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Type Checking and Inference

Note: this is a draft of a chapter destined for the second edition of
Essentials of Programming Languages, by Friedman, Wand, and Haynes.

The data that programs manipulate come in many different types: integers,
characters, procedures, lists, and so on. Part of the job of a programming lan-
guage is to prevent inappropriate operations from being performed on such
data. For example, it would be inappropriate for two characters to be multi-
plied, or for an integer to be applied to an argument. An attempt to perform
such an operation is called a type error.

The progamming language fragments introduced in this book, like Scheme,
rely on dynamic type checking to detect type errors. For example, the proce-
dure apply-proc in our interpreters checks to see that its first argument is a
valid representation of a procedure before applying it. In apply-primop no ex-
plicit tests are performed to insure that arguments to numeric primitives are
numbers. We rely on the implementation of Scheme’s arithmetic procedures
to ensure that arithmetic is performed on numbers and not on procedures or
characters.

Dynamic type checking requires that a tag be associated with each datum,
indicating the primitive data type to which it belongs. This strategy imposes
minimal restriction on program structure. It is particularly well-suited to
interactive programming environments, such as those typically associated with
Lisp-based languages. A price is paid, however, for the flexibility of dynamic
type checking. Type errors are only reported when a program runs, so if a
program is inadequately tested a type error might not be detected until the
program is used in production. Also, the maintenance and checking of type
tags may adversely affect run-time efficiency.

Static type checking is an alternative to dynamic type checking. If a lan-
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guage is carefully designed, it may be possible to analyze the text of a program,
without knowledge of run-time data, to predict whether type errors can oc-
cur. This analysis is performed by a type checker, typically as part of the
compilation process, though a type checker may also be used independently
or in conjunction with an interpreter (as in this chapter). A program that is
accepted by the type checker is said to be well-typed; otherwise, it is ll-typed
and should be rejected.

Static type checking not only allows potential type errors to be detected at
compile time, but it also eliminates the need for type tags on data (except
as may be required for garbage-collection purposes), and may in other ways
assist in the generation of more efficient compiled code. Furthermore, the
types of program elements provide valuable documentation, whether they are
provided as part of the program or displayed by the type checker.

A type discipline is said to be sound or type-safe if every well-typed program
is guaranteed to execute without type errors; it is unsound if execution of a
well-typed program may nevertheless cause type errors. Even an unsound
type discipline may be useful if it prevents some type errors; C and Eiffel are
examples of languages with useful but unsound type disciplines. The type
disciplines considered in this chapter will be sound.

It is not always possible to determine whether a program will cause a type
error. Consider the program

define p = proc (x) if strange(x) then 1 else 1(1)

This program causes a dynamic type error whenever strange(x) returns a
false value. It may not always be possible, however, to determine whether
strange(x) can return a false value, even if it were possible to examine the
code of strange. (Consider the Halting Problem.) This situation is analo-
gous to the problem of determining whether a program has iterative behavior
(section 8.3).

Thus the advantages of a static type discipline are somewhat offset by the
“unnecessary” restrictions that it imposes. More elaborate type disciplines
may impose fewer restrictions, but they complicate type checking and make
it more difficult for a programmer to understand why an ill-typed program
was rejected by the type checker.

Traditional statically-typed programming languages, such as C and Pas-
cal, require that the programmer specify the types of variables at the point
at which they are declared. This greatly simplifies the type checker’s job.
In section 13.1 we study a type checker of this sort for a simple type disci-
pline constructed from a few primitive types and the operator ->, expressing
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functional types. In section 13.2 we introduce additional type construction
operators for expressing sum and product types, and sketch how the type
checkers of this chapter can be extended for these types.

In languages where type expressions rarely become large, the burden of
declaring the types of variables is small, and may be more than offset by the
value of such declarations as documentation. In other languages, especially
those that encourage the use of functional programming techniques, type ex-
pressions are frequently quite large. Mandatory type declarations can then
be a burden. Not surprisingly, this has made type disciplines that do not
require type declarations increasingly popular. These disciplines require more
sophisticated type checkers employing type inference algorithms. (Though
any type checker must infer the types of subexpressions, we reserve the term
type inference for cases in which the types associated with variables must be
inferred.) We examine a type inference algorithm in section 13.3.

Some values may be regarded as having more than one type. For example,
a length procedure might take a list of integers and return an integer, or it
might take a list of boolean values and return an integer, and it could be used
in both ways (at different applications) in the same program. Such a value is
said to be polymorphic. In section 13.4, we study a widely-used polymorphic
type inference algorithm.

13.1 Type Checking

In this section we present a type checking algorithm for a simple language.
The expressions of this language are composed of forms used previously with
two additions: the boolean literals true and false, and a new assert form.
See figure 13.1.1 for the concrete and abstract syntax.

The assert form declares that an expression is of a given type. It may
be used for documentation or debugging purposes to declare the type of any
expression, and the type checker will verify that the given type is correct.
An assert expression has no effect at run-time other than evaluation of the
expression it contains, yielding the value of the assert expression.

For the type checker in this section, we require that the assert form be
used in enough places so that the type of every variable will be known:

1. an assert form must be used around every (proc) form (that is, every
(proc) form must appear as the (exp) component of an assert form), and

2. every letrec declaration expression (an (exp) component of a (decl) be-
longing to a (decls) list of a letrec) must be an assert form.

13.1 Type Checking 3
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(exp) ::= (integer-literal) | true | false lit (datum)
| (varref) varref (var)
| (operator) (operands) app (rator rands)
| if (exp) then (exp) if (test-exp then-exp
else (exp) else-exp)
| proc (varlist) (exp) proc (formals body)
| let (decls) in (exp) let (decls body)
| letrec (decls) in (exp) letrec (decls body)
| assert (type): (exp) assert (type exp)
(type-list) == O | ((type) {, (type)}"
(type) ::= (prim-type) | (arrow-type) tcons (name types)
(prim-type) ::= int | bool
(arrow-type) ::= (-> (type-list) (type))

Figure 13.1.1 Syntax of simple typed language

proc (V1,...,Un) €

(-> (tl, .. .,tn) t)

Figure 13.1.2 Procedure and arrow type syntax

As a consequence, whenever the simple type checking algorithm encounters a
variable, its type will already be known.

We further require that a letrec declaration expression be a procedure, or
rather at present an assert statement immediately containing a procedure.
This is the simplest way of guaranteeing that during evaluation of a letrec
declaration expression, no letrec bound variable will be referenced before it
is bound.

These constraints are enforced by the type checker rather than the parser.
We do not build these constraints into the grammar because in section 13.3
assert forms are not required, but the language otherwise remains unchanged.

A type expression, (type), is either one of the primitive types, int (integer)
or bool (boolean), or an arrow type, indicating the type of a procedure. In
an arrow type, the types of the arguments to the procedure are listed in
parentheses and are called the domain types of the procedure. The domain
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Figure 13.1.3 Typed program example

let decrement = assert (-> (int) int) : proc (n) +(n, -1);
compose = assert (-> ((-> (int) bool), (-> (int) int))
(-> (int) bool)) :
proc (f, g)
assert (-> (int) bool) :
proc (n) f(g(n))
in let isone = compose(zero, decrement)
in isone(2)

types are followed by the type of the result, which is called the range type
of the procedure. Figure 13.1.2 illustrates the parallels between the syntax
of a procedure and the syntax of its type. An arrow type is an example of a
compound type, since it contains type subexpressions.

The example of figure 13.1.3 illustrates the use of type expressions and
the assert form. We assume that the primitive procedures + and zero are
provided by the initial environment, with types (-> (int, int) int) and (->
(int) bool), respectively.

We represent all the types in our languages as type constructions. A type
construction consists of a symbol naming the form of the type, and a list of
type subexpressions. We use the abstract syntax

(define-record tcons (name types))

For a primitive type, the name field contains the symbol int or bool and the
types field contains the empty list. For arrow types, the name field contains
the symbol ->, and the types field contains a list whose car is the range type
and whose cdr is a list of the domain types. The range type is at the head of
the list simply for convenience; there is only one range type, but there may
be any number of domain types.

Before studying the type-checking algorithm, we introduce a few auxil-
iary definitions for recognizing and manipulating arrow types and generating
primitive types. See figure 13.1.4. The (tcons? type) call in the definition
of proc-type? is included because in upcoming type checkers a type will not
always be a tcons record.

For the type checker of this section, two types match if they are struc-
turally identical (they print the same way). See figure 13.1.5 for the def-
inition of match-types, as well as match-types-pairwise, which is used
to match lists of types. The auxiliary procedure andmap2 accepts a pred-

13.1 Type Checking 5
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Figure 13.1.4  Auxiliary procedures for manipulating types

(define domains (compose cdr tcons->types))
(define range (compose car tcons->types))

(define integer-type (make-tcomns ’int ’()))
(define boolean-type (make-tcons ’bool ’()))

(define type-of-datum
(lambda (datum)
(if (integer? datum) integer-type boolean-type)))

(define proc-type?
(lambda (type)
(and (tcons? type) (eq? ’-> (tcons->name type)))))

(define make-proc-type
(lambda (domain-types range-type)
(make-tcons ’-> (cons range-type domain-types))))

icate of two arguments followed by two lists of equal length, and returns
true only if the predicate always returns true when passed arguments ob-
tained from the same positions in each of the lists. Calls to match-types and
match-types-pairwise will not return if a pair of types fails to match; the
entire type-checking computation is aborted with an error message when the
first type error is found.

Type errors are reported by calling the procedure type-error; see fig-
ure 13.1.6. Its first argument is a string that identifies the nature of the
error. Subsequent arguments are types that are known to be involved in the
error. Following an identifying message, type-error prints these types after
first unparsing them. (Definition of the procedure unparse-type is left as
an exercise.) Finally, the type-checking computation is aborted by calling the
procedure error.

In much the same way that interpreters use environments to associate vari-
ables with values, type checkers use type environments to associate variables
with the types of the values to which they can be bound. We assume that a
type environment ADT supplying the procedures init-tenv, extend-tenv,
and apply-tenv has been defined, and that the initial type environment con-
tains the types of the variables that will be bound in the initial environment
of the interpreter. Thus, if reference is made to an unbound variable, the

Type Checking and Inference
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Figure 13.1.5 The match-types procedures

(define match-types
(letrec
((same-type?
(lambda (typel type2)
(let ((typesl (tcons->types typel))
(types2 (tcons->types type2)))
(and (eq? (tcons->name typel) (tcons->name type2))
(= (length types1) (length types2))
(andmap2 same-type? typesl types2))))))
(lambda (typel type2)
(if (not (same-type? typel type2))
(type-error "Incompatible types:" typel type2)))))

(define match-types-pairwise
(lambda (typesi types2)
(for-each match-types typesl types2)))

(define andmap2
(lambda (predicate listl list2)
(or (null? listl)
(and (predicate (car 1listl) (car 1ist2))
(andmap2 predicate (cdr listl) (cdr 1ist2))))))

Figure 13.1.6 Type error procedure

(define type-error
(lambda 1s

(display "Type error: ")

(display (car 1s))

(newline)

(for-each
(lambda (type) (displayln (unparse-type type)))
(cdr 1s))

(error)))

error will be caught by the type checker, prior to run time.
The main driver for the simple type checker is type-of-exp; see fig-
ure 13.1.7. The type checkers of section 13.3 and section 13.4 will employ

13.1 Type Checking 7
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Figure 13.1.7  Driver for type checkers

(define type-of-exp
(lambda (exp tenv)
(trace-entry exp)
(let ((answer
(variant-case exp
(1it (datum) (type-of-datum datum))
(varref (var) (apply-tenv tenv var))
(if (test-exp then-exp else-exp)
(let ((test-exp-type (type-of-exp test-exp tenv))
(then-exp-type (type-of-exp then-exp tenv))
(else-exp-type (type-of-exp else-exp tenv)))
(match-types test-exp-type boolean-type)
(match-types then-exp-type else-exp-type)
then-exp-type))
(app (rator rands)
(type-of-app
(type-of-exp rator tenv)
(types-of-rands rands tenv)))
(let (decls body)
(type-of-exp body
(extend-tenv
(map decl->var decls)
(types-of-let-rands decls tenv)
tenv)))
(letrec (decls body)
(for-each (compose check-letrec-decl-exp decl->exp)
decls)
(type-of-exp body (letrec-tenv decls tenv)))
(assert (type exp) (type-of-assert type exp tenv))
(proc (formals body) (type-of-proc formals body tenv))
(else (error "Invalid abstract syntax:" exp)))))
(trace-exit answer)
answer)))

(define types-of-rands
(lambda (rands tenv)
(map (lambda (rand) (type-of-exp rand tenv))
rands)))

Type Checking and Inference
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Figure 13.1.8  Auxiliaries for tracing type checkers

(define trace-depth-counter 0)
(define trace-type-of-exp #t)

(define trace-entry
(lambda (exp)
(if trace-type-of-exp
(begin
(set! trace-depth-counter (+ trace-depth-counter 1))
(displayln trace-depth-counter " Entering with "
(unparse exp))))))

(define trace-exit
(lambda (type)
(if trace-type-of-exp
(begin
(displayln trace-depth-counter " Leaving with "
(unparse-type type))
(set! trace-depth-counter (- trace-depth-counter 1))))))

the same driver with different auxiliary procedures. The expressions passed
to type-of-exp and the types returned are traced using the auxiliary proce-
dures in figure 13.1.8.

Like eval-exp, type-of-exp is syntaz directed; that is, it dispatches (via
variant-case) on the form of the expression, and calls itself recursively on
subexpressions. Since recursive calls by the type checker are always on proper
subexpressions of the input expression, and the auxiliary procedures always
terminate, type checking is guaranteed to terminate. (Why is this not the
case for eval-exp?)

The type of a literal expression is obtained by calling type-of-datum, and
the type of a variable reference is obtained from the type environment. For
an if expression, we check that the type of the test expression is boolean and
that the types of the then and else expressions match. (The values of the
then and else expressions must be the same since they are both returned as
the value of the if expression.) The match-types procedure described above
aborts the computation if either of these checks fails. Otherwise, the type of
the then (or else) expression is returned as the type of the if expression.

For an application, the types of the operator and operand expressions are

13.1 Type Checking 9
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computed and passed to the auxiliary procedure type-of-app, which checks
that the operand types match the domain types of the operator and returns
the range type of the operator type; see figure 13.1.9. If the operator does not
have a procedural type, the computation is aborted with an error message.

The type of a let or letrec expression is the type of its body, computed
with a type environment obtained by extending the current type environment
by associating each declared variable with the type of its corresponding dec-
laration expression. For a let expression, a list containing the types of the
variable declaration expressions is returned by types-of-let-rands. Each
of these types is obtained by calling type-of-exp with the type environment
of the whole 1et expression.

For a letrec expression, the procedure check-letrec-decl-exp is first
applied to all the declaration expressions to verify that they are assert ex-
pressions that immediately contain procedure expressions. The procedure
letrec-tenv is then called to construct the new environment in which the
body is to be checked. Since each declaration expression is an assert expres-
sion, the new type environment is obtained by extracting the type of each
declaration expression from its type subexpression. The for-each expression
in the body of the procedure letrec-tenv then checks that each declaration
expression is well-typed in the new environment; if any of the declaration ex-
pressions is ill-typed, an error is reported and the checker stops. Finally, the
new environment is returned, and the body of the letrec is checked in the
new environment.

Assert expressions are checked by type-of-assert. If the subexpression is
a procedure, we first check that the asserted type is a procedure type. Then
we check that the type of the procedure’s body matches the range type of
the asserted type. The body is checked in a type environment obtained by
extending the current environment with associations of the procedure’s formal
parameters with the corresponding domain types of the asserted type. If the
asserted type is not procedural, we verify that the type of the subexpression
(in the current type environment) matches the asserted type. In both cases,
we return the asserted type if no error is found.

Procedure expressions passed directly to type-of-exp are checked by
type-of-proc. If a procedure expression is passed directly to type-of-exp
an error is reported, since proc expressions can only appear immediately
within assert expressions.

e Frercise 13.1.1

For each of the following expressions in the language of this section, indicate
its type if it is well-typed or the sort of error message that the type checker

Type Checking and Inference
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Figure 13.1.9  Auxiliary procedures for a simple type checker

(define type-of-app
(lambda (rator-type rand-types)
(if (proc-type? rator-type)
(match-types-pairwise (domains rator-type) rand-types)

(type-error "Not a procedure type:" rator-type))

(range rator-type)))

(define types-of-let-rands
(lambda (decls tenv) (types-of-rands (map decl->exp decls) tenv)))

(define check-letrec-decl-exp
(lambda (exp)
(if (not (and (assert? exp) (proc? (assert->exp exp))))
(error "Invalid declaration expression:'" exp))))

(define letrec-tenv
(lambda (decls tenv)
(let ((vars (map decl->var decls))
(assert-exps (map decl->exp decls)))
(let ((var-types (map assert->type assert-exps)))
(let ((new-tenv (extend-tenv vars var-types tenv)))

(for-each
(lambda (assert-exp) (type-of-exp assert-exp new-tenv))
assert-exps)

new-tenv)))))

(define type-of-assert
(lambda (assert-type exp tenv)
(variant-case exp
(proc (formals body)
(if (proc-type? assert-type)
(if (= (length formals) (length (domains assert-type)))
(match-types (range assert-type)
(type-of-exp body (extend-tenv formals (domains assert-type) tenv)))
(error "Domain does not match formals" formals assert-type))

(type-error "Assert type is not a procedure type:" assert-type)))
(else (match-types (type-of-exp exp tenv) assert-type)))

assert-type))

(define type-of-proc
(lambda (formals body tenv) (error "Procedure not inside an assert:" formals body)))

13.1 Type Checking 11
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will issue if it is ill-typed. Assume + has type (-> (int, int) int).
. if true then 3 else +(2, +(1, 5))

. if +(1, 2) then 3 else 4

. (proc (x) +(x, 3))(5)

. let £ = assert (-> (int) int) : proc (x) +(x, 3) in £(5)

Ol W N

. letrec x = 3 in +(x, B)

O

e FEzercise 13.1.2
Implement the procedure unparse-type, which takes a type in the abstract
syntax of figure 13.1.1 and returns a Scheme list structure suitable for printing.
For example, unparse-type might be tested with the type of the compose
procedure of figure 13.1.3 as follows:

> (unparse-type
(make-proc-type
(1ist (make-proc-type (list integer-type) boolean-type)
(make-proc-type (list integer-type) integer-type))
(make-proc-type (list integer-type) boolean-type)))
(-> ((-> (int) bool) (-> (int) int)) (-> (int) bool))

The Scheme list structure returned by unparse-type prints with the same
concrete syntax as that of figure 13.1.3, except that multiple domain types
are not separated by commas. []

e Ezercise 13.1.3
Implement the type checker of this section. You will have to implement
parse-type, as well as parse-exp. Use the procedure unparse-type of
exercise 13.1.2 to view the type checker output. An initial type environment
providing the types of common primitive procedures is also required. []

e Ezercise 13.1.4
Implement an interpreter for the language of this section along with a read-
eval-print loop. The type of each top-level expression should be printed fol-
lowing its value. Use unparse-type of exercise 13.1.2. For example,

-=> +(1,2)

3 : int

--> zero(1)
false : bool

Type Checking and Inference
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To obtain the value of an assert expression, simply evaluate its subexpression.
If the type checker detects a type error in the top-level expression, then the
expression should not be evaluated, but control should stay in the read-eval-
print loop. See exercise 9.3.7 [[to be added in the second edition]]. []

Ezercise 13.1.5

Extend the language of exercise 13.1.4 by adding a define form, which may be
used to make non-recursive top-level declarations. Also add a definerec form,
which may be used to make mutually-recursive top-level declarations that are
restricted in the same manner as letrec declarations. The syntax for define
declarations previously introduced in exercise 5.5.5 may be used. Invent ap-
propriate concrete and abstract syntax for definerec. Print new variable/type
associations added to the top-level type environment; for example,

--> define addl = assert (-> (int) int) :
proc (x) +(x,1)

addl :: (-> (int) int)

--> add1(3)

4 : int

(A double, rather than single, colon is used when indicating a variable/type
association because the variable name is not a value.) [J

Fzercise 13.1.6

Extend the language of exercise 13.1.5 to admit definitions of the form

(form) ::= definetypeabbreviation (type-name) (type)

and allow a type to be simply a type-name (a symbol other than int or bool).
The effect of such a type abbreviation is that whenever a type name appears
as a type, it is interpreted as if the corresponding type were substituted in its
place. Maintain type abbreviations in printed types whenever practical; for
example,

--> definetypeabbreviation intproc (-> (int) int)
--> define compose = assert (-> (intproc, intproc) intproc) :

proc (f, g) assert intproc proc (x) f£(g(x))
compose :: (-> (intproc, intproc) intproc)

You will need to introduce a new abstract syntax record type for type names.
Type abbreviations must be defined before they are used. This prohibits
forward references to type abbreviations and recursive type abbreviations,
which should be reported as errors. [

13.1 Type Checking 13
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13.2 Additional Type Operators

14

For simplicity, the only compound types in our language have been procedural
types. Practical type systems typically support several other compound types
and may allow the user to define new ones. In addition to the function type
construction arrow, —, the most basic compound type constructors are the
product, X, and sum, +.

Products, also called cross products or Cartesian products, are used to type
data structures with multiple components. For example, the type of a pair
(cons cell) might be represented as the product of the types of its left and right
components. Heterogeneous data structures are called records or structures if
their components are referenced by a name, and tuples if their components are
referenced by a numerical index. An array is another form of compound data
structure whose components are referenced by numerical index, but arrays
are homogeneous (all their components are of the same type).

Associated with each product type t is a constructor and a set of selectors,
one for each component of the product type. The constructor takes a value
for each component and returns a corresponding aggregate data value of type
t. Selectors take a value of type ¢ and return the value of their corresponding
component. In the case of Scheme pairs, the constructor is cons and the
selectors are car and cdr.

Products are often expressed in m-ary, rather than binary form. For ex-
ample, assuming expressions ey, ..., e, yield values of type ¢4,...,t,, respec-
tively, a tuple expression of the form <ey,..., e,> would have type £; x...X1,.

An array of three elements of type ¢ might be typed by the product ¢ x
t X t, but this approach would not work well for an array of 100 elements.
It is customary, instead, to introduce a new type constructor, array, with a
single subtype indicating the element type and in many cases no provision for
indicating the size of the array. Thus all arrays with elements of type ¢ have
the same type, array(t).

Sums, also called disjoint unions or discriminated unions, are used to type
data that may be represented by information of more than one type. We
have already encountered sums in several contexts. The + operator was used
in equations specifying denoted and expressed values, which are in effect the
types of the data manipulated by the interpreters. A BNF grammar may be
viewed as specifying the type of each syntactic category, with the alternation
operator (“|”) expressing sums. In a variant-case expression, each record
name identifies a variant of a sum type. Finally, lists have sum types, since
they may be represented by either of two variants: the empty list, or a tuple

Type Checking and Inference
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containing a head and a tail. Sums are sometimes called unions, but should
not be confused with simple set-theoretic unions, which may not be disjoint.
Each of the alternative types that make up a sum is called a varient of the
sum.

The procedures for manipulating sum types are different from those for
product types. If ¢ is a sum type

t=t1+...4+1t,

then for each variant ¢; one has the following procedures:
e an injection inj;, of type t; — ¢,
e a projection proj,;, of type t — ¢;, and

e a predicate pred;, of type ¢ — bool.

For a value z of type t, pred;(z) is true if and only if z has been obtained by
injection into the ¢th variant of . The projection and injection elements of a
given variant are semi-inverses; thus if y has type t;, then y = proj;(inj;(y)). If
a value has been obtained by injection into the sth variant of a sum, however,
it is an error to attempt projection of it to any but the i-th variant; thus if
i # j, proj; (inj;(y)) will result in a runtime error.

In many programming languages, an element of sum type ¢t =¢; + ...+ ¢,
is represented as a tuple of two components. The first component is a tag
indicating to which sum variant the value belongs, say z, while the second
component is the actual value of type £;. The sum injection operation may
be thought of as adding a tag, while projection strips off the tag, and the
predicate pred; tests whether the tag is 7. The C language does not have sum
types, but using this approach they may be simulated using a product type
and C’s union type. For example, the declaration

typedef struct {
int tag;
union {
typel varianti;
type2 variant2;
}oug
} sumtype;
sumtype *x;

defines sumtype to be a sum of typel and type2 and x to be a pointer to a
structure of type sumtype. Then we could write x->u.variant1 to project x on
typel or x->u.variant2 to project on type2. Pascal uses a similar mechanism,
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called wariant records. Neither of these mechanisms is sound, because they
allow a value injected from #; to be manipulated as if it were from £;, and tags
must be inserted manually.

In a number of programming languages with sound sum types, the sum
types must be declared, and their variants are assumed to be products. Typ-
ically such a sum type declaration will name each of the variants of the sum,
each component of all of the products associated with a sum variant, and the
sum type itself. A single operation may be used to both construct a product
and inject it into the sum, while other operations may both project to a value
of product type and then select a component of the product. For example, a
definition like

definesumtype intlist
emptyintlist (),

intcons (car : int, cdr : intlist);

would create the following procedures with the indicated types:

emptyintlist (-> () intlist)
emptyintlistpred (-> (intlist) bool)

intcons . (-> (int, intlist) intlist)
intconspred (-> (intlist) bool)
intconscar (-> (intlist) int)
intconscdr (-> (intlist) intlist)

We have used sets of define-record declarations in this way to effectively
define sums of product types. The record names identify the sum variants,
and record field names identify the product components, but this mechanism
does not name the sum type itself. A record with no fields may be used when
a sum variant only conveys the identity of its component.

In general, a type discipline based on the projection functions proj; is not
sound, since an application of proj; to some value not injected from the i-th
variant is an error. This is the situation in languages like C or Pascal, where
performing an operation equivalent to proj;(inj;(z)) may lead to unpredictable
results. Soundness can be guaranteed by including a call to pred; inside proj;,
so that an error of the form proj;(inj; (z)) will be detected at execution time,
and an appropriate error message generated. Another approach to soundness
is to replace the projection functions with something more like variant-case.

Ezercise 13.2.1
Extend the typed language of the last section to include tuple expressions and
product type expressions. Also include expressions of the form select nat of
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ezp that return the tuple component indicated by the given natural number.
Use zero-based indexing. For example,

--> define tup < +(1,2), zero(3) >
tup :: product(int, bool)

--> select 1 of tup

false : bool

O

o Fzercise 13.2.2
Extend the typed language of exercise 13.1.5 to include sum type declarations
like those discussed above. A possible syntax is

(form) ::= definesumtype (type-name) (variant) {,(variant)}*
(variant) ::= (variant-name) (field-list)

)i
) i
(field-list) ::= ) | ((field) {.(field)}*)
(field) ::= (field-name): (type)

The effect of this declaration is to define a set of injection, projection, and
predicate procedures similar to those that would be defined by an equivalent
set of define-record definitions. Use the naming conventions suggested by
the intlist example above. Recursive sum types, like the one in the intlist
example, should be allowed. []

13.3 Type Inference

In this section we modify our type checking algorithm so that it is capable
of determining the types associated with variables. Assert expressions then
need not be associated with procedure and letrec expressions.

To see how this might be accomplished, consider the expression

proc (p, x) p(x, +(x, 1))
By examining this code, we can deduce some facts about its type, without
needing any assert expressions. First, p is applied to two arguments, so its

type must be of the form
(-> (t1, t2) t3)

13.8 Type Inference 17
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for some types %1, t3, and t3 that we have yet to determine. The second
argument to p must be an int, so ¢; must be int. Therefore the type of p
must be

(-> (1, int) t3)

Furthermore, the type of x must be int, since x is an argument to +. Thus
t; must also be int. The result of the application of p is the result of the
procedure body, so the result of the procedure must be of type t3. Putting
all this together, we deduce that the type of the entire expression must be of
the form

(-> ((-> (int, int) t3) int) t3)

for some type t3.

In general, if e is an application eg(e1, ..., €,), where tg, ..., t,, and ¢
are the types of eq, ..., €,, and e, then eg must accept n arguments of types
t1, ..., tn, and it must return a value of type t. Expressed as an equation,
this becomes

to = (> (t1,...,tx) 1)

We can think of this as a constraint on the possible values of ¢, ..., t,, and
t, or equivalently as an equation to be solved for the type variables to, ..., tn,
and t.

The same process of equation solving can be used to detect potential type
errors, because a program with a potential type error will yield a set of equa-
tions that has no solution. For example, consider the expression

proc (p, x) p(x(1), +(x, 1))

In the subexpression x(1), x is applied to an integer, so the type of x must be
of the form
(=> (int) 1)

for some type t;. However, x also appears as the first argument to +, and thus
it must be of type int. From these two inferences we conclude

(-> (int) £1) = int

but this equation is not solved by any value of ¢;, since an arrow type is not
the same as a primitive type.

In this manner all the type constraints that the type discipline implies for
a given program can be expressed as a set of type equations. These equations
can then be solved using a technique called unification. This will either yield
the type of the entire program and of every expression and variable in it, or we
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will discover that the equations have no solution, indicating that the program
is ill-typed. We call this process type inference, rather than type checking,
since it infers a type for each phrase in the program.

To accomplish this, we modify our previous type checker in two essential
ways. First, we expand our type expressions to include type variables. Type
variables will be used as place holders for portions of a type that are not
yet known. Types that may contain type variables are called polytypes, while
types that do not are called monotypes. A polytype may be nothing more than
a type variable. In general, a polytype can be thought of as a structure for a
type, where type variables represent portions of the structure to be filled in
later. In our terminology, all monotypes are also considered to be polytypes.

Initially a type variable is unbound, meaning that we have no information
about it. Type variables are said to be bound when their associated type, or
at least some part of its structure, becomes known.

The second major modification to our type checker is in the procedure
match-types. In the simple type checker, a call to match-types had no
side-effects unless the types were not the same, in which case a type error
was reported. Now that types may contain type variables, the match-types
procedure checks whether two types could represent the same types if un-
bound type variables were bound to the appropriate types, in which case
match-types binds the type variables to appropriate types. This process,
called unification, solves the type equations as type inference proceeds.

13.3.1 A Type Inference Algorithm

We first present the upper levels of the new type checker. The main driver is
still type-of-exp, defined in figure 13.1.7, but we now employ the auxiliary
procedures of figure 13.3.1. The procedure unify performs unification, while
the procedures fresh-var-tvar and fresh-app-tvar return new, initially
unbound, type variables associated with variable binding occurrences and
applications, respectively. These procedures will be defined in section 13.3.2.

The procedure type-of-app attempts to solve the equation t, =
(-> (t1,...,ty) t) for each application. It does this by checking to see that
the type of the operator, to, unifies with a newly constructed procedure type
whose domain types, ¢, ..., t,, are the types of the operands and whose range
type is represented by a new type variable, t. The type variable ¢ is returned;
its binding will be the polytype that describes as much of the structure of the
type of the expression as we have been able to deduce so far.

Similarly, for a let expression let v; = €1 ... v, = €, in eq, the proce-
dure types-of-let-rands creates a type variable, ¢,,, for each bound vari-
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able v;, and then solves the equations

tU1 = t€1:
ty, = te,
where t.,, ..., e, are the types of the expressions ey, ..., e,. A list of these

binding types is returned as the value of types-of-let-rands, and then
type-of-exp finds the type of the body ep in an extended type environment
formed by associating each v; with t,,. See figure 13.1.7. (The definition of
types—-of-let-rands in figure 13.1.9(rather than figure 13.3.1) could still be
used, but type variable names would then be less meaningful.)

The procedure letrec-tenv also creates a fresh type variable for each
program variable bound in the declaration. These type variables, as yet
unbound, are then used to create the new type environment in which the
declaration expression and letrec body are checked. This is similar to
types-of-let-rands, except that the expressions ej, ..., e, are checked
in the extended type environment rather than the original one. The proce-
dure check-letrec-decl-exp is modified to make the use of the assert form
in a declaration expression optional, while still requiring that evaluation of a
declaration expression results in immediate creation of a closure. The pro-
cedure type-of-assert now simply checks that the asserted type is correct
before it is returned; it is no longer necessary to treat procedure expressions
as a special case. In the procedure type-of-proc, a fresh type variable is cre-
ated for each formal parameter. The body of the procedure is then checked in
a type environment extended by associating the formal parameters with the
new type variables, yielding the range type. A new procedure type is then
returned, containing the new type variables and the range type.

Last, the procedure match-types is redefined to call unify; how-
ever, match-types-pairwise need not be redefined since it only uses
match-types.

13.3.2 Type Variables

We now turn to the representation of type variables and the unification pro-
cess. The abstract syntax of types must be extended, allowing types to be
represented either by type construction records or type variable records. The
concrete syntax of types in programs is not extended, since types appearing
in programs as part of assert expressions do not contain type variables.
Some type variables are associated with applications, and are named t1,
t2, etc. Other type variables are associated with variable binding occurrences
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Figure 13.3.1  Auxiliary procedures for type inference

(define type-of-app
(lambda (rator-type rand-types)
(let ((range-type (fresh-app-tvar)))
(match-types rator-type (make-proc-type rand-types range-type))
range-type)))

(define types-of-let-rands
(lambda (decls tenv)
(let ((vars (map decl->var decls))
(exps (map decl->exp decls)))
(let ((bound-variable-types (map fresh-var-tvar vars)))

(match-types-pairwise bound-variable-types (types-of-rands exps tenv))

bound-variable-types))))

(define letrec-tenv
(lambda (decls tenv)
(let ((vars (map decl->var decls))
(exps (map decl->exp decls)))
(let ((bound-variable-types (map fresh-var-tvar vars)))
(let ((new-tenv (extend-tenv vars bound-variable-types tenv)))

(match-types-pairwise bound-variable-types (types-of-rands exps new-tenv))

new-tenv)))))

(define check-letrec-decl-exp
(lambda (exp)

(if (not (or (proc? exp) (and (assert? exp) (proc? (assert->exp exp)))))

(error "Invalid declaration expressions:" exp))))

(in a let, letrec, or proc expression). The names of these type variables are
composed of the letter t followed by the name of the associated variable. If
there is more than one declaration with the same variable name, the type
variables associated with all but the first declaration will have “"n” appended
to their names, where n is a unique index number. Thus tx, tx"1, tx"2, ...
are the type variable names associated with declarations of the variable x.
Our type variable naming conventions aid in the interpretation of type error
messages and traces, but have no other significance.

See figure 13.3.2 for an implementation of our type variable ADT. A type
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Figure 13.3.1  Auxiliary procedures for type inference (continued)

(define type-of-assert
(lambda (assert-type exp tenv)
(match-types assert-type (type-of-exp exp tenv))
assert-type))

(define type-of-proc
(lambda (formals body tenv)
(let ((domain-types (map fresh-var-tvar formals)))
(let ((range-type (type-of-exp body (extend-tenv formals domain-types tenv))))
(make-proc-type domain-types range-type)))))

(define match-types
(lambda (typel type2)
(unify typel type2)))

22

variable is represented as a record with three fields. The name field contains a
symbol naming the type variable, and the app? field contains a boolean value
indicating whether the type variable is associated with an application. These
fields are not essential to the logic of the type inference algorithm, but they
aid the generation of meaningful error messages and traces. To allow type
variables to be bound, we store the binding of a type variable in a mutable
cell in the cell field of a tvar record. Initially this cell contains a symbol
indicating that the type variable has not yet been bound.

The procedure fresh-tvar constructs a new type variable whose name
is indicated by a string. It is used only by fresh-app-tvar and
fresh-var-tvar, which construct new type variables associated with ap-
plications and variable binding occurrences, respectively. The procedure
fresh-app-tvar uses the global variable app-index to keep track of the num-
ber of application type variables created so far. Similarly, the procedure
fresh-var-tvar uses the global variable var-1ist, which contains a list of
the variables for which type variables have so far been created. The num-
ber of duplicates in this list is used to determine the index number that
follows the ~ character in a type variable name, if one is required. The pro-
cedure count-occurrences, of section 2.2.8, counts the number of symbols
in var-list associated with a given variable. The procedures tvar-binding
and tvar-unbound? return type variable bindings and indicate whether a type
variable is unbound, respectively, while bind-tvar! makes bindings. Again
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displayln is used to trace type variable binding operations.

Unifying types may involve checking if an unbound type variable, say wu,
is the same as a given type, say t. Such a check should succeed (unless ¢
contains u—a possibility that will be considered in section 13.3.3), since u is
a place holder that is so far unconstrained. The check, however, reveals that
its place must be filled by ¢. This information is recorded by binding u to
t. This forces the structure of u to be the same as the structure of ¢. If ¢
is itself a polytype, there may be more information to be filled in later. If
two unbound type variables are unified, one of the type variables (it does not
matter which) is bound to the other.

Consider the behavior of the type checker on the following program.

proc (a, b, ¢)
if x then a

else if y then b
else ¢

First, the initial type environment is extended to associate the formal param-
eters a, b, and ¢ with fresh type variables whose name fields are ta, tb, and
tc, respectively. (When we refer to a type variable by name, we mean the
type variable whose name field contains the given name.) Since the types of b
and c must be the same, the procedure type-of-exp calls match-types with
tb and tc. The procedure match-types records the requirement that tb =
tc by binding type variable tb to type variable tc (or vice-versa), as in fig-
ure 13.3.3(a), and the type variable tb is returned as the type of the inner if
expression. To complete checking of the outer if expression, match-types is
called with type variables ta and tb. To record the deduction that these type
variables must also stand for the same type, ta is bound to tb, as illustrated
in figure 13.3.3(b).

From this example we see that a type variable may be associated with a
binding path. If we start at a type variable ¢ and follow its binding path, we
must eventually reach either an unbound type variable or some compound
polytype (that is, a polytype that is not just a type variable). We call either
of these the end value of t. We are always concerned with the end value of
a type variable, rather than the type variable itself (unless it is unbound, in
which case it is its own end value). All the type variables in the path are said
to be members of the same congruence class, of which the end value serves
as the unique representative. An unbound type variable represents its own
congruence class.

If a type variable is some distance from the end of a binding path, it would
be inefficient to run down the path every time the variable is encountered.
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Figure 13.3.2 Type variable ADT

(define-record tvar (cell name app?))
(define app-index 0)
(define var-list ’())

(define fresh-tvar
(lambda (app? name)
(make-tvar (make-cell ’*unbound*) (string->symbol name) app?)))

(define fresh-app-tvar
(lambda ()
(set! app-index (+ 1 app-index))
(fresh-tvar #t (string-append 't" (number->string app-index)))))

(define fresh-var-tvar
(lambda (var)

(let ((index (count-occurrences var var-list)))
(set! var-list (cons var var-list))
(fresh-tvar #f

(string-append "t"
(symbol->string var)
(if (zero? index)

(string-append """ (number->string index))))))))
(define tvar-binding (compose cell-ref tvar->cell))

(define tvar-unbound?
(lambda (tvar)
(eq? (tvar-binding tvar) ’*unbound*)))

(define trace-tvar-bindings #t)

(define bind-tvar!
(lambda (tvar type)
(if trace-tvar-bindings
(displayln " Binding tvar " (tvar->name tvar)
" to " (unparse-type type)))
(cell-set! (tvar->cell tvar) type)))
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Figure 13.3.3 Growth of a type variable path

Thus whenever we encounter a bound type variable, we traverse its binding
path to the end and change the contents of the variable’s binding cell to
point directly to the end of the path. This process is referred to as path
compression. The result of path compression for type variable ta is illustrated
in figure 13.3.3(c).

The procedure tvar-end-value returns the end value of a given type vari-
able, which may be either a type construction or the representative of the
type variable’s congruence class; see figure 13.3.4. Since a type variable path
is traversed by calling tvar-end-value recursively, all the type variables on
the path are compressed at one time. Thus after tvar-end-value is called,
all variables in the path headed by the given type variable refer to the end of
the path. If the call to bind-tvar! were omitted, the type checking algorithm
would be correct but less efficient, since there would be no path compression.

It is often the case that on encountering a type, one operation must be per-
formed if it is a type construction or a type variable whose end value is a type
construction, and another operation is required if it is a type variable whose
end value is a congruence class representative. The procedure type-dispatch
takes a type and two procedures, ctvar-proc and tcons-proc, and invokes
the appropriate procedure with the congruence class representative or type
construction, respectively, of the given type. (The c in ctvar indicates that
the type variable is a congruence class representative.)

13.3.3 The Unification Algorithm
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Figure 13.3.4 Type variable auxiliary procedures

(define tvar-end-value
(lambda (tvar)
(if (tvar-unbound? tvar)
tvar
(let ((binding (tvar-binding tvar)))
(if (tcons? binding)
binding
(let ((type (tvar-end-value binding)))
(bind-tvar! tvar type)
type))))))

(define type-dispatch
(lambda (type ctvar-proc tcons-proc)
(let ((value (if (tvar? type) (tvar-end-value type) type)))
(if (tvar? value)
(ctvar-proc value)
(tcons-proc value)))))

We are now prepared to study the unification algorithm expressed by the
procedure unify of figure 13.3.5. If the first type passed to unify is a type
variable whose end value is a type variable, this congruence class representa-
tive and type2 are passed to the procedure unify-tvar, which we consider
in a moment. If the first type is a type construction or a type variable whose
end value is a type construction, we dispatch again on the second type. If
it is a type variable with an end value that is an unbound type variable,
unify-tvar is called as before. Otherwise, both types must represent type
constructions (either directly or as the end values of type variables). If their
type constructor names are not the same, the types cannot be unified and an
error is reported. This is a common point at which the type checker detects
errors. If the type constructor names are the same, the type subexpressions
are unified pairwise.

The procedure unify-tvar takes an unbound type variable, ctvar, and
an arbitrary type, type. If type is a type variable whose end value is also
an unbound type variable, ctvar2, then ctvar is bound to ctvar2, or vice-
versa. Since this case is symmetric, it does not matter which type variable is
bound to the other. Nonetheless, since type variables that are associated with
applications have less meaningful names than those associated with variables,
we prefer to bind type variables associated with application so that they refer
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Figure 13.3.5 A unification procedure

(define unify
(lambda (typel type2)
(type-dispatch typel
(lambda (ctvari)
(unify-tvar ctvarl type2))
(lambda (tconsi)
(type-dispatch type2
(lambda (ctvar2)
(unify-tvar ctvar2 tconsi))
(lambda (tcons2)
(let ((typesl (tcons->types tconsil))
(types2 (tcons->types tcons2)))
(if (and (= (length typesi) (length types2))
(eq? (tcons->name tconsl) (tcons->name tcons2)))
(for-each unify typesi types2)
(type-error "Unify failure:" tconsl tcons2)))))))))

(define unify-tvar
(lambda (ctvar type)
(type-dispatch type
(lambda (ctvar2)
(if (not (eq? ctvar ctvar2))

(if (tvar->app? ctvar2)
(bind-tvar! ctvar2 ctvar)
(bind-tvar! ctvar ctvar2))))

(lambda (tcons)
(if (occurs-in-type? ctvar tcons)

(type-error "Unify-tvar occur check failure:"
ctvar tcons)

(bind-tvar! ctvar tcomns))))))

(define occurs-in-type?
(lambda (ctvar type)
(type-dispatch type
(lambda (ctvar2)
(eq? ctvar ctvar2))
(lambda (tcons)
(ormap (lambda (type) (occurs-in-type? ctvar type))
(tcons->types tcons))))))
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to type variables associated with variables, rather than the other way around.
(Thus congruence class representatives will not be type variables associated
with applications unless all members of the class are associated with appli-
cations.) When tvar and the end value of type are the same type variable,
there is nothing to do.

If type is a type construction or a type variable representing a type con-
struction, in most cases it becomes the binding of ctvar, but there is a pos-
sibility that must be checked first. If type contains as a type subexpression
any type variable whose end value is ctvar, then there is no finite type for
which ctvar = type. Consider, for example, the equation

t1 = (=> (11) t2)

There is no way to substitute a type for ¢; that will make this equation hold,
since for any substitution for #;, the right-hand side will be larger than the
left-hand side. The simplest situation in which this happens is self application,
when a procedure is applied to itself. Consider attempting to infer the type of
the expression proc (x) x(x). The self application x(x) is checked in a type
environment in which x is associated with the unbound type variable tx. The
check involves unifying tx with a newly constructed procedure type of the
form (-> (tx) t1).

An equation like tx = (-> (tx) t1) could be solved by allowing tx to be
bound to an infinite type. This, however, would cause difficulties: among
other things, a naive unparse-type would not terminate on an infinite type.
Furthermore, circular types seem to arise only rarely in practice. Therefore
we follow the example of most languages using type inference and regard this
equation as having no solution.

To incorporate this decision in our algorithm, it is necessary for unify-tvar
to check if ctvar occurs in type before binding ctvar to type. This is called
the occur check, and is performed by the procedure occurs-in-type?. The
procedure ormap invokes the function passed as its first argument with the
elements of the list passed as its second argument until the function returns
a true value, at which time ormap returns true, or if false is returned by the
function for all elements of the list, then ormap returns false.

See figure 13.3.6 for the tracing output of a call to type-of-exp for the
expression.

let £ = proc (x) x
in £(3)
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Figure 13.3.6  Trace of type inference algorithm

Entering with (let ((f (proc (x) x))) (£ 3))
Entering with (proc (x) x)

Entering with x

Leaving with tx

Leaving with (-> (tx) tx)

Binding tvar tf to (-> (tx) tx)

Entering with (£ 3)

Entering with 3

BN W N

Leaving with int
Entering with £

Leaving with (-> (tx) tx)
Binding tvar t1 to tx

N W N wWwN

Binding tvar tx to int
1 Leaving with int
0 Leaving with int

The entering and leaving numbers indicate the nesting of calls to type-of-exp.
To simplify tracing output, we have turned off path compression by remov-
ing the bind-tvar! call in tvar-end-value. Expressions are unparsed to a
parenthesized syntax.

e Ezercise 13.3.1
For each of the following expressions in the language of this section, indicate
its type if it is well-typed or the sort of error message that the type checker
will issue if it is ill-typed. Assume + has type (-> (int, int) int).
1. (proc (x) +(x, 3))(5)
2. let x = 2 in let y = +(x, 5) in +(x, y)
3. let £ = proc (x) x in if true then £(3) else f(4)
4. let £ = proc (x) x in if f(true) then £(3) else f(4)

0
o Frercise 13.3.2

Implement the type checker of this section and examine its trace output for
the expressions in the previous exercise. []

e Ezercise 13.3.3
Extend the type checker of this section to include product types, as described
in exercise 13.2.1. This is challenging because one or more select statements
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operating on values of some product type may be encountered before it is
even known how many fields there are in the product type. A new type of the
form product*(ty,...,t,) may be used to represent a record that is known to
have at least n fields, but might have more than n fields. For example,

--> define f proc (x) +(select 1 of x, 3)

f :: (-> (product*(tfield_5, int)) int)

--> define g proc (y) if select 0 of y then select 2 of y else f(y)
g :: (-> (product*(bool, int, int)) int)

--> g( <false, 1, 2, 3> )

4 : int

--=> f

<procedure> : (-> (product(bool, int, int, int)) int)

Here type variables created for product fields whose type is not yet known are
given names of the form tfield_n, for some unique n. [

o Fzercise 13.3.4

From the picture of binding paths in figure 13.3.3, it appears a binding path
might be circular and never reach an end value. Why is this impossible? []
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Some values may be interpreted as having more than one type. For example,
the empty list might be the empty list of integers, or it might be the empty list
of booleans. Similarly, in our typed language the procedure proc (x) x may
be regarded as having an infinite number of types, such as (-> (int) int),
(-> (bool) bool), and (-> ((-> (int) bool)) (-> (int) bool)). When such
a value is used, however, it is used at only one of its types. For example,
in (cons 3 ’()), the empty list is used as a list of integers, or in our typed
language, the application (proc (x) x)(3) uses proc (x) x at type (-> (int)
int).

Values that may be interpreted as having more than one type are said to
be polymorphic. Both the empty list and the procedure proc (x) x behave in
exactly the same way, regardless of the type at which they are used. In such
cases polymorphism is said to be parameiric. In other cases, the behavior of
a value may depend on the type at which it is used. For example, an addition
procedure might be used at the types (-> (int, int) int) and (-> (real,
real) real), among others, but employ different techniques for integer and
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real addition. When the behavior of a polymorphic value depends on the type
at which it is used, its polymorphism is said to be ad hoc.

Some programming languages support ezplicit parametric polymorphism
by providing means for creating and invoking procedures that take types as
arguments. This approach poses difficulties, however, when combined with
type inference; we do not discuss it further. An alternative approach is im-
plicit parametric polymorphism, in which a type inference algorithm infers
opportunities for polymorphism. Though algorithms for implicit polymor-
phism do not detect all possible opportunities for polymorphism, they are
still quite useful and offer the advantages of type inference. In the remainder
of this section we study such an algorithm.

An opportunity for parametric polymorphism is apparent when a polytype
is inferred for a procedure. We have already seen the simplest example of this:
the procedure proc (x) x. Other examples frequently arise, particularly when
programming with higher-order procedures. For example, the composition
procedure

proc (f, g)
proc (x) f(g(x))

has the polytype

(> ((=> (1) t2), (> (t+x) t1))
(> (tx) 12))

Though polytypes are not types in the conventional sense associated with
monotypes, they may be regarded as representing an infinite set of monotypes
obtained by binding their type variables to all possible monotypes. This inter-
pretation of type variables may be made explicit using the universal quantifier,
V, read “for all.” For example, the types of proc (x) x and the composition
procedure may be represented, respectively, as

(Vtx) (> (tx) tx)
and

(vtx,t1,t2) (> ((=> (t1) t2), (=> (+x) 1)) (1)
(=> (¢x) 12))

A polytype that has been wrapped in a universal quantifier is called a type
scheme, since it represents an abstract structure from which types may be
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constructed by binding type variables. A monotype obtained by binding the
type variables of a type scheme is said to be an instance of the type scheme.

Type schemes other than (1) might also be associated with the composition
procedure, including

(vt1,2) (-> ((-> (1) t2), (-> (int) t1)) (2)
(-> (int) t2))

and

(vt1) (=> ((-> (t1) bool), (-> (int) t1)) (3)
(-> (int) bool))

Though a number of type schemes may be associated with an expression, we
would like to identify one type scheme, which is “best,” and regard it as the
type of the expression. How do we choose the best type scheme? Observe
that every instance of (3) is an instance of (2), and every instance of (2) is an
instance of (1), while the converse relations do not hold. For example

(-> ((-> (int) int), (-> (int) int))
(-> (int) int)) (4)

is an instance of (1) and (2), but not of (3). Evidently some type schemes
are more general than others. The best type scheme to associate with an
expression would be one that is most general, in the sense that every instance
of any other type scheme associated with the expression is an instance of a
most general type scheme. In some type disciplines there may not always be
a most general type scheme, or there may be more than one of them. If there
is a unique most general type, such as (1), it is said to be principal. A type
discipline that guarantees the existence of a principal type for every expression
is said to have the principal typing property, which is highly desirable.

In this section we will study the Hindley-Milner type discipline, which en-
joys the principal typing property and has been popularized by the program-
ming language ML. In this type discipline, values to which variables are bound
using let and letrec are treated as polymorphic, while values that are bound
during procedure application are not polymorphic. Thus, in the body of the
expression

let comp = proc (f, g)

proc (x) f(g(x))
in ...
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the variable comp will be associated with type scheme (1). We begin our study
of this algorithm by exploring the structure of type schemes.

A type variable in the body of a type scheme is said to occur bound if it
is associated with a universal quantifier, and to occur free otherwise. Thus
in the type (vt1) (-> (+1) t2), t1 occurs bound and t2 occurs free. As with
a-conversion of bound variables in a procedure, the bound variables of a type
scheme may be uniformly renamed without changing the meaning of the type
scheme. Thus (vt3)(-> (£3) t2) is the same as (vt1)(-> (t1) t2). Type
variables that occur bound are said to be generic. It is possible for a type
scheme to have none of its variables bound; in this case we say the type scheme
is ungquantified.

An instance of a type scheme is created by substituting fresh type variables
for each of the generic type variables in the body of the type scheme. By
convention, we assign these fresh type variables names by appending “_n” to
the name of their corresponding generic type variable, where n is a unique
index number. If there are multiple instances of the same generic type variable
in a type scheme, they are all replaced by the same fresh type variable. Non-
generic type variables in a type scheme appear in all of its instantiations
without being renamed. Thus the first two instantiations of the type scheme

(vt1) (—> (£1, t2) t1)

are (> (t1_1, t2) t1_1) and (-> (t1_2, t2) t1_2). The sharing relation-
ships between the type variables of this type scheme and its instantiations are
illustrated by the diagrams of figure 13.4.1.

For each use of a variable bound to a type scheme, a fresh instance of the
associated type scheme is created. For example, in the program

let id = proc (x) x
in if id(true) then id(3) else 4

the variable id is associated with the type scheme (vtx) (-> (tx) tx), which is
instantiated to (-> (tx_1) tx_1) and (-> (tx_2) tx_2) in the first and second
calls to id, respectively. The type variables tx_1 and tx_2 will be bound to
bool and int, respectively, before type inference for the expression is complete.

Why do we need to distinguish generic from non-generic type variables in
a type scheme? Why not simply convert a polytype into a type scheme by
binding all of its variables? To see why this is unsound, consider the process
of type checking the following ill-typed program.
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(H)(-> (11 12) 1), (> (tL112) 1) (> (tL212)112)

t1 t2 t11 t12

Figure 13.4.1 A type scheme and two of its instantiations.

let £ = proc (x)
let g = proc (y) x
in if g(3) then g(true)
else +(x, B)
in £(2)

First, the type environment is extended by associating x with an unbound
type variable tx. The expression proc (y) x is then checked, in the process
of which y is associated with another unbound type variable ty. Thus the
polytype (-> (ty) tx) is obtained for the procedure proc (y) x. Consider
the effect of naively converting this type into the type scheme

(Vtx, ty) (-> (ty) tx)

to obtain the type of g in the type environment used to check the body of the if
expression. Separate instantiations (-> (ty_1) tx_1) and (-> (ty_2) tx_2) of
the type of g would then be created for the applications g(3) and g(true),
respectively. In the process of checking these applications, tx_1 and tx_2
would then be bound to bool and int, respectively. From the application +(x,
5) we would then infer that tx must be bound to int. (This does not affect
the reference to tx in the type scheme of g, since that reference occurs bound.)
The type (-> (int) int) would then be inferred for £, so the application £(2)
would be well-typed. Execution of this program will, however, result in a type
error: the application g(3) returns 2, which is not a boolean value, though a
test expression is required to yield a boolean value.
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What went wrong in this example? The type scheme associated with g
implies that each time g is called its range may be associated with any type
at all, which is clearly not the case. When the type scheme of g was formed
from the polytype (-> (ty) tx), the variables tx and ty were unbound. In this
case, the fact that the type variable ty is unbound does mean that ty can be
associated with any type. It is not correct, however, to assume that because
tx is unbound it may also be associated with any type. A later reference to x
may result in tx being bound to a specific type, as indeed happens when the
application +(x, 5) is checked.

This problem may be avoided by not allowing a type variable to be generic
(bound by a type scheme) if it already occurs free in the current type envi-
ronment. A type variable is said to occur free in a type environment if there
are non-generic (free) occurrences of the type variable in any type that may
be returned by the environment.

As a consequence of this restriction, in our last example g is associated with
the type scheme (vty)(-> (ty) tx). If the if expression’s test expression is
analyzed before its then or else expressions, tx will be bound to bool. An
error will then be reported when either the then or else expression is analyzed,
since they require that tx be bound to int. Similarly, if the test expression
is checked after either the then or else expression, an error will be reported
because the end value of tx cannot be bool when checking the test expression,
since it has been previously bound to int. In either case the entire expression
is rejected as ill-typed, so the runtime type error of executing an if expression
with an integer-valued test expression is avoided.

We represent a universally quantified type as a forall record that includes a
body field containing the type from which the type scheme is constructed and a
gens field containing a list of the generic type variables occurring in the body
type. See figure 13.4.2. The procedure build-tscheme constructs a type
scheme from a given type, type, and environment, tenv. The generic type
variables of the newly constructed type scheme are those type variables that
occur in type but do not occur free in tenv. If the list of generic variables
is non-empty, a new forall record is created; otherwise, type is returned
directly.

The procedure instantiate-tscheme creates a fresh type variable for each
generic type variable of a given type scheme. A copy of the type-scheme body
is returned in which all references to one of its generic variables are replaced by
the corresponding fresh type variable. In this copy operation it is once again
critical that whenever a type variable is encountered, it is treated exactly
as if its end value had appeared in its place. For each generic variable, the
procedure instaniate-type is called to make a new copy of the body with
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Figure 13.4.2 Type scheme procedures

(define-record forall (gens body))

(define build-tscheme
(lambda (type tenv)
(letrec ((list-gens
(lambda (type)
(type-dispatch type
(lambda (ctvar)
(if (occurs-free-in-tenv? ctvar tenv)
0]
(1list ctvar)))
(lambda (tcons)
(apply append
(map list-gens (tcons->types tcons))))))))
(let ((gens (list-gens type)))
(if (null? gens) type (make-forall gens type))))))

(define instantiate-tscheme

(lambda (tscheme)
(letrec ((loop

(lambda (gens body)

(if (null? gens)
body
(loop (cdr gens)
(instantiate-type body (car gens)
(fresh-instantiated-tvar (car gens))))))))
(loop (forall->gens tscheme) (forall->body tscheme)))))

(define instantiate-type
(lambda (type tvar fresh-tvar)
(letrec ((f (lambda (type)
(type-dispatch type

(lambda (ctvar)
(if (eq? tvar ctvar) fresh-tvar ctvar))

(lambda (tcons)
(make-tcons (tcons->name tcons)

(map £ (tcons->types tcons))))))))
(£ type))))
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Figure 13.4.3  Extension of the type variable ADT for polymorphism

(define-record tvar (cell name app? inst-count))

(define fresh-tvar
(lambda (app? name)
(make-tvar (make-cell ’#unbound*) (string->symbol name) app? (make-cell 0))))

(define fresh-instantiated-tvar
(lambda (tvar)

(let ((cell (tvar->inst-count tvar)))

(let ((count (cell-ref cell)))

(cell-set! cell (+ 1 count))

(fresh-tvar (tvar->app? tvar)

(string-append (symbol->string (tvar->name tvar)) "_"

(number->string count)))))))

all references to the variable replaced by its corresponding fresh variable.

The fresh type variables generated during a type scheme instantiation
are provided by the procedure fresh-instantiated-tvar, defined in fig-
ure 13.4.3. We add to the tvar record an inst-count field, which contains
a cell that in turn contains a count of the number of times that the type
variable has been instantiated. This count is initialized by fresh-tvar and
incremented by fresh-instantiated-tvar. The sole purpose of this count is
to allow fresh-instantiated-tvar to generate a fresh type variable whose
name is both meaningful (including the name of the type variable that it
instantiates) and unique.

The type environment ADT is shown in figure 13.4.4. Each time the pro-
cedure apply-tenv is called, a new instantiation of the type scheme asso-
ciated with a given type variable is returned. We now represent type envi-
ronments as association lists. This representation makes it possible for the
procedure occurs-free-in-tenv? to map over all the type schemes that a
given environment associates with variables. In searching an environment
for a free occurrence of a type variable, it is only necessary to search the
unquantified schemes. This is because when we extend a type environment
tenv with a given type scheme, the type scheme is always constructed by call-
ing build-tscheme on some polytype t and that type environment tenv. Any
type variable in £ that does not already occur free in tenv will be made generic
by build-tscheme. Therefore extending the type environment with the re-
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Figure 13.4.4 Type environment procedures for polymorphism

(define extend-tenv
(lambda (vars tschemes old-tenv)
(append (map cons vars tschemes) old-tenv)))

(define trace-generic-variable-instantiations #t)

(define apply-tenv
(lambda (tenv var)
(let ((x (assq var tenv)))

(if (pair? x)

(let ((binding (cdr x)))

(if (forall? binding)

(let ((answer (instantiate-tscheme binding)))
(if trace-generic-variable-instantiations
(displayln

Type of var " var

" instantiated to " (unparse-type answer)))
answer)
binding))
(error "Variable not bound:" var)))))

(define occurs-free-in-tenv?
(lambda (ctvar tenv)
(ormap (lambda (pair)
(let ((binding (cdr pair)))
(and (not (forall? binding))
(occurs-in-type? ctvar binding))))
tenv)))

sulting type scheme will not add any new free variables to those occurring in
tenv.

We now turn to the procedures types-of-let-rands and letrec-tenv,
which provide a mechanism for the creation of polymorphic values; see fig-
ure 13.4.5. The version of types-of-let-rands in figure 13.4.5 differs from
the version in figure 13.3.1 only in that it returns type schemes, with generic
type variables quantified, rather than polytypes. Similarly, letrec-tenv
builds a new environment in which the program variables vars are bound
to type schemes.

Notice that the declaration expressions of a letrec expression are checked
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Figure 13.4.5 Polymorphic type inference procedures

(define types-of-let-rands
(lambda (decls tenv)
(let ((vars (map decl->var decls))
(exps (map decl->exp decls)))
(let ((bound-variable-types (map fresh-var-tvar vars)))

(match-types-pairwise
bound-variable-types
(types-of-rands exps tenv))

(map (lambda (type) (build-tscheme type tenv))
bound-variable-types)))))

(define letrec-tenv
(lambda (decls tenv)
(let ((vars (map decl->var decls))
(exps (map decl->exp decls)))
(let ((bound-variable-types (map fresh-var-tvar vars)))
(let ((new-tenv
(extend-tenv vars bound-variable-types tenv)))
(match-types-pairwise
bound-variable-types
(types-of-rands exps new-tenv))
(extend-tenv vars
(map (lambda (type) (build-tscheme type tenv))
bound-variable-types)

tenv))))))

(define type-of-assert
(lambda (assert-type exp tenv)
(let ((type (build-sharing-type assert-type)))
(match-types type (type-of-exp exp tenv))
type)))

with respect to an environment in which their own types are not polymorphic.
This is because it is not possible to build a type scheme for types of declaration
expressions until after the expressions have been checked. Thus, inside the
body of a procedure declared in a letrec, the types of the names declared in
that letrec do not appear to be polymorphic. So a procedure p declared in
a letrec expression, if invoked at some type ¢, can invoke itself only at type
t, and not at, say (1ist t). This restriction does not cause much difficulty in
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Figure 13.4.5 Polymorphic type inference procedures (continued)

(define build-sharing-type
(lambda (type)
(let ((lookup
(let ((var-table ’()))
(lambda (var)
(let ((x (assq var var-table)))
(if (pair? x)
(cdr x)
(let ((new-tvar (fresh-var-tvar var)))
(set! var-table
(cons (cons var new-tvar) var-table))
new-tvar)))))))
(letrec ((f (lambda (type)
(variant-case type
(tvarref (var) (lookup var))
(tcons (name types)
(make-tcons name (map f types)))))))
(f type)))))

practice.

Finally, we consider how the procedure type-of-assert must be changed
to accommodate polymorphism. To express the types of polymorphic values,
we extend the concrete and abstract syntax of type expressions.

(type) ::= (tvarref) tvarref (var)

A (tvarref) is any (var) other than int or bool, or any other identifier associ-
ated with a primitive type (or type abbreviation, cf. exercise 13.1.6). We do
not need concrete syntax for universal quantification of types, for we assume
that any (tvarref) represents a generic type variable.

As we have seen, the type checker tests two type variables for equality by
comparing their congruence class representatives using eq?. Two abstract
syntax tree nodes corresponding to the same (tvarref) will, however, be dif-
ferent records containing the same symbol. This is illustrated by the following
transcript, in which t is defined with the abstract syntax of the type (-> (t1)
t1).

> (define t
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(make-tcons ’-> (list (make-tvarref ’t1) (make-tvarref ’t1))))
> (eq? (car (tcons->types t)) (cadr (tcons->types t)))
#f
> (eq? (tvarref->var (car (tcons->types t)))
(tvarref->var (cadr (tcons->types t))))
it

Thus it is necessary to distinguish between type variable references, as they
appear in abstract syntax, and type variables as they are used by the type
checker. We therefore introduce tvarref abstract syntax records, rather than
using tvar records for this purpose.

The procedure build-sharing-type takes an abstract syntax tree repre-
senting a type and returns a corresponding type with each tvarref record
replaced by a corresponding tvar record. It is necessary that all tvarref
records containing the same (var) (represented by a symbol) be replaced by
the same tvar record. To manage this, a 1ookup procedure is used that main-
tains a table associating symbols from the var fields of (tvarref) records with
tvar records. The names of the newly generated type variables are obtained
from the var field of a tvarref record using the same naming convention as
type variables associated with lexical variable declarations.

See figure 13.4.6 for the tracing output of a call to type-of-exp for the
following expression.

let £ = proc (x) x
in if f(true) then 3 else £(4)

Ezercise 13.4.1

What are the types of the following expressions?

1. let £ = proc (x) x in if f(true) then £(3) else f(4)
2. proc (£) proc (x) f(£(x))

3. proc (£, x, y) £(x, y)

4. proc (f, x) if £(x) then f(x) else x

0

Ezercise 13.4.2

As a consequence of restrictions on polymorphism imposed by the Hindley-
Milner type discipline, some opportunities for polymorphism are lost. Give an
example of a program that executes without type error, but which is rejected
by the type checker of this section because a function is not polymorphic. []
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Figure 13.4.6 Trace of polymorphic type inference algorithm

Entering with (let ((f (proc (x) x))) (if (f true) 3 (f 4)))
Entering with (proc (x) x)

Entering with x

Leaving with tx

Leaving with (-> (tx) tx)

Binding tvar tf to (-> (tx) tx)

Entering with (if (f true) 3 (f 4))

Entering with (f true)

BN W N

Entering with true
Leaving with bool

B Wk w N

Entering with £

Type of var f instantiated to (-> (tx_1) tx_1)
Leaving with (-> (tx_1) tx_1)

Binding tvar t1 to tx_1

w

Binding tvar tx_1 to bool
Leaving with bool
Entering with 3

Leaving with int
Entering with (f 4)
Entering with 4

Leaving with int

B W wNDwN

Entering with £
Type of var f instantiated to (-> (tx_3) tx_3)
3 Leaving with (-> (tx_3) tx_3)
Binding tvar t2 to tx_3
Binding tvar tx_3 to int
2 Leaving with int
1 Leaving with int
0 Leaving with int

e Fzercise 13.4.8
Implement the type checker of this section. You will need to extend the
parser to recognize type variable references. Use the type checker to trace the
programs in the previous exercise. []

o Fzercise 13.4.4

When passed a type scheme with n generic variables, the procedure
instantiate-tscheme of figure 13.4.2 creates n copies of the type scheme
body with varying substitutions for the generic type variables. Improve the
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efficiency of this implementation so that only one copy of the body is made.

O

Ezercise 13.4.5
Extend the type checker of this section to include product types, as described
in the exercises of section 13.3.1 and 13.3.3. []

Ezercise 13.4.6
Extend the type checker of this section to include a sound sum type. This may
be done by modifying definesumtype to generate a discriminator function in
the spirit of type-dispatch instead of the predicate and projection functions.
For example, for

definesumtype intlist
emptyintlist (),
intcons (car : int, cdr : intlist);

it should generate a discriminator procedure intlistcase of type
(vt) (-> (intlist, (-> O t), (-> (int, intlist) t)) t)

listcase takes three arguments: a value of type intlist, a procedure of type
(-> () t), and a procedure of type (-> (int, intlist) t). If the first argu-
ment is emptylist, then the first procedure is invoked. If the first argument
is an intcons, then the second procedure is invoked on the components of the
intcons. Note that in either case, the result is of type t, so type safety is
preserved. []

Ezercise 13.4.7

Extend the previous exercise to allow sum types to be polymorphic. This may
be done by permitting syntax such as type-name (tvar {, tvar}*) in place
of the type-name in the sum type declaration. The tvars may appear as
tvarrefs in the types within the declaration, and type-name may be used as
the name of a type construction whose type operands are associated with the
corresponding twvars of the sum declaration. For example,

definesumtype list(t1)

emptylist (),
mycons (car : t1, cdr : (list t1))
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Ezercise 13.4.8
The type inference algorithm of this section may spend considerable time in
calls to occurs-free-in-tenv. A more efficient algorithm that avoids these
calls may be constructed using the following technique. Add a level number
field to each type variable, which is initially assigned a value that is the
number of let or letrec decl expressions within which the subexpression being
checked is nested. When a type variable with level number r is unified with
a compound type t, the level number fields of all type variables in ¢ with level
numbers greater than n are assigned the value n, and if two unbound type
variables are unified and their level numbers differ, the type variable with the
larger level number is assigned the level number of the other type variable.
Informally justify the claim that a type variable occurs free in the current
environment if and only if its level number is less than the level number
associated with the declaration expression whose type scheme is being built.
Extend the type checker of this section to take advantage of this technique. []

Ezercise 13.4.9

One has to be careful when assignment and polymorphic type inference are
combined. Assume the primitive procedures makecell, cellref, and cellset,
performing the cell operations used in chapter 5, are provided in the initial
environment of this section’s type checker and are given generic types; for
example

makecell : (Vt) (> (t) (cell t))

where cell is a new type constructor. Also assume begin is added to the
language for sequencing. (Sequencing may be obtained by procedure calls,
so the addition of begin is for convenience only.) The following program
demonstrates that the type checker is unsound with these additions.

let cell = makecell((proc (x) x))
in begin
cellset(cell, (proc (x) plus(x,1)));
(cellref(cell)) ((proc (x) x))
end

The type of cell, (vt)(cell (-> (t) t)), is appropriate as long as the cell
contains the polymorphic identity function, but not when it contains a func-
tion of type (-> (int) int).

There are a variety of ways to restrict polymorphism sufficiently to stay out
of this kind of trouble. The simplest is to only build a type scheme when the
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corresponding declaration expression is a procedure expression, a literal, or a
variable reference. (Actually, as long as evaluation of a declaration expression
does not result in creation of a new mutable storage location, its type may
be generalized to a type scheme. It is not always possible, however, to know
statically whether an expression will create mutable storage.)

Variable assignment may be simulated by binding the variable to a cell and
dereferencing the cell on every reference to the variable (except in a varassign
expression). Thus according to the above restriction, if varassignis added to
our language, no variable that is assigned should be given a generic type.

Modify the type checker of this section to safely incorporate begin, varas-
sign, and the cell primitive procedures. []

13.5 Summary

If a language has a static type discipline, a type checker may be used to reject
ill-typed programs, so that type errors do not occur at run time. In addi-
tion, a type checker may aid compilation of efficient code. Type information
generated either by the programmer or the type checker is a valuable form
of documentation. The programmer must, however, understand the type dis-
cipline and may be prohibited from writing some programs that would not
generate type errors if allowed to run.

Compound type expressions are built using type constructors, such as those
of function types, products, and sums. A type discipline may allow new types
and type abbreviations to be defined.

If the programmer is required to supply the types of all variables at the point
at which they are declared, type checking can be performed by a straightfor-
ward recursive descent on the structure of the program, with a type environ-
ment recording the type of each variable in the current scope.

If types are not supplied, they may be inferred using type variables as place-
holders for type information that has not yet been deduced. Types that must
match are unified, which may cause type variables to be instantiated.

A polymorphic value may be interpreted as having more than one type.
If a polymorphic value is always treated in the same way, its polymorphism
is parametric. The Hindley-Milner type discipline infers opportunities for
parametric polymorphism for values bound by let and letrec. Polymorphic
types are represented by type schemes obtained from polytypes by quantifying
over all type variables that do not appear free in the type environment.
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