
How to Evaluate Functional Scheme Programs

Conventions

A law of the form

P = Q

where P and Q are program fragments (expressions or sequences of expres-
sions) means that P and Q are logically equivalent; one can be substituted
for the other without changing the meaning of the program. Hence, = means
exactly what it means in high school algebra. In addition, every law

P = Q

has the property that Q is “closer” to an answer (assuming one exists) than
P .

Unless otherwise stated, the integer N is restricted to the range N ≥ 0.

Evaluating Expressions

Evaluating an expression means finding a value for an expression according
to the following laws. Some well-formed expressions (according to the Laws
of Syntax) do not have a value according to these rules.

Values are Values, are Values, . . .

Values are the answers produced by computations. No evaluation is required
(or possible!).

The Laws of cond

If the first condition (test expression) is a value, then one of the following
rules applies:

(cond [#f E1] . . . [else EN]) = (cond . . . [else EN])

(cond [V E1] . . . [else EN]) = E1 if V 6= #f

If the first condition is not a value, then it must be evaluated before the
laws of cond can be used.

1

The Laws of Application

Given an application consisting of values

(V1 V2 . . . VN)

there are two complementary sets of laws that specify how to evaluate the
application. If the “head” value V1 is a primitive procedure, then there is a
large table of laws for directly reducing the application to a value. You know
most of them from grammar school ; the remainder are decribed (implicitly)
in the course lecture notes and Dybvig’s book. The following paragraph
shows the subset of these laws for car, cdr, cons, cons?.

Primitive applications: If (and only if) U , V , and W are values, then:

(car (cons U V)) = U
(cdr (cons U V)) = V
(cons? (cons U V)) = #t
(cons? W) = #f if W 6= (cons U V)

where V is a list value.
If the “head” value V1 is a lambda-expression

(lambda (name1 . . . nameN) E)

where name1, . . ., nameN are names and E is an expression, then the fol-
lowing rule specifies the next step in evaluating the application:.

lambda applications:

((lambda (name1 . . . nameN) E) V1 . . . VN) = E[V1 for name1]. . .[VN for nameN]

where the notation E[V alue for name] means E with all free occurrences of
name safely replaced by V alue.1

If the “head” value is not a procedure, then evaluation sticks; there are
no rules for reducing applications of non-procedures.

If one or more of the expressions in an application

(E1 E2 . . . EN)

1Locally bound variables in E must be renamed if they clash with free variables in
V1, . . . , VN .

2

are not values, then they must be evaluated before the laws of application
can be used. In Scheme, no order is specified for evaluating these expressions.
In our hand-evaluations, we will always evaluate the leftmost unevaluated
expression Ei first.

Evaluating Programs and Names

The preceding section gives laws for evaluating Scheme expressions in the
absence of program definitions. But Scheme programs have the form

(define name1 E1)
(define name2 E2)
. . .
(define nameN EN)
E

where name1, name2, . . ., nameN are names and E1, E2, . . ., EN , E are
expressions using Scheme primitives and the defined names name1, name2,
. . ., nameN . The expression E is called the body of the program and each
expression Ek is called the body of the definition

(define namek Ek)

Given a program of the form

(define name1 V1)
(define name2 V2)
. . .
(define nameN VN)
E

we can evaluate the expression E as described above with the added pro-
vision that the names name1, name2, . . ., nameN have values V1, V2, . . .,
VN , respectively. More precisely, the program evaluation law of Scheme says
that the program

(define name1 V1)
(define name2 V2)
. . .
(define nameN VN)
E

3

reduces in one step to

(define name1 V1)
(define name2 V2)
. . .
(define nameN VN)
E′

provided that E reduces in one step to E′ given that name1, name2, . . .,
nameN have values V1, V2, . . ., VN , respectively.

We still have to address the issue of evaluating the definition bodies
E1, . . . , EN that are not values. A program

(define name1 V1)
. . .
(define namek−1 Vk−1)
(define namek Ek)
. . .
(define nameN EN)
E

where N > 0, k > 0, and V1, . . ., Vk−1 are values and Ek, . . ., EN are
expressions, reduces in one step to

(define name1 V1)
. . .
(define namek−1 Vk−1)
(define namek E′

k)
. . .
(define nameN EN)
E

provided that

(define name1 V1)
. . .
(define namek−1 Vk−1)
Ek

reduces in one step to:

4

(define name1 V1)
. . .
(define namek−1 Vk−1)
E′

k

In essence, these laws force us to evaluate the bodies of all definitions in
sequential order before evaluating the body of the program.

Rules for local

To evaluate programs containing local, we need to introduce the concept
of promotion. Given an expression of the form

(local [(define n1 E1) . . . (define nN EN)] E)

where E1, . . . , EN are expressions, we must convert the local definitions of
the names n1, . . . , nN to global definitions of new names n′

1, . . . , n
′
N , re-

naming all bound occurrences of n1, . . . , nN , and evaluate the transformed
expression E in the context of the new definitions. This conversion process
is called the promotion or flattening of a local expression. The new names
n′

1, . . . , n
′
N must be chosen so that they are distinct from all other names in

the program.
Let

(define name1 V1)
. . .
(define namek−1 VN)
E

be a program where the program body E has the form

C[L]

where L is an expression

(local [(define n1 E1) . . . (define nN EN)] E)

enclosed in the surrounding program text C[] to form the expression E.
Assume that no subexpressions in E to the left of the subexpression L can
be reduced. Hence, L is the leftmost expression in the entire program that
can be reduced. In this case, the surrounding text C[] is called the evaluation
context of L.

Using the notation introduced above, we can describe the promotion step
reducing the program by the following rule:

5

(define name1 V1)
. . .
(define namek−1 VN)
C[(local [(define n1 E1) . . . (define nN EN)] E)]

=

(define name1 V1)
. . .
(define namek−1 VN)
(define n′

1 E1[n′
1 for n1] ... [n′

N for nN])
. . .
(define n′

N EN [n′
1 for n1] ... [n′

N for nN])
C[E[n′

1 for n1] ... [n′
N for nN]]

In other words, we simply replaced L by the body of L with n1, . . . , nN

renamed and we added appropriate definitions for the new names in the
sequence of define statements preceding the program body. Note that free
occurences of the names n1, . . . , nN must be renamed in the expressions
E1, . . . , EN , as well as E.

6

