let D and E be finitary bases generating domains D and E .
The product basis, D×E is the partial order consisting of the universe

D × E = {[d, e] | d ∈ D, e ∈ E}

and the approximation ordering

[d, e] v [i, j] ⇐⇒ d vD i and e vE j

Theorem 3.2: The product basis of two finitary bases as defined above is a finitary basis.

Proof Let D and E be finitary bases and let D×E be defined as above. Since D and E are
countable, the universe of D×E must be countable. It is easy to show that D×E is a partial order.
By the construction, the bottom element of the product basis is [⊥D,⊥E]. For any finite bounded
subset R of D×E where R = {[di, ei]}, the lub of R is [t{di},t{ei}] which must be defined since
D and E are finitary bases and for R to be bounded, each of the component sets must be bounded.
2

It is straightforward to define projection mappings on product bases, corresponding to the
standard projection functions defined on Cartesian products of sets.

Definition 3.3: [Projection Mappings] For a finitary basis D × E, projection mappings P0 ⊆
(D×E)×D and P1 ⊆ (D×E)×E are the relations defined by the rules

[d, e] P0 d
′ ⇐⇒ d′ vD d

[d, e] P1 e
′ ⇐⇒ e′ vE e

where d and d′ are arbitrary elements of D and and e and e′ are arbitrary elements of E.

15

Let A, D, and E be finitary bases and let F ⊆ A × D and G ⊆ A × E be approximable
mappings. The paired mapping 〈F,G〉 ⊆ A× (D×E) is the relation defined by the rule

a 〈F,G〉 [d, e] ⇐⇒ a F d ∧ a G e

for all a ∈ A, d ∈ D, and all e ∈ E.

It is an easy exercise to show that projection mappings and paired mappings are approximable
mappings (as defined in the previous section).

Theorem 3.4: The mappings P0, P1, and 〈F,G〉 are approximable mappings if F,G are. In
addition,

1. P0 ◦ 〈F,G〉 = F and P1 ◦ 〈F,G〉 = G.

2. For [d, e] ∈ D×E and d′ ∈ D, [d, e] P0 d
′ ⇐⇒ d′ v d.

3. For [d, e] ∈ D×E and e′ ∈ E, [d, e] P1 e
′ ⇐⇒ e′ v d.

4. For approximable mapping H ⊆ A× (D×E), H = 〈(P0 ◦H), (P1 ◦H)〉.

5. For a ∈ A and [d, e] ∈ D×E, [a, [d, e]] ∈ 〈F,G〉 ⇐⇒ [a, d] ∈ F ∧ [a, e] ∈ G.

Proof The proof is left as an exercise to the reader. 2

The projection mappings and paired mappings on finitary mappings obviously correspond to
continuous functions on the corresponding domains. We will denote the continous functions cor-
responding to P0 and P1 by the symbols p1 and p2. Similarly, we will denote the function corre-
sponding to the paired mapping 〈F,G〉 by the expression 〈f, g〉.

It should be clear that the definition of projection mappings and paired mappings can be
generalized to products of more than two domains. This generalization enables us to treat a multi-
ary continous function (or approximable mapping) as a special form of a unary continuous function
(or approximable mapping) since multi-ary inputs can be treated as single objects in a product
domain. Moreover, it is easy to show that a relation R ⊆ (A1 × . . . ×An) ×B of arity n + 1 (as
in Exercise 2.18) is an approximable mapping iff every restriction of R to a single input argument
(by fixing the other input arguments) is an approximable mapping.

Theorem 3.5: A relation F ⊆ (A×B)×C is an approximable mapping iff for every a ∈ A and
every b ∈ B, the derived relations

Fa,∗ = {[y, z] | [[a, y], z] ∈ F}
F∗,b = {[x, z] | [[x, b], z] ∈ F}

are approximable mappings.

Proof Before we prove the theorem, we need to introduce the class of constant relations Ke ⊆ D×E
for arbitrary finitary bases D and E and show that they are approximable mappings.

Lemma 3.6: For each e ∈ E, let the “constant” relation Ke ⊆ D×E be defined by the equation

Ke = {[d, e′] | d ∈ D, e′ v e} .

In other words,
d Ke e

′ ⇐⇒ e′ v e .

For e ∈ E, the constant relation Ke ⊆ D×E is approximable.

16

Proof (lemma) The proof of this lemma is left to the reader. 2(lemma)
To prove the “if” direction of the theorem , we observe that we can construct the relations Fa,∗

and F∗,b for all a ∈ A and b ∈ B by by composing and pairing primitive approximable mappings.
In particular, Fa,∗ is the relation

F ◦ 〈Ka, IB〉
where IB denotes the identity relation on B. Similary, F∗,b is the relation

F ◦ 〈IA,Kb〉

where IA denotes the identity relation on A.
To prove the “only-if” direction, we assume that for all a ∈ A and b ∈ B, the relations Fa,∗ and

F∗,b are approximable. We must show that the four closure properties for approximable mappings
hold for F .

1. Since F⊥A,∗ is approximable, [⊥B,⊥C] ∈ F⊥A,∗, which implies [[⊥A,⊥B],⊥C] ∈ F .

2. If [[x, y], z] ∈ F and [[x, y], z′] ∈ F , then [y, z] ∈ Fx,∗ and [y, z′] ∈ Fx,∗. Since Fx,∗ is
approximable, [y, z t z′] ∈ Fx,∗, implying [[x, y], z t z′] ∈ F .

3. If [[x, y], z] ∈ F and z′ v z, then [y, z] ∈ Fx,∗. Since Fx,∗ is approximable, [y, z′] ∈ Fx,∗,
implying [[x, y], z′] ∈ F .

4. If [[x, y], z] ∈ F and [x, y] v [x′, y′], then [y, z] ∈ Fx,∗, x v x′, and y v y′. Since Fx,∗ is
approximable, [y′, z] ∈ Fx,∗, implying [x, y′], z] ∈ F , which is equivalent to [x, z] ∈ F∗,y′ . Since
F∗,y′ is approximable, [x′, z] ∈ F∗,y′ , implying [[x′, y′], z] ∈ F .

2

The same result can be restated in terms of continous functions.

Theorem 3.7: A function of two arguments, f : A× B → C is continuous iff for every a ∈ A and
every b ∈ B, the unary functions

x 7→ f [a, x] and y 7→ f [y, b]

are continuous.

Proof Immediate from the previous theorem and the fact that the domain of approximable
mappings over (A×B)×C is isomorphic to the domain of continuous functions over (A×B)×C.
2

The composition of functions as defined in Theorem 2.10 can be generalized to functions of
several arguments. But we need some new syntactic machinery to describe more general forms of
function composition.

Definition 3.8: [Cartesian types] Let S be a set of symbols used to denote primitive types.
The set S∗ of Cartesian types over S consists of the set of expressions denoting all finite non-empty
Cartesian products over primitive types in S:

S∗ ::= S | S × S |

A signature Σ is a pair 〈S,O〉 consisting of a set S of type names {s1, . . . , sm} used to denote
domains and a set O of function symbols {oρi→σi

i | 1 ≤ i ≤ m, ρi ∈ S∗, σi ∈ S} used to denote
first order functions over the domains S. Let V be a countably infinite set of symbols (variables)
{vτ

i | τ ∈ S, i ∈ N} distinct from the symbols in Σ. The typed expressions over Σ (denoted E§(Σ))
is the set “typed” terms determined by the following inductive definition:

17

1. vτ
i ∈ V is a term of type τ ,

2. for M τ1
1 , . . . ,M τn

n ∈ E§(Σ) and o(τ1×...×τn)→τ0 ∈ O then

o(τ1×...×τn)→τ0(M τ1
1 , . . . ,M τn

n)τ0

is a term of type τ0.

We will restrict our attention to terms where every instance of a variable vi has the same type τ .
To simplify notation, we will drop the type superscripts from terms whenever they can easily be
inferred from context.

Definition 3.9: [Finitary algebra] A finitary algebra with signature Σ is a function A mapping

• each primitive type τ ∈ S to a finitary basis A[[τ]],

• each operation type τ1 × . . .× τn ∈ S∗ to the finitary basis A[[τ1]]× . . .×A[[τn]],

• each function symbol oρi→σi
i ∈ O to an approximable mapping A[[oi]] ⊆ (A[[ρi]] × A[[σi]]).

Recall that A[[ρi]] is a product basis.

Definition 3.10: [Closed term] A term M ∈ E§Σ is closed iff it contains no variables in V .

The finitary algebra A implicitly assigns a meaning to every closed term M in E§(Σ). This
extension is inductively defined by the equation:

A[[o[M1, . . . ,Mn]]] = A[[o]][A[[M1]], . . . ,A[[Mn]]] = {b0 | ∃[b1, . . . , bn] ∈ A[[ρi]] [b1, . . . , bn]A[[o]]b0} .

We can extend A to terms M with free variables by implicitly abstracting over all of the free
variables in M .

Definition 3.11: [Meaning of terms] Let M be a term in E§Σ and let l = xτ1
1 , . . . x

τn
n be a list

of distinct variables in V containing all the free variables of M . Let A be a finitary algebra with
signature Σ and for each tuple [d1, . . . , dn] ∈ A[[τ1]]× . . .×A[[τn]], let A{x1:=d1,...,xn:=dn} denote the
algebra A extended by defining

A[[xi]] = di

for 1 ≤ i ≤ n. The meaning of M with respect to l, denoted A[[xτ1
1 , . . . , x

τn
n 7→ M]], is the relation

FM ⊆ (A[[τ1]]×A[[τn]])×A[[τ0]] defined by the equation:

FM [d1, . . . , dn] = A{x1:=d1,...,x1:=dn}[[M]]

The relation denoted by A[[xτ1
1 , . . . , x

τn
n 7→ M]] is often called a substitution. The following

theorem shows that the relation A[[xτ1
1 , . . . , x

τn
n 7→ M]] is approximable.

Theorem 3.12: (Closure of continuous functions under substitution) Let M be a term in E§Σ and
let l = xτ1

1 , . . . x
τn
n be a list of distinct variables in V containing all the free variables of M . Let A

be a finitary algebra with signature Σ. Then the relation FM denoted by the expression

xτ1
1 , . . . , x

τn
n 7→M

is approximable.

18

Proof The proof proceeds by induction on the structure of M . The base cases are easy. If M is
a variable xi, the relation FM is simply the projection mapping Pi. If M is a constant c of type τ ,
then FM is the contant relation Kc of arity n. The induction step is also straightforward. Let M
have the form g[Mσ1

1 , . . . ,Mσm
m]. By the induction hypothesis,

xτ1
1 , . . . , x

τn
n 7→Mσi

i

denotes an approximable mapping FMi ⊆ (A[[τ1]]×A[[τn]])×A[[σi]]. But FM is simply the compo-
sition of the approximable mapping A[[g]] with the mapping 〈FM1 , . . . FMm〉. Theorem 2.10 tells us
that the composition must be approximable. 2

The preceding generalization of composition obviously carries over to continuous functions. The
details are left to the reader.

The next domain constructor, the function-space constructor, allows approximable mappings
(or equivalently continuous functions) to be regarded as objects. In this framework, standard oper-
ations on approximable mappings such as application and composition are approximable mappings.
Indeed, the definitions of ideals and of approximable mappings are quite similar. The space of ap-
proximable mappings is built by looking at the actions of mappings on finite sets, and then using
progressively larger finite sets to construct the mappings in the limit. To this end, the notion of a
finite step mapping is required.

Definition 3.13: [Finite Step Mapping] Let A and B be finitary bases. An approximable
mapping F ⊆ A×B is a finite step mapping iff there exists finite set S ⊆ A×B and F is the least
approximable mapping such that S ⊆ F .

It is easy to show that for every consistent finite set S ⊆ A×B, a least mapping F always exists.
F is simply the closure of S under the four conditions that an approximable mapping must satisfy.
The least approximable mapping respecting the empty set is the relation {〈a,⊥B〉 | a ∈ A}. The
space of approximable mappings is built from these finite step mappings.

Definition 3.14: [Partial Order of Finite Step Mappings] For finitary bases A and B the
mapping basis is the partial order A ⇒ B consisting of

• the universe of all finite step mappings, and

• the approximation ordering

F v G ⇐⇒ ∀a ∈ A F (a) vB G(a) .

The following theorem establishes that the constructor⇒maps finitary bases into finitary bases.

Theorem 3.15: Let A and B be finitary bases. Then, the mapping basis A ⇒ B is a finitary
basis.

Proof Since the elements are finite subsets of a countable set, the basis must be countable. It
is easy to confirm that A ⇒ B is a partial order; this task is left to the reader. We must show
that every finite consistent subset of A ⇒ B has a least upper bound in A ⇒ B. Let § be a finite
consistent subset of the universe of A ⇒ B. Each element of § is a set of ordered pairs 〈a, b〉 that
meets the approximable mapping closure conditions. Since § is consistent, it has an upper bound
§′ ∈ A ⇒ B. Let U =

⋃
§. Clearly, U ⊆ §′. But U may not be approximable. Let S be the

intersection of all relations in A ⇒ B above §. Clearly U ⊆ S, implying S is a superset of every
element of §. It is easy to verify that S is approximable, because all the approximable mapping
closure conditions are preserved by infinite intersections. 2

19

Definition 3.16: [Domain] We will denote the domain of ideals determined by the finitary basis
A ⇒ B by the expression A ⇒ B. The justification for this notation will be explained shortly.

Since the partial order of approximable mappings is isomorphic to the partial order of continuous
functions, the preceding definitions and theorems about approximable mappings can be restated in
terms of continuous functions.

Definition 3.17: [Finite Step Function] Let A and B be the domains determined by the
finitary bases A and B, respectively. A continuous function f in Fun(A,B) is finite iff there exists
a finite step mapping F ⊆ A×B such that f is the function determined by F .

Definition 3.18: [Function Basis] For domains A and B, the function basis is the partial order
(A →c B)0 consisting of

• a universe of all finite step functions, and

• the approximation order
f v g ⇐⇒ ∀a ∈ A f a vB g a .

Corollary 3.19: (to Theorem 3.15) For domains A and B, the function basis (A →c B)0 is a
finitary basis.

We can prove that the domain constructed by generating the ideals over A ⇒ B is isomorphic
to the partial order Map(A,B) of approximable mappings defined in Section 2. This result is not
surprising; it merely demonstrates that Map(A,B) is a domain and that we have identified the
finite elements correctly in defining A ⇒ B.

Theorem 3.20: The domain of ideals determined by A ⇒ B is isomorphic to the partial order of
the approximable mappings Map(A,B). Hence, Map(A,B) is a domain.

Proof We must establish an isomorphism between the domain determined by A ⇒ B and the
partial order of mappings from A to B. Let h : A ⇒ B → Map(A,B) be the function defined by
rule

h F =
⋃
{F ∈ F} .

It is easy to confirm that the relation on the right hand side of the preceding equation is approx-
imable mapping: if it violated any of the closure properties so would a finite approximation in F .
We must prove that the function h is one-to-one and onto. To prove the former, we note that each
pair of distinct ideals has a witness 〈a, b〉 that belongs to a set in one ideal but not in any set in
the other. Hence, the images of the two ideals are distinct. The function h is onto because every
approximable mapping is the image of the set of finite step maps that approximate it. 2

The preceding theorem can be restated in terms of continuous functions.

Corollary 3.21: (to Theorem 3.20) The domain of ideals determined by the finitary basis
(A →c B)0 is isomorphic to the partial order of continuous functions A →c B. Hence, A →c B is a
domain.

Now that we have defined the approximable map and continous function domain constructions,
we can show that operators on maps and functions introduced in Section 2 are continuous functions.

20

Theorem 3.22: Given finitary bases, A and B, there is an approximable mapping

Apply : ((A ⇒ B)×A)× B

such that for all F : A ⇒ B and a ∈ A,

Apply[F, a] = F a .

Recall that for any approximable mapping G ⊆ C×D and any element c ∈ C

G c = {d | c G d} .

Proof For F ∈ (A ⇒ B), a ∈ A and b ∈ B, define the Apply relation as follows:

[F, a]Apply b ⇐⇒ a F b .

It is easy to verify that Apply is an approximable mapping; this step is left to the reader. From
the definition of Apply, we deduce

Apply[F, a] = {b | [F, a]Apply b} = {b | a F b} = F a .

2

This theorem can be restated in terms of continuous functions.

Corollary 3.23: Given domains, A and B, there is an continuous function

apply : ((A →c B)×A) →c B

such that for all f : A →c B and a ∈ A,

apply[f, a] = f a .

Proof of corollary. Let apply : ((A →c B) × A) →c B be the continuous function (on functions
rather than relations!) corresponding to Apply. From the definition of apply and Theorem 2.6 which
relates approximable mappings on finitary bases to continous functions over the corresponding
domains, we know that

apply[f, IA] = {b ∈ B | ∃F ′ ∈ (A ⇒ B) ;∃a ∈ IA ∧ F ′ ⊆ F ∧ [F ′, a]Apply b}

where F denotes the approximable mapping corresponding to f . Since f is the continuous function
corresponding to F ,

f IA = {b ∈ B | ∃a ∈ IA a F b}

So, by the definition of the Apply relation, apply[f, IA] ⊆ f IA. For every b ∈ f IA, there exists
a ∈ IA such that a F b. Let F ′ be the least approximable mapping such that a F ′b. By definition,
F ′ is a finite step mapping. Hence b ∈ apply[f, IA], implying f IA ⊆ apply[f, IA]. Therefore,
f IA = apply[f, IA] for arbitrary IA. 2

The preceding theorem and corollary demonstrate that approximable mappings and continous
functions can operate on other approximable mappings or continuous functions just like other data
objects. The next theorem shows that the currying operation is a continuous function.

21

Definition 3.24: [The Curry Operator] Let A,B, and C be finitary bases. Given an approx-
imable mapping G in the domain (A×B) ⇒ C,

CurryG : A ⇒ (B ⇒ C)

is the relation defined by the equation

CurryG a = {F ∈ B ⇒ C | ∀[b, c] ∈ F [a, b]G c}

for all a ∈ A. Similarly, given any continuous function g : (A× B) →c C,

curryg : A → (B →c C)

is the function defined by the equation

curryg[IA] = (y 7→ g[IA, y]) .

By theorem 2.7, (y 7→ g[IA, y]) is a continous function.

Lemma 3.25: CurryG is an approximable mapping and curryg is the continuous function deter-
mined by CurryG.

Proof A straightforward exercise.
It is more convenient to discuss the currying operation in the context of continuous functions

than approximable mappings.

Theorem 3.26: Let g ∈ (A× B) →c C and h ∈ (A →c (B →c C). The curry operation satisfies
the following two equations:

apply ◦ 〈curryg ◦ p0, p1〉 = g

curryapply◦〈h◦p0,p1〉 = h .

In addition, the function
curry : (A× B → C) → (A → (B → C))

defined by the equation
curry g IA IB = curryg IA IB

is continous.

Proof Let g be any continuous function in the domain (A× B) → C. Recall that

curryg a = (y 7→ g[a, y]) .

Using this definition and the definition of operations in the first equation, we can deduce

apply ◦ 〈curryg ◦ p0, p1〉[a, b] = apply[〈curryg ◦ p0, p1〉[a, b]]
= apply[(curryg ◦ p0)[a, b], p1[a, b]]
= apply[currygp0[a, b], b]
= apply[curryg a, b]
= curryg a b
= g[a, b] .

22

Hence, the first equation holds.
The second equation follows almost immediately from the first. Define g′ : (A × B) →c C by

the equation
g′[a, b] = h a b .

The function g′ is defined so that curryg′ = h. This fact is easy to prove. For a ∈ A:

curryg′ a = (y 7→ g′[a, y])
= (y 7→ h a y)
= h a .

Since h = curryg′ , the first equation implies that

apply ◦ 〈h ◦ p0, p1〉 = apply ◦ 〈curryg′ ◦ p0, p1〉
= g′ .

Hence,
curryapply ◦ 〈h ◦ p0, p1〉 = curryg′ = h .

These two equations show that (A×B) →c C is isomorphic to (A →c (B → C) under the curry
operation. In addition, the definition of curry shows that

curry g v curry g′ ⇐⇒ g v g′ .

Hence, curry is an isomorphism. Moreover, curry must be continuous. 2

The same theorem can be restated in terms of approximable mappings.

Corollary 3.27: The relation CurryG satisfies the following two equations:

Apply ◦ 〈CurryG ◦ ¶0,¶1〉 = G

CurryApply◦〈G◦¶0,¶1〉 = G .

In addition, the relation

Curry : (A×B) ⇒ C) ⇒ (A ⇒ (B ⇒ C))

defined by the equation

Curry(G) = {[a, F] | a ∈ A, F ∈ (B ⇒ C), ∀[b, c] ∈ F [a, b]G c}

is approximable.

Exercises

Exercise 3.28: We assume that there is a countable basis. Thus, the basis elements could without
loss of generality be defined in terms of {0, 1}∗. Show that the product space A × B could be
defined as a finitary basis over {0, 1}∗ such that

A×B = {[0a, 1b] | a ∈ A, b ∈ B}

Give the appropriate definition for the elements in the domain. Also show that there exists an
approximable mapping diag : D → D×D where diag x = [x, x] for all x ∈ D.

23

Exercise 3.29: Establish some standard isomorphisms:

1. A×B ≈ B×A

2. A× (B×C) ≈ (A×B)×C

3. A ≈ A′,B ≈ B′ ⇒ A×B ≈ A′ ×B′

for all finitary bases.

Exercise 3.30: Let B ⊆ {0, 1}∗ be a finitary basis. Define

B∞ =
∞⋃

n=0

1n0B

Thus, B∞ contains infinitely many disjoint copies of B. Now let D∞ be the least family of subsets
over {0, 1}∗ such that

1. B∞ ∈ D∞

2. if b ∈ B and d ∈ D∞, then 0X ∪ 1Y ∈ D∞.

Show that, with the superset relation as the approximation ordering, D∞ is a finitary basis. State
any assumptions that must be made. Show then that D∞ ≈ D ×D∞.

Exercise 3.31: Using the product construction as a guide, generate a definition for the separated
sum system A + B. Show that there are mappings inA : A → A + B, inB : B → A + B,
outA : A + B → A, and outB : A + B → B such that outA ◦ inA = IA where IA is the identity
function on A. State any necessary assumptions to ensure this function equation is true.

Exercise 3.32: For approximable mappings f : A → A′ and g : B → B′, show that there exist
approximable mappings, f × g : A×B → A′ ×B′ and f + g : A + B → A′ + B′ such that

(f × g)[a, b] = [f a, g b]

and thus
f × g = 〈f ◦ p0, g ◦ p1〉

Show also that
outA ◦ (f + g) ◦ inA = f

and
outB ◦ (f + g) ◦ inB = g

Is f + g uniquely determined by the last two equations?

Exercise 3.33: Prove that the composition operator is an approximable mapping. That is, show
that comp : (B → C) × (A → B) → (A → C) is an approximable mapping where for f : A → B
and g : B → C, comp[g, f] = g ◦ f . Show this using the approach used in showing the result for
apply and curry. That is, define the relation and then build the function from apply, curry, using
◦ and paired functions. (Hint: Fill in mappings according to the following sequence of domains).

(A → B)×A → B
(B → C)× ((A → B)×A) → (B → C)×B
((B → C)× (A → B))×A → (B → C)×B

((B → C)× (A → B))×A → C
(B → C)× (A → B) → (A → C).

This map shows only one possible solution.

24

Exercise 3.34: Show that for every domain D there is an approximable mapping

cond : T×D×D → D

called the conditional operator such that

1. cond[true, a, b] = a

2. cond[false, a, b] = b

3. cond[⊥T , a, b] = ⊥D

and T = {⊥T , true, false} such that ⊥T v true, ⊥T v false, but true and false are incomparable.
(Hint: Define a cond relation).

4 Fixed Points and Recursion

Functions can now be constructed by composing basic functions. However, we wish to be able to
define functions recursively as well. The technique of recursive definition will also be useful for
defining domains. Recursion can be thought of as (possibly infinite) interated composition. The
primary result is the following Fixed Point Theorem.

Theorem 4.1: For any approximable mapping f : D → D on any domain, there exists a least
element x ∈ D such that

f(x) = x.

Proof Let fn stand for the function f composed with itself n times. Thus,

f0 = ID and
fn+1 = f ◦ fn

Define
x = {d ∈ D | ∃n ∈ N.∆ fn d}.

To show that x ∈ D, we must show it to be an ideal. f is an approximable mapping, so ∆ ∈ x since
∆ f ∆. For d ∈ x and d′ v d, d′ ∈ x must hold since, for d ∈ x, there must exist an a ∈ D such
that a f d. But by the definition of an approximable mapping, a f d′ must hold as well so d′ ∈ x.
Closure under lubs is direct since f must include lubs to be approximable.

To see that f(x) = x, note that for any d ∈ x, if d f d′, then d′ ∈ x. Thus, f(x) v x. Now, x
is constructed to be the least element in D with this property. To see this is true, let a ∈ D such
that f(a) v a. We want to show that x v a. Let d ∈ x be an arbitrary element. Therefore, there
exists an n such that ∆ fn d and therefore

∆ f d1 f dn . . . f dn−1 f d.

Since ∆ ∈ a, d1 ∈ f(a). Thus, since f(a) v a, d1 ∈ a. Thus, d2 ∈ f(a) and therefore d2 ∈ a. Using
induction on n, we can show that d ∈ f(a). Therefore, d ∈ a and thus x v a.

Since f is monotonic and f(x) v x, f(f(x)) v f(x). Since x is the least element with this
property, x v f(x) and thus x = f(x). 2

Since the element x above is the least element, it must be unique. Thus we have defined a
function mapping the domain D → D into the domain D. The next step is to show that this
mapping is approximable.

25

Theorem 4.2: For any domain D, there is an approximable mapping

fix : (D → D) → D

such that if f : D → D is an approximable mapping,

fix(f) = f(fix(f))

and for x ∈ D,
f(x) v x ⇒ fix(f) v x

This property implies that fix is unique. The function fix is characterized by the equation

fix(f) =
∞⋃

n=0

fn(⊥)

for all f : D → D.

Proof The final equation can be simplified to

fix(f) = {d ∈ D | ∃n ∈ N.∆ fn d}

which is the equation used in the previous theorem to define the fixed point. Using the formula
from Exercise 2.8 on the above definition for fix yields the following equation to be shown:

fix(f) =
⋃
{fix(IF) | ∃F ∈ (D → D).F ∈ f}

where IF denotes the ideal for F in D → D.
From its definition, fix is monotonic since, if f v g, then fix(f) v fix(g) since fn v gn. Since

F ∈ f , IF v f and since fix is monotonic, fix(IF) v fix(f).
Let x ∈ fix(f). Thus, there is a finite sequence of elements such that ∆ f x1 f . . . f x′ f x.

Define F as the basis element encompassing the step functions required for this sequence. Clearly,
F ∈ f . In addition, this same sequence exists in fix(IF) since we constructed F to contain it, and
thus, x ∈ fix(IF) and fix(f) v fix(IF). The equality is therefore established.

The first equality is direct from the Fixed Point Theorem since the same definition is used.
Assume f(x) v x for some x ∈ D. Since ∆ ∈ x, x 6= ∅. Since f is an approximable mapping, for
x′ ∈ x and x′ f y, y ∈ x must hold. By induction, for any ∆f y, y ∈ x must hold. Thus, fix(f) v x.

To see that the operator is unique, define another operator fax that satisfies the first two
equations. It can easily be shown that

fix(f) v fax(f) and
fax(f) v fix(f)

Thus the two operators are the same. 2

Recursion has played a part already in these definitions. Recall that fn was defined for all
n ∈ N. More complex examples of recursion are given below.

Example 4.3: Define a basis N = 〈N,vN 〉 where

N = {{n} | n ∈ N} ∪ {N}

and the approximation ordering is the superset relation. This generates a flat domain with ⊥ =
{{N}} and the total elements being in a one-to-one correspondence with the natural numbers.

26

Using the construction outlined in Exercise 3.30, construct the basis F = N∞. Its domain is the
domain of partial functions over the natural numbers. To see this, let Φ be the set of all finite
partial functions ϕ ⊆ N× N. Define

↑ ϕ = {ψ ∈ Φ | ϕ ⊆ ψ}

Consider the finitary basis 〈F ′,v′F 〉 where

F ′ = {↑ ϕ | ϕ ∈ Φ}

and the approximation order is the superset relation. The reader should satisfy himself that F ′

and F are isomorphic and that the elements are the partial functions. The total elements are the
total functions over the natural numbers.

The domains F and (N → N) are not isomorphic. However, the following mapping val :
F ×N → N can be defined as follows:

(↑ ϕ, {n}) val {m} ⇐⇒ (n,m) ∈ ϕ

and
(↑ ϕ,N) val N

Define also as the ideal for m ∈ N ,
m̂ = {{m},N}

It is easy to show then that for π ∈ F and n ∈ N we have

val(π, n̂) = ˆπ(n) if π(n) 6= ⊥
= ⊥ otherwise

Thus,
curry(val) : F → (N → N)

is a one-to-one function on elements. (The problem is that (N → N) has more elements than F
does as the reader should verify for himself).

Now, what about mappings f : F → F? Consider the function

f(π)(n) = 0 if n = 0
= π(n− 1) + n− 1 for n > 0

If π is a total function, f(π) is a total function. If π(k) is undefined, then f(π)(k+ 1) is undefined.
The function f is approximable since it is completely determined by its actions on partial functions.
That is

f(π) =
⋃
{f(ϕ) | ∃ϕ ∈ Φ.ϕ ⊆ π}

The Fixed Point Theorem defines a least fixed point for any approximable mapping. Let σ = f(σ).
Now, σ(0) = 0 and

σ(n+ 1) = f(σ)(n+ 1)
= σ(n) + n

By induction, σ(n) =
n∑

i=0
i and therefore, σ is a total function. Thus, f has a unique fixed point.

27

Now, in looking at (N → N), we have 0̂ ∈ N (The symbols n and n̂ will no longer be
distinguished, but the usage should be clear from context.). Now define the two mappings,
succ, pred : N → N as approximable mappings such that

n succ m ⇐⇒ ∃p ∈ N.n v p,m v p+ 1
n pred m ⇐⇒ ∃p+ 1 ∈ N.n v p+ 1,m v p

In more familiar terms, the same functions are defined as

succ(n) = n+ 1
pred(n) = n− 1 if n > 0

= ⊥ if n = 0

The mapping zero : N → T is also defined such that

zero(n) = true if n = 0
= false if n > 0

where T is the domain of truth value defined in an earlier section. The structured domain
〈N, 0, succ, pred, zero〉 is called “The Domain of the Integers” in the present context. The function
element σ defined as the fixed point of the mapping f can now be defined directly as a mapping
σ : N → N as follows:

σ(n) = cond(zero(n), 0, σ(pred(n)) + pred(n))

where the function + must be suitably defined. Recall that cond was defined earlier as part of the
structure of the domain T . This equation is called a functional equation; the next section will give
another notation, the λ− calculus for writing such equations. 2

Example 4.4: The domain B defined in Example ?? contained only infinite elements as total
elements. A related domain, C defined in Exercise 2.20, can be regarded as a generalization on
N . To demonstrate this, the structured domain corresponding to the domain of integers must be
presented. The total elements in C are denoted σ while the partial elements are denoted σ⊥ for
any σ ∈ {0, 1}∗.

The empty sequence ε assumes the role of the number 0 in N . Two approximable mappings can
serve as the successor function: x 7→ 0x denoted succ0 and x 7→ 1x denoted succ1. The predecessor
function is filled by the tail mapping defined as follows:

tail(0x) = x,
tail(1x) = x and
tail(ε) = ⊥.

The zero predicate is defined using the empty mapping defined as follows:

empty(0x) = false,
empty(1x) = false and
empty(ε) = true.

To distinguish the other types of elements in C, the following mappings are also defined:

zero(0x) = true,
zero(1x) = false and
zero(ε) = false.
one(0x) = false,
one(1x) = true and
one(ε) = false.

28

The reader should verify the conditions for an approximable mapping are met by these functions.
An element of C can be defined using a fixed point equation. For example, the total element

representing an infinite sequence of alternating zeroes and ones is defined by the fixed point of the
equation

a = 01a.

This same element is defined with the equation

a = 0101a.

Is the element defined as
b = 010b

the same as the previous two? Approximable mappings in C → C can also be defined using
equations. For example, the mapping

d(ε) = ε,
d(0x) = 00d(x) and
d(1x) = 11d(x)

can be characterized with the functional equation

d(x) = cond(empty(x), ε, cond(zero(x), succ0(succ0(d(tail(x)))), succ1(succ1(d(tail(x))))))

The concatenation function of Exercise 2.20 over C × C → C can be defined with the functional
equation

C(x, y) = cond(empty(x), y, cond(zero(x), succ0(C(tail(x), y)), succ1(C(tail(x), y))))

The reader should verify that this definition is consistent with the properties required in the exercise.

These definitions all use recursion. They rely on the object being defined for a base case (ε
for example) or on earlier values (tail(x) for example). These equations characterize the object
being defined, but unless a theorem is proved to show that a solution to the equation exists, the
definition is meaningless. However, the Fixed Point Theorem for domains was established earlier
in this section. Thus, solutions exist to these equations provided that the variables in the equation
range over domains and any other functions appearing in the equation are known to be continuous
(that is approximable).

To illustrate one use of the Fixed Point Theorem as well as show the use of recursion in a more
familiar setting, we will show that all second order models of Peano’s axioms are isomorphic. Recall
that

Definition 4.5: [Model for Peano’s Axiom] A structured set 〈N, 0, succ〉 for 0 ∈ N and
succ : N× N is a model for Peano’s axioms if all the following conditions are satisfied:

1. ∀n ∈ N.0 6= succ(n)

2. ∀n,m ∈ N.succ(n) = succ(m) ⇒ n = m

3. ∀x ⊆ N.0 ∈ x ∧ succ(x) ⊆ x ⇒ x = N

where succ(x) = {succ(n) | n ∈ x}. The final clause is usually referred to as the principle of
mathematical induction.

29

Theorem 4.6: All second order models of Peano’s axioms are isomorphic.

Proof Let 〈N, 0,+〉 and 〈M, •,#〉 be models for Peano’s axioms. Let N ×M be the cartesian
product of the two sets and let P(N ×M) be the powerset of N ×M . Recall from Exercise ??
that the powerset can be viewed as a domain with the subset relation as the approximation order.
Define the following mapping:

u 7→ {(0, •)} ∪ {(+(n),#(m)) | (n,m) ∈ u}

The reader should verify that this mapping is approximable. Since it is indeed approximable, a
fixed point exists for the function. Let r be the least fixed point:

r = {(0, •)} ∪ {(+(n),#(m)) | (n,m) ∈ r}

But r defines a binary relation which establishes the isomorphism. To see that r is an isomorphism,
the one-to-one and onto features must be established. By construction,

1. 0 r • and

2. n r m ⇒ +(n) r #(m).

Now, the sets {(0, •)} and {(+(n),#(m)) |(n,m) ∈ r} are disjoint by the first axiom. Therefore,
0 corresponds to only one element in m. Let x ⊆ N be the set of all elements of N that correspond
to only one element in m. Clearly, 0 ∈ x. Now, for some y ∈ x let z ∈M be the element in M that
y uniquely corresponds to (that is y r z). But this means that +(y) r#(z) by the construction of
the relation. If there exists w ∈M such that +(y) r w and since (+(y), w) 6= (0, •), the fixed point
equation implies that (+(y) = +(n0)) and (w = #(m0)) for some (n0,m0) ∈ r. But then by the
second axiom, y = n0 and since y ∈ x, z = m0. Thus, #(z) is the unique element corresponding to
+(y). The third axiom can now be applied, and thus every element in N corresponds to a unique
element in M . The roles of N and M can be reversed in this proof. Therefore, it can also be shown
that every element of M corresponds to a unique element in N . Thus, r is a one-to-one and onto
correspondence. 2

Exercises

Exercise 4.7: In Theorem 4.2, an equation was given to find the least fixed point of a function
f : D → D. Suppose that for a ∈ D, a v f(a). Will the fixed point x = f(x) be such that a v x?

(Hint: How do we know that
∞⋃

n=0
fn(a) ∈ D?)

Exercise 4.8: Let f : D → D and S ⊆ D satisfy

1. ⊥ ∈ S

2. x ∈ S ⇒ f(x) ∈ S

3. [∀n.{xn} ⊆ S ∧ xn v xn+1] ⇒
∞⋃

n=0
xn ∈ S

Conclude that fix(f) ∈ S. This is sometimes called the principle of fixed point induction. Apply
this method to the set

S = {x ∈ D | a(x) = b(x)}
where a, b : D → D are approximable, a(⊥) = b(⊥), and f ◦ a = a ◦ f and f ◦ b = b ◦ f .

30

Exercise 4.9: Show that there is an approximable operator

Ψ : ((D → D) → D) → ((D → D) → D)

such that for Θ : (D → D) → D and f : D → D,

Ψ(Θ)(f) = f(Θ(f))

Prove also that fix : (D → D) → D is the least fixed point of Ψ.

Exercise 4.10: Given a domain D and an element a ∈ D, construct the domain Da where

Da = {x ∈ D | x v a}

Show that if f : D → D is approximable, then f can be restricted to another approximable map
f ′ : Dfix(f) → Dfix(f) where ∀x ∈ Dfix(f).f

′(x) = f(x) How many fixed points does f ′ have in
Dfix(f)?

Exercise 4.11: The mapping fix can be viewed as assigning a fixed point operator to any domain
D. Show that fix can be uniquely characterized by the following conditions on an assignment
D ; FD:

1. FD : (D → D) → D

2. FD(f) = f(FD(f)) for all f : D → D

3. when f0 : D0 → D0 and f1 : D1 → D1 are given and h : D0 → D1 is such that h(⊥) = ⊥ and
h ◦ f0 = f1 ◦ h, then

h(FD0(f0)) = FD1(f1).

Hint: Apply Exercise 4.7 to show fix satisfies the conditions. For the other direction, apply
Exercise 4.10.

Exercise 4.12: Must an approximable function have a maximum fixed point? Give an example
of an approximable function that has many fixed points.

Exercise 4.13: Must a monotone function f : P(A) → P(A) have a maximum fixed point? (Recall
P(A) is the powerset of the set A).

Exercise 4.14: Verify the assertions made in the first example of this section.

Exercise 4.15: Verify the assertions made in the second example, in particular those in the
discussion of “Peano’s Axioms”. Show that the predicate function one : C → T could be defined
using a fixed point equation from the other functions in the structure.

Exercise 4.16: Prove that
fix(f ◦ g) = f(fix(g ◦ f))

for approximable functions f, g : D → D.

Exercise 4.17: Show that the less-than-or-equal-to relation l ⊆ N× N is uniquely determined by

l = {(n, n) | n ∈ N} ∪ {(n, succ(m) | (n,m) ∈ l}

for the structure called the “Domain of Integers”.

31

Exercise 4.18: Let N∗ be a structured set satisfying only the first two of the axioms referred to
as “Peano’s”. Must there be a subset S ⊆ N∗ such that all three axioms are satisfied? (Hint: Use
a least fixed point from P(N∗)).

Exercise 4.19: Let f : D → D be an approximable map. Let an : D → D be a sequence of
approximable maps such that

1. a0(x) = ⊥ for all x ∈ D

2. an v an+1 for all n ∈ N

3.
∞⋃

n=0
an = ID in D → D

4. an+1 ◦ f = an+1 ◦ f ◦ an for all n ∈ N

Show that f has a unique fixed point. (Hint: Show that if x = f(x) then an(x) v an(fix(f)) for
all n ∈ N. Show this by induction on n.)

5 Typed λ-Calculus

As shown in the previous section, functions can be characterized by recursion equations which
combine previously defined functions with the function being defined. The expression of these
functions is simplified in this section by introducing a notation for specifying a function without
having to give the function a name. The notation used is that of the typed λ-Calculus; a function
is defined using a λ-abstraction.

An informal characterization of the λ-calculus suffices for this section; more formal descriptions
are available elsewhere in the literature [1]. Thus, examples are used to introduce the notation.

An infinite number of variables, x,y,z,. . . of various types are required. While a variable has
a certain type, type subscripts will not be used due to the notational complexity. A distinction
must also be made between type symbols and domains. The domain A × B does not uniquely
determine the component domains A and B even though these domains are uniquely determined
by the symbol for the domain. The domain is the meaning that we attribute to the symbol.

In addition to variables, constants are also present. For example, the symbol 0 is used to
represent the zero element from the domain N . Another constant, present in each domain by
virtue of Theorem 4.2, is fixD, the least fixed point operator for domain D of type (D → D) → D.
The constants and variables are the atomic (non-compound) terms. Types can be associated with
all atomic terms.

There are several constructions for compound terms. First, given τ, . . . , σ, a list of terms, the
ordered tuple

〈τ, . . . , σ〉

is a compound term. If the types of τ, . . . , σ are A, . . . ,B, the type of the tuple is A× . . .×B since
the tuple is to be an element of this domain. The tuple notation for combining functions given
earlier should be disregarded here.

The next construction is function application. If the term τ has type A → B and the term σ
has the type A, then the compound term

τ(σ)

32

has type B. Function application denotes the value of a function at a given input. The nota-
tion τ(σ0, . . . , σn) abbreviates τ(〈σ0, . . . , σn〉). Functions applied to tuples allows us to represent
applications of multi-variate functions.

The λ-abstraction is used to define functions. Let x0, . . . , xn be a list of distinct variables of
type D0, . . . ,Dn. Let τ be a term of some type Dn+1. τ can be thought of as a function of n + 1
variables with type (D0 × . . .×Dn) → Dn+1. The name for this function is written

λx0, . . . , xn.τ

This expression denotes the entire function. To look at some familiar functions in the new notation,
consider

λx, y.x

This notation is read “lambda ex wye (pause) ex”. If the types of x and y are A and B respectively,
the function has type (A×B) → A. This function is the first projection function p0. This function
and the second projection function can be defined by the following equations:

p0 = λx, y.x
p1 = λx, y.y

Recalling the function tuple notation introduced in an earlier section, the following equation holds:

〈f, g〉 = λw.〈f(w), g(w)〉

which defines a function of type D1 → (D2 ×D3).
Other familiar functions are defined by the following equations:

eval = λf, x.f(x)
curry = = λgλxλy.g(x, y)

The curry example shows that this notation can be iterated. A distinction is thus made between
the terms λx, y.x and λxλy.x which have the types D0×D1 → D0 and D0 → D1 → D0 respectively.
Thus, the following equation also holds:

curry(λx, y.τ) = λxλy.τ

which relates the multi-variate form to the iterated or curried form. Another true equation is

fix = fix(λFλf.f(F (f)))

where fix has type (D → D) → D and fix has type

((((D → D) → D) → ((D → D) → D)) → ((D → D) → D))

This is the content of Exercise 4.9.
This notation can now be used to define functions using recursion equations. For example, the

function σ in Example 4.3 can be characterized by the following equation:

σ = fix(λfλn.cond(zero(n), 0, f(pred(n)) + pred(n))

which states that σ is the least recursively defined function f whose value at n is cond(. . .). The
variable f occurs in the body of the cond expression, but this is just the point of a recursive

33

definition. f is defined in terms of its value on “smaller” input values. The use of the fixed point
operator makes the definition explicit by forcing there to be a unique solution to the equation.

In an abstraction λx, y, z.τ , the variables x,y, and z are said to be bound in the term τ . Any
other variables in τ are said to be free variables in τ unless they are bound elsewhere in τ . Bound
variables are simply placeholders for values; the particular variable name chosen is irrelevant. Thus,
the equation

λx.τ = λy.τ [y/x]

is true provided y is not free in τ . The notation τ [y/x] specifies the substitution of y for x everywhere
x occurs in τ . The notation τ [σ/x] for the substitution of the term σ for the variable x is also
legitimate.

To show that these equations with λ–terms are indeed meaningful, the following theorem relating
λ–terms and approximable mappings must be proved.

Theorem 5.1: Every typed λ–term defines an approximable function of its free variables.

Proof Induction on the length of the term and its structure will be used in this proof.

Variables Direct since x 7→ x is an approximable function.

Constants Direct since x 7→ k is an approximable function for constant k.

Tuples Let τ = 〈σ0, . . . , σn〉. Since the σi terms are less complex, they are approximable functions
of their free variables by the induction hypothesis. Using Theorem 3.4 (generalized to the
multi-variate case) then, τ which takes tuples as values also defines an approximable function.

Application Let τ = σ0(σ1). We assume that the types of the terms are appropriately matched.
The σi terms define approximable functions again by the induction hypothesis. Recalling
the earlier equations, the value of τ is the same as the value of eval(σ0, σ1). Since eval is
approximable, Theorem 3.7 shows that the term defines an approximable function.

Abstraction Let τ = λx.σ. By the induction hypothesis, σ defines a function of its free variables.
Let those free variables be of types D0, . . . ,Dn where Dn is the type of x. Then σ defines an
approximable function

g : D0 × . . .×Dn → D′

where D′ is the type of σ. Using Theorem ??, the function

curry(g) : D0 × . . .×Dn−1 → (Dn → D′)

yields an approximable function, but this is just the function defined by τ . The reader can
generalize this proof for multiple bound variables in τ .

2

Given this, the equation τ = σ states that the two terms define the same approximable function
of their free variables. As an example,

λx.τ = λy.τ [y/x]

provided y is not free in τ since the generation of the approximable function did not depend on the
name x but only on its location in τ . Other equations such as these are given in the exercises. The
most basic rule is shown below.

34

Theorem 5.2: For appropriately typed terms, the following equation is true:

(λx0, . . . , x1.τ)(σ0, . . . , σn−1) = τ [σ0/x0, . . . , σn−1/xn−1]

Proof The proof is given for n = 1 and proceeds again by induction on the length of the term
and the structure of the term.

Variables This means (λx.x)(σ) = σ must be true which it is.

Constants This requires (λx.k)(σ) = k must be true which it is for any constant k.

Tuples Let τ = 〈τ0, τ1〉. This requires that

(λx.〈τ0, τ1〉)(σ) = 〈τ0[σ/x], τ1[σ/x]〉

must be true. This equation holds since the left-hand side can be transformed using the
following true equation:

(λx.〈τ0, τ1〉)(σ) = 〈(λx.τ0)(σ), (λx.τ1)(σ)〉

Then the inductive hypothesis is applied to the τi terms.

Applications Let τ = τ0(τ1). Then, the result requires that the equation

(λx.τ0(τ1))(σ) = τ0[σ/x](τ1[σ/x])

hold true. To see that this is true, examine the approximable functions for the left-hand side
of the equation.

τ0 7→ V̄ , x→ t0
τ1 7→ V̄ , x→ t1
σ 7→ V̄ → s
so
(λx.τ0(τ1))(σ) 7→ V̄ → [(x→ t0(t1))(s)]

= V̄ , x→ [(x→ t0)(s)]([(x→ t1)(s)])

From this last term, we use the induction hypothesis. To see why the last step holds, start
with the set representing the left-hand side and using the aprroximable mappings for the
terms:

(λx.τ0(τ1))(σ)
7→ V̄ → [(x→ t0(t1))(s)]
= {b | ∃a.a ∈ s ∧ a [x→ t0(t1)] b}
= {b | ∃a.a ∈ s ∧ a {(x, u) | v ∈ x→ t1) ∧ v (x→ t0) u} b}
= {b | ∃a.a ∈ s ∧ v ∈ (x→ t1)(a) ∧ v (x→ t0)(a) b}
= {b | ∃a, c.a ∈ s ∧ a (x→ t1) v ∧ a (x→ t0) c ∧ v c b}
= {b | v ∈ [(x→ t1)(s)] ∧ c ∈ (x→ t0)(s) ∧ v c b}
= {b | v ∈ [(x→ t1)(s)] ∧ v [(x→ t0)(s)] b}
= [(x→ t0)(s)]([(x→ t1)(s)])

Abstractions Let τ = λy.τ0. The required equation is

(λx.λy.τ0)(σ) = λy.τ0[σ/x]

35

provided that y is not free in σ. The following true equation applies here:

(λx.λy.τ)(σ) = λy.((λx.τ)(σ))

To see that this equation holds, let g be a function of n + 2 free variables defined by τ . By
Theorem 5.1, the term λx.λy.τ defines the function curry(curry(g)) of n variables. Call this
function h. Thus,

h(v)(σ)(y) = g(v, σ, y)

where v is the list of the other free variables. Using a combinator inv which inverts the order
of the last two arguments,

h(v)(σ)(y) = curry(inv(g))(v, y)(σ)

But, curry(inv(g)) is the function defined by λx.τ . Thus, we have shown that

(λx.λy.τ)(σ)(y) = (λx.τ)(σ)

is a true equation. If y is not free in α and α(y) = β is true, then α = λy.β must also be true.

2

If τ ′ is the term λx, y.τ , then τ ′(x, y) is the same as τ . This specifies that x and y are not free
in τ . This notation is used in the proof of the following theorem.

Theorem 5.3: The least fixed point of

λx, y.〈τ(x, y), σ(x, y)〉

is the pair with coordinates fix(λx.τ(x, fix(λy.σ(x, y)))) and fix(λy.σ(fix(λx.τ(x, y)), y)).

Proof We are thus assuming that x and y are not free in τ and σ. The purpose here is to find
the least solution to the pair of equations:

x = τ(x, y) and y = σ(x, y)

This generalizes the fixed point equation to two variables. More variables could be included using
the same method. Let

y∗ = fix(λy.σ(fix(λx.τ(x, y)), y))

and
x∗ = fix(λx.τ(x, y))

Then,
x∗ = τ(x∗, y∗)

and
y∗ = σ(fix(λx.τ(x, y∗), y∗))

= σ(x∗, y∗).

This shows that the pair 〈x∗, y∗〉 is one fixed point. Now, let 〈x0, y0〉 be the least solution. (Why
must a least solution exist? Hint: Consider a suitable mapping of type (Dx × Dy) → (Dx × Dy).)
Thus, we know that x0 = τ(x0, y0), y0 = σ(x0, y0), and that x0 v x∗ and y0 v y∗. But this means
that τ(x0, y0) v x0 and thus fix(λx.τ(x, y0)) v x0 and consequently

σ(fix(λx.τ(x, y0), y0)) v σ(x0, y0) v y0

36

By the fixed point definition of y∗, y∗ v y0 must hold as well so y0 = y∗. Thus,

x∗ = fix(λx.τ(x, y∗)) = fix(λx.τ(x, y0)) v x0.

Thus, x∗ = x0 must also hold. A similar argument holds for x0. 2

The purpose of the above proof is to demonstrate the use of least fixed points in proofs. The
following are also true equations:

fix(λx.τ(x)) = τ(fix(λx.τ(x)))

and
τ(y) v y ⇒ fix(λx.τ(x)) v y

if x is not free in τ . These equations combined with the monotonicity of functions were the methods
used in the proof above. Another example is the proof of the following theorem.

Theorem 5.4: Let x,y, and τ(x, y) be of type D and let g : D → D be a function. Then the
equation

λx.fix(λy.τ(x, y)) = fix(λg.λx.τ(x, g(x)))

holds.

Proof Let f be the function on the left-hand side. Then,

f(x) = fix(λy.τ(x, y)) = τ(x, f(x))

holds using the equations stated above. Therefore,

f = λx.τ(x, f(x))

and thus
g0 = fix(λg.λx.τ(x, g(x))) v f.

By the definition of g0 we have
g0(x) = τ(x, g0(x))

for any given x. By the definition of f we find that

f(x) = fix(λy.τ(x, y)) v g0(x)

must hold for all x. Thus f v g0 and the equation is true. 2

This proof illustrates the use of inclusion and equations between functions. The following
principle was used:

(∀x.τ v σ) ⇒ λx.τ v λx.σ

This is a restatement of the first part of Theorem ??.

37

Below is a list of various combinators with their definitions in λ-notation. The meanings of
those combinators not previously mentioned should be clear.

p0 = λx, y.x
p1 = λx, y.y
pair = λx.λy.〈x, y〉
n− tuple = λx0λ . . . λxn−1.〈x0, . . . , xn−1〉
diag = λx.〈x, x〉
funpair = λf.λg.λx.〈f(x), g(x)〉
projn

i = λx0, . . . , xn−1.xi

invn
i,j = λx0, . . . , xi, . . . , xj , . . . , xn−1.〈x0, . . . , xj , . . . , xi, . . . , xn−1〉

eval = λf, x.f(x)
curry = λg.λx.λy.g(x, y)
comp = λf, g.λx.g(f(x))
const = λk.λx.k
fix = λf.fix(λx.f(x))

These combinators are actually schemes for combinators since no types have been specified and
thus the equations are ambiguous. Each scheme generates an infinite number of combinators for
all the various types.

One interest in combinators is that they allow expressions without variables—if enough combi-
nators are used. This is useful at times but can be clumsy. However, defining a combinator when
the same combination of symbols repeatedly appears is also useful.

There are some familiar combinators that do not appear in the table. Combinators such as
cond, pred, and succ cannot be defined in the pure λ-calculus but are instead specific to certain
domains. They are thus regarded as primitives. A large number of other functions can be defined
using these primitives and the λ-notation, as the following theorem shows.

Theorem 5.5: For every partial recursive function h : N → N, there is a λ-term τ of type N → N
such that the only constants occurring in τ are cond, succ, pred, zero, and 0 and if h(n) = m then
τ(n) = m. If h(n) is undefined, then τ(n) = ⊥ holds. τ(⊥) = ⊥ is also true.

Proof It is convenient in the proof to work with strict functions f : N k → N such that if any
input is ⊥, the result of the function is ⊥. The composition of strict functions is easily shown to
be strict. It is also easy to see that any partial function g : Nk → N can be extended to a strict
approximable function ḡ : N k → N which yields the same values on inputs for which g is defined.
Other input values yield ⊥. We want to show that ḡ is definable with a λ-expression.

First we must show that primitive recursive functions have λ-definitions. Primitive recursive
functions are formed from starting functions using composition and the scheme of primitive re-
cursion. The starting functions are the constant function for zero and the identity and projection
functions. These functions, however, must be strict so the term λx, y.x is not sufficient for a projec-
tion function. The following device reduces a function to its strict form. Let λx.cond(zero(x), x, x)
be a function with x of type N . This is the strict identity function. The strict projection function
attempted above can be defined as

λx, y.cond(zero(y), x, x)

The three variable projection function can be defined as

λx, y, z.cond(zero(x), cond(zero(z), y, y), cond(zero(z), y, y))

38

While not very elegant, this device does produce strict functions. Strict functions are closed
under substitution and composition. Any substitution of a group of functions into another function
can be defined with a λ-term if the functions themselves can be so defined. Thus, we need to show
that functions obtained by primitive recursion are definable. Let f : N → N , and g : N 3 → N be
total functions with f̄ and ḡ being λ-definable. We obtain the function h : N 2 → N by primitive
recursion where

h(0,m) = f(m)
h(n+ 1,m) = g(n,m, h(n,m))

for all n,m ∈ N . The λ-term for h̄ is

fix(λk.λx, y.cond(zero(x), f̄(y), ḡ(pred(x), y, k(pred(x), y))))

Note that the fixed point operator for the domain N 2 → N was used. The variables x and y are of
type N . The cond function is used to encode the function requirements. The fixed point function
is easily seen to be strict and this function is h̄.

Primitive recursive functions are now λ-definable. To obtain partial recursive functions, the
µ-scheme (the least number operator) is used. Let f(n,m) be a primitive recursive function. Then,
define h, a partial function, as h(m) = the least n such that f(n,m) = 0. This is written as
h(m) = µn.f(n,m) = 0. Since f̄ is λ-definable as has just been shown, let

ḡ = fix(λg.λx, y.cond(zero(f̄(x, y)), x, g(succ(x), y)))

Then, the desired function h̄ is defined as h̄ = λy.ḡ(0, y). It is easy to see that this is a strict
function. Note that, if h(m) is defined, clearly h(m) = ḡ(0,m) is also defined. If h(m) is undefined,
it is also true that ḡ(0,m) = ⊥ due to the fixed point construction but it is less obvious. This
argument is left to the reader. 2

Theorem 5.5 does not claim that all λ-terms define partial recursive functions although this is
also true. Further examples of recursion are found in the exercises.

Exercises

Exercise 5.6: Find the definitions of

λx, y.τ and σ(x, y)

which use only λv with one variable and applications only to one argument at a time. Note that
use must be made of the combinators p0, p1, and pair. Generalize the result to functions of many
variables.

Exercise 5.7: The table of combinators was meant to show how combinators could be defined in
terms of λ-expressions. Can the tables be turned to show that, with enough combinators available,
every λ-expression can be defined by combining combinators using application as the only mode of
combination?

Exercise 5.8: Suppose that f, g : D → D are approximable and f ◦ g = g ◦ f . Show that f and
g have a least common fixed point x = f(x) = g(x). (Hint: See Exercise 4.16.) If, in addition,
f(⊥) = g(⊥), show that fix(f) = fix(g). Will fix(f) = fix(f2)? What if the assumption is
weakened to f ◦ g = g2 ◦ f?

39

Exercise 5.9: For any domain D, D∞ can be regarded as consisting of bottomless stacks of
elements of D. Using this view, define the following combinators with their obvious meaning:
head : D∞ → D, tail : D∞ → D∞ and push : D × D∞ → D∞. Using the fixed point theorem,
argue that there is a combinator diag : D → D∞ where for all x ∈ D, diag(x) = 〈x〉∞n=0. (Hint:
Try a recursive definition, such as

diag(x) = push(x, diag(x))

but be sure to prove that all terms of diag(x) are x.) Also introduce by an appropriate recursive
definition a combinator map : (D → D)∞ ×D → D∞ where for elements of the proper type

map(〈fn〉∞n=0, x) = 〈fn(x)〉∞n=0

Exercise 5.10: For any domain D introduce, as a least fixed point, a combinator

while : (D → T)× (D → D) → (D → D)

by the recursion equation

while(p, f)(x) = cond(p(x), while(p, f)(f(x)), x)

Prove that
while(p, while(p, f)) = while(p, f)

Show how while could be used to obtain the least number operator,µ, mentioned in the proof of
Theorem 5.5. Generalize this idea to define a combinator

find : D∞ × (D → T) → D

which means “find the first term in the sequence (if any) which satisfies the given predicate”.

Exercise 5.11: Prove the existence of a one-one function num : N× N ↔ N such that

num(0, 0) = 0
num(n,m+ 1) = num(n+ 1,m)
num(n+ 1, 0) = num(0, n) + 1

Draw a descriptive picture (an infinite matrix) for the function. Find a closed form for the values
if possible. Use the function to prove the isomorphism between P(N),P(N×N), and P(N)×P(N).

Exercise 5.12: Show that there are approximable mappings

graph : (P(N) → P(N)) → P(N)

and
fun : P(N) → (P(N) → P(N))

where fun ◦ graph = λf.f and graph ◦ fun v λx.x. (Hint: Using the notation [n0, . . . , nk] =
num(n0, [n1, . . . , nk]), two such combinators can be given by the formulas

fun(u)(x) = {m | ∃n0, . . . , nk−1 ∈ x.[n0 + 1, . . . , nk−1 + 1, 0,m] ∈ u}
graph(f) = {[n0 + 1, . . . , nk−1 + 1, 0,m] |m ∈ f({n0, . . . , nk−1})}

where k is a variable - meaning all finite sequences are to be considered.)

40

6 Introduction to Domain Equations

As stressed in the introduction, the notion of computation with potentially infinite elements is
an integral part of domain theory. The previous sections have defined the notion of functions
over domains, as well as a notation for expressing these functions. In addition, the notion of
computation through series of approximations has been addressed. This computation is possible
since the functions defined have been approximable and thus continuous. This section addresses the
construction of more complex domains with infinite elements. The next section looks specifically
at the notion of computability with respect to these infinite elements. The last section looks at
another approach to domain construction.

New domains have been constructed from existing ones using domain constructors such as the
product construction (×), the function space construction (→) and the sum construction (+) of
Exercise 3.31. These constructors can be iterated similar to the way that function application was
iterated to form recursive function definitions. In this way, domains can be characterized using
recursion equations, called domain equations.

A domain equation represents an isomorphism between the domain as a whole and the combina-
tion of domains that comprise it. These recursive domains are frequently termed reflexive domains
since, as in the following example, the domain contains a copy of itself in its structure.

Example 6.1: Consider the following domain equation:

T = A+ (T × T)

where A is a previously defined domain. This domain can be thought of as containing atomic
elements from A or pairs of elements of T . What do the elements of this domain look like? In
particular, what are the finite elements of this domain? How is the domain constructed? What is
an appropriate approximation ordering for the domain? What do lubs in this domain look like?
What is the appropriate notion of consistency? Does this domain even exist? Is there a unique
solution to this equation? Each of these questions is examined below.

The domain equation tells us that an element of the domain is either an element from A or
is a pair of “smaller” elements from T . One method of constructing a sum domain is using pairs
where some distinguished element denotes what type an element is. Thus, for some a ∈ A, the
pair 〈π, a〉 might represent the element in T for the given element a. For some s, t ∈ T , the pair
〈〈s, t〉, π〉 might then represent the element in T for the pair s, t. Thus, π is the distinguished
element, and the location of π in the pair specifies the type of the element. The finite elements
are either elements in T representing the (finite) elements of A or the pair elements from T whose
components are also finite elements in T .

The question then arises about infinite elements. Are there infinite elements in this domain?
Consider the following fixed point equation for some element for a ∈ A:

x = 〈〈a, x〉, π〉.

The fixed point of this equation is the infinite product of the element a. Does this element fit the
definition for T ? From the informal description of the elements of T given so far, x does qualify as
a member of T .

Now that some intuition has been developed about this domain, a formal construction is re-
quired. Let 〈A,vA〉 be the finitary basis used to generate the domain A. Let π be an object such
that π /∈ A. Define the bottom element of the finitary basis T as ∆T = 〈π, π〉. Next, all the
elements of A must be included so define an element in T for each a ∈ A as 〈π, a〉. Finally, pair

41

elements for all elements in T must exist in T to complete the construction. The set T can be
defined inductively as the least set such that:

1. ∆T ∈ T

2. 〈π, a〉 ∈ T whenever a ∈ A

3. 〈〈∆T , s〉, π〉 ∈ T whenever s ∈ T

4. 〈〈t,∆T 〉, π〉 ∈ T whenever t ∈ T

The set can also be characterized by the following fixed point equation:

T = {∆T } ∪ {〈π, a〉 | a ∈ A} ∪ {〈〈∆T , s〉, π〉 | s ∈ T} ∪ {〈〈t,∆T 〉, π〉 | t ∈ T}.

A solution must exist for this equation by the fixed point theorem.
Now that the basis elements have been defined, we must show how to find lubs. We will again

use an inductive definition.

1. 〈π, π〉 t t = t for all t ∈ T

2. For a, b ∈ A, 〈π, a〉 t 〈π, b〉 = 〈π, a t b〉 if a t b exists in A

3. 〈〈s, t〉, π〉 t 〈〈s′, t′〉, π〉 = 〈〈s t s′, t t t′〉, π〉 if s t s′ and t t t′ exist in T.

4. The lub 〈π, a〉 t 〈〈s, t〉, π〉 does not exist.

Next, the notion of consistency needs to be explored. From the definition of lubs given above,
the following sets are consistent:

1. The empty set is consistent.

2. Everything is consistent with the bottom element.

3. A set of elements all from the basis A is consistent in T if the set of elements is consistent in
A.

4. A set of product elements in T is consistent if the left component elements are consistent and
the right component elements are consistent.

These conditions derive from the sum and product nature of the domain.
The approximation ordering in the basis has the following inductive definition:

1. ∆T vT s for all s ∈ T

2. y vT u t∆T whenever y vT u

3. 〈π, a〉 vT 〈π, b〉 whenever a vA b

4. 〈〈s, t〉, π〉 vT 〈〈u, v〉, π〉 whenever s vT u and t vT v

The next step is to verify that T is indeed a finitary basis. The basis is still countable. The
approximation is clearly a partial order. The existence of lubs of finite bounded subsets must be
verified. The definition of consistency gives us the requirements for a bounded subset. Each of the
conditions for consistency are examined inductively since the definitions are all inductive:

42

1. The lub of the empty set is the bottom element ∆T .

2. The lub of a set containing the bottom element is the lub of the set without the bottom
element which must exist by the induction hypothesis.

3. The lub of a set of elements all from the A is the element in T for the lub in A. This element
must exist since A is a finitary basis and all elements from A have corresponding elements
in T.

4. The lub of a set of product elements is the pair of the lub of the left components and the lub
of the right components. These exist by the induction hypothesis.

Thus, a finitary basis has been created; the domain is formed as always from the basis. The solution
to the domain equation has been found since any element in the domain T is either an element
representing an element in A or is the product of two other elements in T . Similarly, any element
found on the left-hand side must also be in the domain T by the construction. Thus, the domain
T is identical to the domain A+ (T × T).

To look at the question concerning the existence and uniqueness of the solution to this domain
equation, recall the fixed point theorem. This theorem states that a fixed point set exists for any
approximable mapping over a domain. In the final section, the concept of a universal domain is
introduced. A universal domain is a domain which contains all other domains as sub-domains.
These sub-domains are, roughly speaking, the image of approximable functions over the universal
domain. The domain equation for T can be viewed as an approximable mapping over the universal
domain. As such, the fixed point theorem states that a least fixed point set for the function does
exist and is unique. Sub-domains are defined formally below.

Looking again at the informal discussion concerning the elements of the domain T , the infinite
element proposed does fit into the formal definition for elements of T . This element is an infinite
tree with all left sub-trees containing only the element a. For this infinite element to be computable,
it must be the lub of some ascending chain of finite approximations to it. The element x can, in
fact, be defined by the following ascending sequence of finite trees:

x0 = ⊥
xn+1 = 〈〈a, xn〉, π〉
x =

⊔∞
n=0 xn

Thus, using domain equations, a domain has been defined recursively. This domain includes
infinite as well as finite elements and allows computation on the infinite elements to proceed using
the finite approximations, as with the more conventionally defined domains presented earlier.

The final topic of this section is the notion of a sub-domain. Informally, a sub-domain is
a structured part of a larger domain. Earlier, a domain was described as a sub-domain of the
universal domain. Thus, the sub-domain starts with a subset of the elements of the larger domain
while retaining the approximation ordering, consistency relation and lub relation, suitably restricted
to the subset elements.

Definition 6.2: [Sub-Domain] A domain 〈R,vR〉 is a sub-domain of a domain 〈D,vD〉, denoted
R�D iff

1. R ⊆ D - The elements of R are a subset of the elements of D.

2. ⊥R = ⊥D - The bottom elements are the same.

43

3. For x, y ∈ R, x vR y ⇐⇒ x vD y - The approximation ordering for R is the approximation
ordering for D restricted to elements in R.

4. For x, y, z ∈ R, x tR y = z iff x tD y = z - The lub relation for R is the lub relation for D
restricted to elements in R.

5. R is a domain.

Equivalently, a sub-domain can be thought of as the image of an approximable function which
approximates the identity function (also termed a projection). The notion of a sub-domain is used
in the final section in the discussions about the universal domain. This mapping between the
domains can be formalized as follows:

Theorem 6.3: If D � E , then there exists a projection pair of approximable mappings i : D → E
and j : E → D where j ◦ i = ID and i ◦ j v IE where i and j are determined by the following
equations:

i(x) = {y ∈ E | ∃z ∈ x.z v y}
j(y) = {x ∈ D | x ∈ y}

for all x ∈ D and y ∈ E .

The proof is left as an exercise.
By the definition of a sub-domain, it should be clear that

D0 � E ∧ D1 � E ⇒ (D0 �D1 ⇐⇒ D0 ⊆ D1)

Using this observation, the sub-domains of a domain can be ordered. Indeed, the following theorem
is a consequence of this ordering.

Theorem 6.4: For a given domain D, the set of sub-domains {D0 | D0 �D} form a domain.

The proof proceeds using the ordering relation defined as an approximation ordering and is left as
an exercise.

Finally, a converse of Theorem 6.3 can also be established:

Theorem 6.5: For two domains D and E , if there exists a projection pair i : D → E and j : E → D
with j ◦ i = ID and i ◦ j v IE , then D′ � E where D ≈ D′.

Proof We want to show that i maps finite elements to finite elements and that D′ is the image of
D in E .

For some x ∈ D with Ix as the principal ideal of x, we can write

i(Ix) = t{Iy | y ∈ i(Ix)}

Applying j to both sides we get

Ix = j ◦ i(Ix) = t{j(Iy) | y ∈ i(Ix)}

since j ◦ i = ID and j is continuous by assumption. But, since x ∈ Ix, x ∈ j(Iy) for some y ∈ i(Ix).
This means that

Ix ⊆ j(Iy)

and thus
i(Ix) ⊆ i ◦ j(Iy) ⊆ Iy

44

Since Iy ⊆ i(Ix) must hold by the construction, i(Ix) = Iy. This proves that finite elements are
mapped to finite elements.

Next, consider the value for i(⊥D). Since ⊥D vD j(⊥E), i(⊥D) v ⊥E . Thus i(⊥D) = ⊥E .
Thus, D is isomorphic to the image of i in E . We still must show that D′ is a domain. Thus, we need
to show that if a lub exists in E for a finite subset in D′, then the lub is also in D′. Let y′, z′ ∈ D′

and y′ t z′ = x′ ∈ E. Then, there exists y, z ∈ D such that i(Iy) = Iy′ and i(Iz) = Iz′ which
implies that Iy = j(Iy′) and Iz = j(Iz′). Since Iy′ v Ix′ and j(Iy′) v j(Ix′) by monotonicity,
y ∈ j(Ix′) must hold. By the same reasoning, z ∈ j(Ix′). But then x = y t z ∈ j(Ix′) must also
hold and thus y t z ∈ D since the element j(Ix′) must be an ideal. But,

Iy v Ix ⇒ Iy′ v i(Ix)
Iz v Ix ⇒ Iz′ v i(Ix)

This implies that y′ t z′ = x′ ∈ i(Ix). We already know that x ∈ j(Ix′) so i(Ix) v Ix′ . Thus,
i(Ix) = Ix′ and thus, x′ ∈ D′. 2

Exercises

Exercise 6.6: Show that there must exist domains satisfying

A = A+ (A× B) and
B = A+ B

Decide what the elements will look like and define A and B using simultaneous fixed points.

Exercise 6.7: Prove Theorem 6.4

Exercise 6.8: Prove Theorem 6.3

Exercise 6.9: Show that if A and B are finite systems, that

D � E �D ⇒ D ≈ E

where D ≈ D′ and D′ � E is denoted D′ � E .

7 Computability in Effectively Given Domains

In the previous sections, we gave considerable emphasis to the notion of computation using in-
creasingly accurate approximations of the input and output. This section defines this notion of
computability more formally. In Section 5, we found that partial functions over the natural num-
bers were expressible in the λ-notation. This relationship characterizes computation for a particular
domain. To describe computation over domains in general, a broader definition is required.

The way a domain is presented impacts the way computations are performed over it. Indeed,
the theorems of recursive function theory rely in part on the normal presentation of the natural
numbers. A presentation for a domain is an enumeration of the elements of the domain. The
standard presentation of the natural numbers is simply the numbers in ascending order beginning
with 0. There are many permutations of the natural numbers, each of which can be considered
a presentation. Computation with these non-standard presentations may be impossible; that is a
computable function on the standard presentation may be non-computable over a non-standard

45

presentation. Therefore, an effective presentation for a domain is defined as a presentation which
makes the required information computable.

Information about elements in a domain can be characterized completely by looking at the
finite elements and their relationships. Thus a presentation must enumerate the finite elements
and allow the consistency and lub relationships on these elements to be computed to allow this
style of computation.

The consistency relation and the lub relation depend on each other. For example, if a set of
elements is consistent, a lub must exist for the set. Given that a set is consistent, the lub can be
found in finite time by just enumerating the elements and checking to see if this element is the lub.
However, if the set is inconsistent, the enumeration will not reveal this fact. Thus, the consistency
relation must be assumed to be recursive in an effective presentation. Exercise 7.10 provides a
description of presentations that should clarify the assumptions made. Formally, a presentation is
defined as follows:

Definition 7.1: [Effective Presentation] The presentation of a finitary basis D is a function
π : N → D such that π(0) = ∆D and the range of π is the set of finite elements of D. The definition
holds for a domain D as well.

A presentation π is effective iff

1. The consistency relation (∃k.πi v πk ∧ πj v πk) for elements πi and πj is recursive4 over i
and j.

2. The lub relation (πk = πi t πj) is recursive over i, j, and k.

This definition supports our intuition about domains; we have stated that the important in-
formation about a domain is the set of finite elements, the ordering and consistency relationships
between the elements and the lub relation. Thus, an effective presentation provides, in a suitable
(that is computable) form, the basic information about the structure and elements of a domain. A
presentation can also be viewed as an enumeration of the elements of the domain with the position
of an element in the enumeration given by the index corresponding to the integer input for that
element in the presentation function with the 0 element representing ⊥. This perspective is used
in the majority of the proofs.

Now that the presentation of a domain has been formalized, the notion of computability can be
formally defined. Thus,

Definition 7.2: [Computable Mappings] Given two domains, D and E with effective presen-
tations π1 and π2 respectively, an approximable mapping f : D → E is computable iff the relation

xn f ym

is recursively enumerable in n and m.

By considering the domain D to be a single element domain, the above definition applies not
only to computable functions but also to computable elements. For d ∈ D where d is the only
element in the domain, the element

e = f(d) ∈ E

defines an element in E . The definition states that e is a computable iff the set

{m ∈ N | ym v e}
4Recursive in this context means that the relation is decidable.

46

is a recursively enumerable set of integers. Clearly if the set of elements approximating another
is finite, the set is recursive. The notion of a recursively enumerable set simply requires that
all elements approximating the element in question be listed eventually. The computation then
proceeds by accepting an enumeration representing the input element and enumerating the elements
that approximate the desired output element.

Now that the notions of computability and effective presentations have been formalized, the
methods of constructing domains and functions will be addressed.

The proof of the next theorem is trivial and is left to the reader.

Theorem 7.3: The identity map on an effectively given domain is computable. The composition
of computable mappings on effectively given domains are also computable.

The following corollary is a consequence of this theorem:

Corollary 7.4: For computable function f : D → E and a computable element x ∈ D, the element
f(x) ∈ E is computable.

In addition, the standard domain constructors maintain effective presentations.

Theorem 7.5: For domains D0 and D1 with effective presentations, the domains

D0 +D1 and D0 ×D1

are also effectively given. In addition, the projection functions are all computable. Finally, if f and
g are computable maps, then so are f + g and f × g.

Proof Let {Xi | i ∈ N} be the enumeration of D0 and {Yi | i ∈ N} be the enumeration of D1.
Another method of sum construction is to use two distinguishing elements in the first position to
specify the element type. Thus, a sum domain can be defined as follows:

D0 +D1 = {(∆0,∆1)} ∪ {(0, x) | x ∈ D0} ∪ {(1, y) | y ∈ D1}

The enumeration can then be defined as follows for n ∈ N:

Z0 = (∆0,∆1)
Z2n+1 = (0, Xn)
Z2n+2 = (1, Yn)

The proof that Zi is an effective presentation is left as an exercise.
For the product construction, the domain appears as follows:

D0 ×D1 = {(x, y) | x ∈ D0, y ∈ D1}

The enumeration can be defined in terms of the functions p : N → N, q : N → N, and r : (N×N) → N
where for m, n, k ∈ N:

p(r(n,m)) = n
q(r(n,m)) = m
r(p(k), q(k)) = k

Thus, r is a one-to-one pairing function (see Exercise 5.11) of which there are several. The
functions p and q extract the indices from the result of the pairing function. The enumeration for
the product domain is then defined as follows:

Wi = (Xp(i), Yq(i))

47

The proof that this is an effective presentation is also left as an exercise.
For the combinators, the relations will be defined in terms of the enumeration indices. For

example,
Xn in0 Zm ⇐⇒ m = 0 or

∃k.m = 2k + 1 ∧Xk v Xn

Wk proj1 Ym ⇐⇒ Ym v Yq(k)

The reader should verify that these sets are recursively enumerable. For this proof, recall that
recursively enumerable sets are closed under conjunction, disjunction, substituting recursive func-
tions, and applying an existential quantifier to the front of a recursive predicate. The proof for the
other combinators is left as an exercise. 2

Product spaces formalize the notion of computable functions of several variables. Note that the
proof of Theorem 3.7 shows that substitution of computable functions of severable variables into
other computable functions are still computable. The next step is to show that the function space
constructor preserves effectiveness.

Theorem 7.6: For domains D0 and D1 with effective presentations, the domain D0 → D1 also has
an effective presentation. The combinators apply and curry are computable if all input domains
are effectively given. The computable elements of the domain D0 → D1 are the computable maps
for D0 → D1.

Proof Let D0 = {Xi | i ∈ N} and D1 = {Yi | i ∈ N} be the presentations for the domains.
The elements of D0 → D1 are finite step functions which respect the mapping of some subset of
D0 ×D1. Given the enumeration, each element can be associated with a set

{(Xni , Ymi) | ∃q.1 ≤ i ≤ q}

Thus, there is a finite set of integers pairs that determine the element. Given the definition of
consistency from Theorem 3.15 for elements in the function space domain and the decidability
of consistency in D0 and D1, consistency of any finite set of this form is decidable (tedious but
decidable since all elements must be checked with all others, etc). Since consistency is decidable, a
systematic enumeration of pair sets which are consistent can be made; this enumeration is simply
the enumeration of D0 → D1. Finding the lub consists of making a finite series of tests to find the
element that is the lub, which must exist since the set is consistent and we have closure on lubs of
finite consistent subsets. Finding the lub requires a finite series of checks in both D0 and D1 but
these checks are decidable. Thus, the lub relation is also decidable in D0 → D1. This shows that
D0 → D1 is effectively given.

To show that apply and curry are computable, the mappings need to be examined. The mapping
defined for apply is

(F, a) apply b ⇐⇒ a F b

The function F is the lub of all the finite step functions that are consistent with it. As such, F can
be viewed as the canonical representative of this set. Since F is a finite step function, this relation
is decidable. As such, the apply relation is recursive and not just recursively enumerable and apply
is a computable function.

The reasoning for curry is similar in that the relations are studied. Given the increase in the
number of domains, the construction is more tedious and is left for the exercises.

To see that the computable elements correspond to the computable maps, recall the relationship
shown in Theorem 3.20 between the maps and the elements in the function space. Thus, we have

a f b ⇐⇒ b ∈ f(Ia) or Ib v f(Ia)

48

Since f is a computable map, we know that the pairs in the map are recursively enumerable. Using
the previous techniques for deciding consistency of finite sets, the set of elements consistent with
f can be enumerated. But this set is simply the ideal for f in the function space. The converse
direction is trivial. 2

The final combinator to be discussed, and perhaps the most important, is the fixed point
combinator.

Theorem 7.7: For any effectively given domain, D, the combinator fix : (D → D) → D is
computable.

Proof Let {Xn | n ∈ N} be the presentation of the domain D. Recall that for f ∈ D → D,

f fix X ⇐⇒ ∃k ∈ N.∆ f X1 f . . . f Xk ∧Xk = X

All of the checks in this finite sequence are decidable since D is effectively given. In addition,
existential quantification of a decidable predicate gives a recursively enumerable predicate. Thus,
fix is computable. 2

Now that this has been formalized, what has been accomplished? The major consequence of the
theorems to this point is that any expression over effectively given domains (that is effectively given
types) combined with computable constants using the λ-notation and the fixed point combinator is
a computable function of its free variables. Such functions, applied to computable arguments, yield
computable values. These functions also have computable least fixed points. All this gives us a
mathematical programming language for defining computable operations. Combining this language
with the specification of types with domain equations gives a powerful language.

As an example, the effectiveness of the domain T from Example 6.1 is studied. The complete
proof is left as an exercise.

Example 7.8: Recall the domain T from the previous section. This domain is characterized by
the domain equation

T = A+ (T × T)

for some domain A. If A is effectively given, we wish to show that T is effectively given as well.
The elements are either atomic elements from A or are pairs from T . Let A = {Ai | i ∈ N} be the
enumeration for A. An enumeration for T can be defined as follows:

T0 = ⊥T

T2n+1 = 3 ∗An

T2n+2 = 3 ∗ Tp(n) + 1 ∪ 3 ∗ Tq(n) + 2

where for A, a set of indices, m ∗A+ k = {m ∗ n+ k | n ∈ A}. The functions p and q here are the
inverses of the pairing function r defined in Theorem 7.5. These functions must be defined such
that p(n) ≤ n and q(n) ≤ n so that the recursion is well defined by taking smaller indices. The
rest of the proof is left to the exercises. Specifically, the claim that T = {Ti} should be verified as
well as the effectiveness of the enumeration. These proofs rely either on the effectiveness of A, on
the effectiveness of elements in T with smaller indices, or are trivial.

The final example uses the powerset construction. We have repeatedly used the fact that a
powerset is a domain. Its effectiveness is now verified.

Example 7.9: Specifically, the powerset of the natural numbers, P(N) is considered. In this
domain, all elements are consistent, and there is a top element, denoted ω, which is the set of all

49

natural numbers. The ordering is the subset relation. The lub of two subsets is the union of the
two subsets, which is decidable. To enumerate the finite subsets, the following enumeration is used:

En = {k | ∃i, j.i < 2k ∧ n = i+ 2k + j ∗ 2k+1}

This says that k ∈ En if the k bit in the binary expansion of n is a 1. All finite subsets of N are of
the form En for some n. Various combinators for P(N) are presented in Exercise 7.14.

Exercises

Exercise 7.10: Show that an effectively given domain can always be identified with a relation

INCL(n,m)

on integers where the derived relations

CONS(n,m) ⇐⇒ ∃k.INCL(k, n) ∧ INCL(k,m)
MEET (n,m, k) ⇐⇒ ∀j.[INCL(j, k) ⇐⇒ INCL(j, n) ∧ INCL(j,m)]

are recursively decidable and where the following axioms hold:

1. ∀n.INCL(n, n)

2. ∀n,m, k.INCL(n,m) ∧ INCL(m, k) ⇒ INCL(n, k)

3. ∃m.∀n.INCL(n,m)

4. ∀n,m.CONS(n,m) ⇒ ∃k.MEET (n,m, k)

Exercise 7.11: Finish the proof of Theorem 7.5.

Exercise 7.12: Complete the proof of Theorem 7.6 by defining curry as a relation and showing it
computable. Is the set recursively enumerable or is it recursive?

Exercise 7.13: Two effectively given domains are effectively isomorphic iff . . . Complete the
statement of the theorem and prove it.

Exercise 7.14: Complete the proof about the powerset in Example 7.9. Show that the combinators
fun and graph from Exercise 5.12 are computable. Show the same for

1. λx, y.x ∩ y

2. λx, y.x ∪ y

3. λx, y.x+ y

where for x, y ∈ P(N),
x+ y = {n+m | n ∈ x,m ∈ y}

What are the computable elements of P(N)?

50

8 Sub-Spaces of the Universal Domain

To have a flexible method of solving domain equations and yielding effectively given domains as
the solutions, the domains will be embedded in a universal domain which is “big” enough to hold
all other domains as sub-domains. This universal domain is shown to be effectively presented,
and the mappings which define the sub-spaces are shown to be computable. First, the correspon-
dence between sub-spaces and mappings called retractions is investigated. It is then shown that
these definitions can be written out using the λ-calculus notation, demonstrating the power of our
mathematical programming language.

We start with the definition of retractions.

Definition 8.1: [Retractions] A retraction of a given domain E is an approximable mapping
a : E → E such that a ◦ a = a.

Thus, a retraction is the identity function on objects in the range of the retraction and maps other
elements into range. The next theorem relates these sets to sub-spaces.

Theorem 8.2: If D � E and if a : E → E is defined such that

X a Z ⇐⇒ ∃Y ∈ D.Z v Y v X

for all X,Z ∈ E, then a is a retraction and D is isomorphic to the fixed point set of a, the set
{y ∈ E | a(y) = y}, ordered under inclusion.

Proof That a is an approximable map is a direct consequence of the definition of sub-space
(Definition 6.2). By Theorem 6.3, a projection pair, i and j, exist for D and this tells us that
a = i◦j (also showing a approximable since approximable mappings are closed under composition).
Theorem 6.3 also tells us that j◦i = ID. To show that a is a retraction, a◦a = amust be established.
Thus,

a ◦ a = i ◦ j ◦ i ◦ j = i ◦ ID ◦ j = i ◦ j = a

holds, showing that a is a retraction.
We now need to show the isomorphism to D. For x ∈ D, i(x) ∈ E and we can calculate:

a(i(x)) = i ◦ j ◦ i(x) = i ◦ ID(x) = i(x)

Thus, i(x) is in the fixed point set of a. For the other direction, let a(y) = y. Then i(j(y)) = y
holds. But, j(y) ∈ D, so i must map D one-to-one and onto the fixed point set of a. Since i and j
are approximable, they are certainly monotonic, and thus the map is an isomorphism with respect
to set inclusion. 2

Not all retractions are associated with a sub-domain relationship. The retractions defined in the
above theorem are all subsets as relations of the identity relation. The retractions for sub-domains
are characterized by the following definition:

Definition 8.3: [Projections] A retraction a : E → E is a projection if a ⊆ IE as relations. The
retraction is finitary iff its fixed point set is isomorphic to some domain.

An example is in order.

Example 8.4: Consider a two element system, O with objects ∆ and 0. For any basis D that is
not trivial (has more than one element), O comes from a retraction on D. Define a combinator
check : D → O by the relation

x check y ⇐⇒ y = ∆ or x 6= ∆D

51

Thus, check(x) = ⊥O ⇐⇒ x = ⊥D. Another combinator can be defined,

fade : O×D → D

such that for t ∈ O and x ∈ D
fade(t, x) = ⊥D if t = ⊥O

= x otherwise

For u ∈ D and u 6= ⊥D, the mapping a is defined as

a(x) = fade(check(x), u)

It can be seen that a is a retraction, but not a projection in general, and the range of a is isomorphic
to O.

These combinators can also be used to define the subset of functions in D → E that are strict.
Define a combinator strict : (D → E) → (D → E) by the equation

strict(f) = λx.fade(check(x), f(x))

with fade defined as fade : O× E → E. The range of strict is all the strict functions; strict is a
projection whose range is a domain.

The next theorem characterizes projections.

Theorem 8.5: For approximable mapping a : E → E, the following are equivalent:

1. a is a finitary projection

2. a(x) = {y ∈ E | ∃x′ ∈ x.x′ a x′ ∧ y v x′} for all x ∈ E .

Proof Assume that (2) holds. We want to show that a is a finitary projection. By the closure
properties on ideals, we know that for all x ∈ E ,

x′ ∈ x ∧ y v x′ ⇒ y ∈ x

Thus, a(x) ⊆ x must hold. In addition, the following trivially holds:

x′ ∈ x ∧ x′ a x′ ⇒ x′ ∈ a(x)

thus a(x) ⊆ a(a(x)) holds for all x ∈ E . This shows that a is indeed a projection. Let D = {x ∈
E|xax}. It is easy to show that D�E and that a is determined from D as required in Theorem 8.2.
Thus, the fixed point set of a is isomorphic to a domain from the previous proofs. Thus, (2)⇒ (1).

For the converse, assume that a is a finitary projection. Let D be isomorphic to the fixed point
set of a. This means there is a projection pair i and j such that j ◦ i = ID and i ◦ j = a and a ⊆ IE .
From Theorem 6.5 then we have that D ≈ D′ and D′ � E . We want to identify D′ as follows:

D′ = {x ∈ E | x a x}

From the proof of Theorem 6.5, the basis elements of D′ are the finite elements of D. Each of these
elements is in the fixed point set of a. Thus,

x ∈ D′ ⇒ a(Ix) = Ix ⇒ x a x

Since a is a projection, Ix must also be a fixed point. Since i(j(Ix)) = Ix implies that j(Ix) is a
finite element of D, x ∈ D′ must hold. Thus, the identification of D′ holds.

Finally, using a = i ◦ j in the formula in Theorem 6.3, the formula in (2) is obtained, proving
the converse. 2

This characterization of projections provides a new and interesting combinator.

52

Theorem 8.6: For any domain E , define sub : (E → E) → (E → E) using the relation

x sub(f) z ⇐⇒ ∃y ∈ E.y f y ∧ y v x ∧ z v y

for all x, z ∈ E and all f : E → E. Then the range of sub is exactly the set of finitary projections
on E . In addition, sub is a finitary projection on E → E . If E is effectively given, then sub is
computable.

Proof Clearly, sub(f) is approximable. It is obvious from the definition that f 7→ sub(f) preserves
lubs and thus is approximable as well. Thus,

y f y ∧ y v x ∧ z v y ⇒ x f z

obviously holds. Thus, sub(f) ⊆ f holds. Also

y f y ⇒ y sub(f) y

thus, sub(f) ⊆ sub(sub(f)) holds as well. Thus, sub is a projection on E → E . The definition of
the relation shows that it is computable when E is effectively given.

Since sub is a projection, its range is the same as its fixed point set. If sub(a) = a, it is easy
to see that clause (2) of Theorem 8.5 holds and conversely . Thus, the range of sub is the finitary
projections.

To see that sub is a finitary projection, we use Theorem 6.4 and Theorem 8.2 to say that
the fixed point set of sub is in a one-to-one inclusion preserving correspondence with the domain
{D |D � E}. 2

With these results and the universal domain to be defined next, the theory of sub-domains is
translated into the λ-calculus notation using the sub combinator. The universal domain is defined
by first defining a domain which has the desired structure but has a top element. The top element
is then removed to give the universal domain.

Definition 8.7: [Universal Domain] As in the section on domain equations, an inductive defi-
nition for a domain V is given as follows:

1. ∆,> ∈ V

2. 〈u, v〉 ∈ V whenever u, v ∈ V

Thus, we are starting with two objects, a bottom element and a top element, and making two
flavors of copies of these objects. Intuitively, we end up with finite binary trees with either the top
or the bottom element as the leaves. To simplify the definitions below, the pairs should be reduced
such that:

1. All occurrences of 〈∆,∆〉 are replaced by ∆ and

2. All occurrences of 〈>,>〉 are replaced by >.

These rewrite rules are easily shown to be finite Church-Rosser.5 As an example of the reduction
the pair

〈〈〈>, 〈>,>〉〉, 〈>,∆〉〉, 〈〈∆,∆〉, 〈>,>〉〉〉
reduces to

〈〈>, 〈>,∆〉〉, 〈∆,>〉〉
. The approximation ordering is defined as follows:

5The finitary basis should be defined as the equivalence classes induced by the reduction. The presentation is
simplified by considering only reduced trees.

53

1. ∆ v v for all v ∈ V

2. v v > for all v ∈ V.

3. 〈u, v〉 v 〈u′, v′〉 iff u v u′ and v v v′

Since the top element is approximated by everything, all finite sets of trees are consistent. The
lub for a pair of trees is defined as follows:

1. u t > = > for u ∈ V

2. > t u = > for u ∈ V

3. u t∆ = u for u ∈ V

4. ∆ t u = u for u ∈ V

5. 〈u, v〉 t 〈u′, v′〉 = 〈u t u′, v t v′〉 for u, v ∈ V

The proof that this forms a finitary basis follows the same guidelines as the proofs in Section 6.
In addition, it should be clear that the presentation is effective.

To form the universal domain, the top element is simply removed. Thus, the system U =
V − {>} is the basis used to form the universal domain. The proof that this is still a finitary
basis with an effective presentation is also straightforward and left to the exercises. Note that
inconsistent sets can now exist since there is no top element. A set is inconsistent iff its lub is >.

We shall now prove the claims made for the universal domain.

Theorem 8.8: The domain U is universal in the sense that for every domain D, D � U . If D
is effectively given, then the projection pair for the embedding is computable. In fact, there is a
correspondence between the effectively presented domains and the computable finitary projections
of U .

Proof Recall that D must be countable to be a finitary basis. Thus, we can assume that the basis
has an enumeration

D = {Xn | n ∈ N}

where X0 = ∆. The effective and general cases are considered together in the proof; comments
about computability are included for the effective case as required. Thus, if D is effectively given,
the enumeration above is assumed to be computable.

To prove that the domain can be embedded in U , the embedding will be shown. To start, for
each finite element di in the basis, define two sets, d+

i and d−i as follows:

d+
i = {d ∈ D | di v d}
d−i = D − d+

i

The d+
i set contains all the elements that di approximates, while the d−i set contains all the other

elements, partitioning D into two disjoint sets. Sets for different elements can be intersected to
form finer partitions of D. For k > 0, let R ∈ {+,−}k, let Ri be the ith symbol in the string R,
and define a region DR as

DR =
k⋂

i=1

dRi
i

54

a

b c

⊥

@
@

�
�

Figure 1: Example Finite Domain

where k is the length of R. The set {DR | R ∈ {+,−}k} of regions partitions D into 2k disjoint
sets. Thus, for each element ei in the enumeration there is a corresponding partition of the basis
given by the family of sets {DR |R ∈ {+,−}i}. For strings R,S ∈ {+,−}∗ such that R is a prefix
of S, denoted R ≤ S, DS ⊆ DR. It is important to realize that the composition of these sets is
dependent on the order in which the elements are enumerated. Some of these regions are empty,
but it is decidable if a given intersection is empty if D is effectively presented. It is also decidable
if a given element is in a particular region.

To see the function these regions are serving, consider the finite domain in Figure 1:6 Consider
the enumeration with

d0 = ⊥, d1 = b, d2 = c, d3 = a

The d+
i and d−i sets are as follows:

d+
1 = {a, b}
d−1 = {c,⊥}
d+

2 = {c}
d−2 = {a, b,⊥}
d+

3 = {a}
d−3 = {b, c,⊥}

The regions are as follows:

D+ = {a, b} D+++ = {}
D− = {⊥, c} D++− = {}
D++ = {} D+−+ = {a}
D+− = {a, b} D+−− = {b}
D−+ = {c} D−++ = {}
D−− = {⊥} D−+− = {c}

D−−+ = {}
D−−− = {⊥}

The regions generated by each successive element encode the relationships induced by the ap-
proximation ordering between the new element and all elements previously added. The reader is
encouraged to try this example with other enumerations of this basis and compare the results.

The embedding of the elements proceeds by building a tree based on the regions corresponding
to the element. The regions are used to find locations in the tree and to determine whether a > or a

6This example is taken from Cartwright and Demers [2].

55

∆ element is placed in the location. These trees preserve the relationships specified by the regions
and thus, the tree embedding is isomorphic to the domain in question. Once the tree is built, the
reduction rules are applied until a non-reducible tree is reached. This tree is the representative
element in the universal domain, and the set of these trees form the sub-space.

The function to determine the location in the tree for a given domain,

LocD : {+,−}∗ → {l, r}∗

takes strings used to generate regions and outputs a path in a tree where l stands for left sub-tree
and r stands for right sub-tree. This path is computed using the following inductive definition:

LocD(ε) = ε.
LocD(R+) = LocD(R)l if DR+ 6= ∅ and DR− 6= ∅.

= LocD(R) otherwise.
LocD(R−) = LocD(R)r if DR+ 6= ∅ and DR− 6= ∅.

= LocD(R) otherwise.

The set of locations for each non-empty region is the set of paths to all leaves of some finite
binary tree. An induction argument is used to show the following properties of LocD that ensure
this:

1. If R ≤ S for R,S ⊆ {+,−}∗, then LocD(R) ≤ LocD(S).

2. Let S = {LocD(R) |R ∈ {+,−}k ∧DR 6= ∅} for k > 0 be a set of location paths for a given k.
For any p ∈ {l, r}∗ there exists q ∈ S such that either p ≤ q or q ≤ p. That is, every potential
path is represented by some finite path.

3. Finally, for all p, q ∈ S if p ≤ q then p = q. This means that a unique leaf is associated with
each location.

To find the tree for a given element dk in the enumeration, apply the following rules to each
R ∈ {+,−}k−1.

1. If DR− 6= ∅ then the leaf for path LocD(R−) is labeled >.

2. If DR+ 6= ∅ then the leaf for path LocD(R+) is labeled ∆.

These rules are used to assign a tree in U, which is then reduced using the reduction rules, for
each element in the enumeration of D. To see that the top element is never assigned by these rules,
note that some region of the form R+ for every length k must be non-empty since it must contain
the element ek being embedded.

Returning to the example, the location function defines paths for these elements as follows:

LocD(+) = l LocD(+−+) = ll
LocD(−) = r LocD(+−−) = lr
LocD(+−) = l LocD(−+−) = rl
LocD(−+) = rl LocD(−−−) = rr
LocD(−−) = rr

The trees generated for each of the elements are:

d0 7→ ∆
d1 7→ 〈∆,>〉
d2 7→ 〈>, 〈∆,>〉〉
d3 7→ 〈〈∆,>〉, 〈>,>〉〉

7→ 〈〈∆,>〉,>〉

56

To verify that the space generated is a valid sub-space, we must verify that the bottom element
is mapped to ⊥U and that the consistency and lub relations are maintained. The tree ∆ is clearly
assigned to X0, the bottom element for the basis being embedded, since there are no strings of
length −1. The embedding preserves inconsistency of elements by forcing the lub of the embedded
elements to be >. The DR− regions represent the elements that the element being embedded does
not approximate. Note that the DR− sets cause the > element to be added as the leaf. Since the DR

sets are built using the approximation ordering, it is straightforward to see that the approximation
ordering is preserved by the embedding. Lubs are also maintained by the embedding, although the
reduction is required to see that this is the case. It should be clear that, if the domain D is effectively
given, the sub-space can be computed since the embedding procedure uses the relationships given
in the presentation.

Finally, suppose that a is a computable, finitary projection on U . From the proof of Theorem 8.5,
the domain of this projection is characterized by the set

{y ∈ U | y a y}

If a is computable, the set of pairs for a is recursively enumerable. Thus, the set above is also
recursively enumerable since equality among basis elements is decidable. Thus, the domain given
by the projection must also be effectively given. 2

Thus, the domain U is an effectively presented universal domain in which all other domains
can be embedded. The sub-domains of U include U → U , U × U , etc. These domains must be
sub-domains of U since they are effectively presented based on our earlier theorems. The next step
is to see how to define the constructors commonly used.

Definition 8.9: [Domain Constructors] Let the computable projection pair,

i+ : U + U → U and j+ : U → U + U

be fixed. Fix suitable projection pairs i×, j×, i→, and j→ as well. Define

a+ b = cond ◦ 〈which, i+ ◦ in0 ◦ a ◦ out0, i+ ◦ in1 ◦ b ◦ out1〉 ◦ j+
a× b = ix ◦ 〈a ◦ proj0, b ◦ proj1〉 ◦ jx
a→ b = i→ ◦ (λf.b ◦ f ◦ a) ◦ j→

for all a, b : U → U .

From earlier theorems, we know that these combinators are all computable over an effectively
presented domain. The next theorem characterizes the effect these combinators have on projection
functions.

Theorem 8.10: If a, b : U → U are projections, then so are a+ b, a× b, and a→ b. If a and b are
finitary, then so are the compound projections.

Proof Since a and b are retractions, a = a ◦ a and b = b ◦ b. Then for a× b using the definition of
×,

(a× b) ◦ (a× b) = ix ◦ 〈a ◦ proj0, b ◦ proj1〉 ◦ 〈a ◦ proj0, b ◦ proj1〉 ◦ jx
= ix ◦ 〈a ◦ a ◦ proj0, b ◦ b ◦ proj1〉 ◦ jx
= a× b

Thus, a× b is a retraction. The other cases follow similarly.

57

Since a and b are projections, a, b ⊆ IU (denoted simply I for the remainder of the proof). Using
the definition for + along with the above relation and the definition of projection pairs, we can see
that

a+ b ⊆ I + I = i+ ◦ j+ ⊆ I

Thus, a+ b is a projection. The other cases follow similarly.
To show that the projections are finitary, we must show that the fixed point sets are isomorphic

to a domain. Since a and b are assumed finitary, their fixed point sets are isomorphic to

Da = {x ∈ U | x a x}
Db = {y ∈ U | y b y}

We wish to show that Da → Db ≈ Da→b. By the definition of the → constructor, the fixed point
set of a→ b over U is the same as the fixed point set of λf.b ◦ f ◦ a on U → U . (Hint: i→ and j→
set up the isomorphism.) So, the fixed points for f : U → U are of the form:

f = b ◦ f ◦ a

We can think of a as a function in U → Da and define the other half of the projection pair as
ia : Da → U where ia ◦ a = a and a ◦ ia = ia. Define a function ib for the projection pair for b
similarly. For some g : Da → Db let

f = ib ◦ g ◦ a

Substituting this definition for f yields

b ◦ f ◦ a = b ◦ ib ◦ g ◦ a ◦ a = ib ◦ g ◦ a = f

by the definition of ib and since a is a retraction by assumption. Conversely, for a function f such
that ib ◦ g ◦ a = f , let

g = b ◦ f ◦ ia
Substituting again,

ib ◦ g ◦ a = ib ◦ g ◦ f ◦ ia ◦ a = b ◦ f ◦ a = f

Thus, there is an order preserving isomorphism between g : Da → Db and the functions f = b◦f ◦a.
The proofs of the isomorphisms for the other constructs are similar. 2

Thus, the sub-domain relationship with the universal domain has been stated in terms of finitary
projections over the universal domain. In addition, all the domain constructors have been shown
to be computable combinators on the domain of these finitary projections. Recalling that all
computable maps have computable fixed points, the standard fixed point method can be used to
solve domain equations of all kinds if they can be defined on projections.

Returning to the λ-calculus for a moment, all objects in the λ-calculus are considered functions.
Since U → U is a part of U , every object in the λ-calculus is also an object of U . Transposing
some of the familiar notation, where the old notation appears on the left, the new combinators are
defined as follows:

which(z) = which(j+(z))
ini(x) = i+(ini(x)) where i = 0, 1
outi(x) = outi(j+(x)) where i = 0, 1
〈x, y〉 = ix(〈x, y〉)
proji = proji(jx(z)) where i = 0, 1
u(x) = j→(u)(x)
λx.τ = i→(λx.τ)

58

Thus, all functions, all constants, all combinators, and all constructs are elements of U . Indeed,
everything is an element of U . Elements in U play multiple roles by representing different objects
under different projections. While this notion may be difficult to get used to, there are many
advantages, both notational and conceptual.

Exercises

Exercise 8.11: A retraction a : D → D is a closure operator iff ID ⊆ a as relations. On a domain
like P(N), give some examples of closure operators. (Hint: Close up the integers under addition.
Is this continuous on P(N)?) Prove in general that for any closure a : D → D, the fixed point set
of a is always a finitary domain. (Hint: Show that the fixed point set is closed as required for a
domain.) What are the finite elements of the fixed point set?

Exercise 8.12: Give a direct proof that the domain {X | X � D} is effectively presented if D
is. (Hint: The finite elements of the domain correspond exactly to the finite domains X � D.) In
the case of D = U , show that the computable elements of the domain correspond exactly to the
effectively presented domains (up to effective isomorphism).

Exercise 8.13: For finitary projections a : E → E , write

Da = {x ∈ E | x a x}

Show that for any two such projections a and b, that

a ⊆ b ⇐⇒ Da �Db

Exercise 8.14: Find another universal domain that is not isomorphic to U .

Exercise 8.15: Prove the remains cases in Theorem 8.10.

Exercise 8.16: Suppose S and T are two binary constructors on domains that can be made into
computable operators on projections over the universal domain. Show that we can find a pair of
effectively presented domains such that

D ≈ S(D,E) and E ≈ T (D,E).

Exercise 8.17: Using the translations shown after the proof of Theorem 8.10, show how the whole
typed -λ-calculus can be translated into U . (Hint: for f : Da → B, write f = b ◦ f ◦ a for finitary
projections a and b. For λxDa .σ, write λx.b(σ′[a(x)/x]) where σ′ is the translation of σ into the
untyped λ-calculus. Be sure that the resulting term has the right type.)

Exercise 8.18: Show that the basis presented for the universal domain U is indeed a finitary
basis and that it has an effective presentation.

Exercise 8.19: Work out the embedding for the other enumerations for the example given in the
proof of Theorem8.8.

59

References

[1] Barendregt, H.P. The Lambda Calculus: Its Syntax and Semantics, Revised Edition. Studies in
Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam, 1984.

[2] Cartwright, Robert, and Demers, Alan. The Topology of Program Termination. Manuscript.

[3] Scott, Dana. Lectures on a Mathematical Theory of Computation. Technical Monograph PRG-
19, Oxford University Computing Laboratory, Oxford.

[4] Scott, Dana. Domains for Denotational Semantics. Technical Report, Computer Science De-
partment, Carnegie Mellon University, 1983.

60

