How to Evaluate Functional Scheme Programs

Conventions

A law of the form

$$
P=Q
$$

where P and Q are program fragments (expressions or sequences of expressions) means that P and Q are logically equivalent; one can be substituted for the other without changing the meaning of the program. Hence, $=$ means exactly what it means in high school algebra. In addition, every law

$$
P=Q
$$

has the property that Q is "closer" to an answer (assuming one exists) than P.

Unless otherwise stated, the integer N is restricted to the range $N \geq 0$.

Evaluating Expressions

Evaluating an expression means finding a value for an expression according to the following laws. Some well-formed expressions (according to the Laws of Syntax) do not have a value according to these rules.

Values are Values, are Values, ...

Values are the answers produced by computations. No evaluation is required (or possible!).

The Laws of cond

If the first condition (test expression) is a value, then one of the following rules applies:

```
(cond [\#f \(E_{1}\) ] ... [else \(E_{N}\) ]) \(=\left(\right.\) cond \(\ldots\) [else \(E_{N}\) ])
(cond \(\left[\begin{array}{ll}V & E_{1}\end{array}\right] \ldots\) [else \(\left.E_{N}\right]\) ) \(=E_{1} \quad\) if \(V \neq \# \mathrm{f}\)
```

If the first condition is not a value, then it must be evaluated before the laws of cond can be used.

The Laws of Application

Given an application consisting of values
$\left(\begin{array}{llll}V_{1} & V_{2} & \ldots & V_{N}\end{array}\right)$
there are two complementary sets of laws that specify how to evaluate the application. If the "head" value V_{1} is a primitive procedure, then there is a large table of laws for directly reducing the application to a value. You know most of them from grammar school; the remainder are decribed (implicitly) in the course lecture notes and Dybvig's book. The following paragraph shows the subset of these laws for car, cdr, cons, cons?.

Primitive applications: If (and only if) U, V, and W are values, then:

```
(car (cons U V)) = U
(cdr (cons U V)) = V
(cons? (cons U V)) = #t
(cons? W) = #f if W\not= (cons U V)
```

where V is a list value.
If the "head" value V_{1} is a lambda-expression

```
(lambda (name 1 ...nameN) E)
```

where $n a m e_{1}, \ldots$, name $_{N}$ are names and E is an expression, then the following rule specifies the next step in evaluating the application:.

lambda applications:

$\left(\left(\operatorname{lambda}\left(\right.\right.\right.$ name $_{1} \ldots$ name $\left.\left.\left._{N}\right) E\right) V_{1} \ldots V_{N}\right)=E_{\left[V_{1} \text { for name }{ }_{1}\right] \ldots\left[V_{N} \text { for name }{ }_{N}\right]}$
where the notation $E_{[V a l u e ~ f o r ~ n a m e] ~}$ means E with all free occurrences of name safely replaced by Value. ${ }^{1}$

If the "head" value is not a procedure, then evaluation sticks; there are no rules for reducing applications of non-procedures.

If one or more of the expressions in an application

$$
\left(\begin{array}{llll}
E_{1} & E_{2} & \ldots & E_{N}
\end{array}\right)
$$

[^0]are not values, then they must be evaluated before the laws of application can be used. In Scheme, no order is specified for evaluating these expressions. In our hand-evaluations, we will always evaluate the leftmost unevaluated expression E_{i} first.

Evaluating Programs and Names

The preceding section gives laws for evaluating Scheme expressions in the absence of program definitions. But Scheme programs have the form

```
(define name }\mp@subsup{\mp@code{N}}{1}{
(define name 2 E E )
(define nameN N EN
E
```

where name $_{1}$, name $_{2}, \ldots$, name $_{N}$ are names and $E_{1}, E_{2}, \ldots, E_{N}, E$ are expressions using Scheme primitives and the defined names name ${ }_{1}$, name ${ }_{2}$, $\ldots, n a m e_{N}$. The expression E is called the body of the program and each expression E_{k} is called the body of the definition

```
(define namek E Ek)
```

Given a program of the form

```
(define name ( V V )
(define name}2, V2
(define nameN N VN)
E
```

we can evaluate the expression E as described above with the added provision that the names name $_{1}$, name $_{2}, \ldots$, name $_{N}$ have values V_{1}, V_{2}, \ldots, V_{N}, respectively. More precisely, the program evaluation law of Scheme says that the program

```
(define name }\mp@subsup{\mp@code{V}}{1}{}\mp@subsup{V}{1}{
(define name2 V V)
(define nameN V VN)
E
```

reduces in one step to

```
(define name ( V V)
(define name_ V V
(define nameN N VN)
E'
```

provided that E reduces in one step to E^{\prime} given that name $_{1}$, name $_{2}, \ldots$, name $_{N}$ have values $V_{1}, V_{2}, \ldots, V_{N}$, respectively.

We still have to address the issue of evaluating the definition bodies E_{1}, \ldots, E_{N} that are not values. A program

```
(define name }\mp@subsup{\mp@code{V}}{1}{}\mp@subsup{V}{1}{
(define name }\mp@subsup{\mp@code{k-1}}{}{\prime}\mp@subsup{V}{k-1}{
(define name}k\mp@subsup{\mp@code{E}}{k}{}\mathrm{ )
(define nameN N EN
E
```

where $N>0, k>0$, and V_{1}, \ldots, V_{k-1} are values and E_{k}, \ldots, E_{N} are expressions, reduces in one step to

```
(define name, V V )
(define name 
(define name k E Ek
(define nameN N EN
E
```

provided that

```
(define name, V V )
(define name }\mp@subsup{\mp@code{k-1}}{}{\prime}\mp@subsup{V}{k-1}{}\mathrm{ )
Ek
```

reduces in one step to:

```
(define name ( V V )
(define name 
E
```

In essence, these laws force us to evaluate the bodies of all definitions in sequential order before evaluating the body of the program.

Rules for local

To evaluate programs containing local, we need to introduce the concept of promotion. Given an expression of the form
(local [(define $n_{1} E_{1}$) ... (define $\left.\left.n_{N} E_{N}\right)\right]$ E)
where E_{1}, \ldots, E_{N} are expressions, we must convert the local definitions of the names n_{1}, \ldots, n_{N} to global definitions of new names $n_{1}^{\prime}, \ldots, n_{N}^{\prime}$, renaming all bound occurrences of n_{1}, \ldots, n_{N}, and evaluate the transformed expression E in the context of the new definitions. This conversion process is called the promotion or flattening of a local expression. The new names $n_{1}^{\prime}, \ldots, n_{N}^{\prime}$ must be chosen so that they are distinct from all other names in the program.

```
Let
    (define name \(V_{1}\) )
    (define \(n a m e e_{k-1} V_{N}\) )
    E
```

be a program where the program body E has the form
$\mathcal{C}[L]$
where L is an expression
(local [(define $n_{1} E_{1}$) ... (define $\left.\left.n_{N} E_{N}\right)\right]$ E)
enclosed in the surrounding program text $\mathcal{C}[]$ to form the expression E. Assume that no subexpressions in E to the left of the subexpression L can be reduced. Hence, L is the leftmost expression in the entire program that can be reduced. In this case, the surrounding text $\mathcal{C}[]$ is called the evaluation context of L.

Using the notation introduced above, we can describe the promotion step reducing the program by the following rule:

```
(define name 1 V V
(define name k-1 V V
```



```
=
(define name }\mp@subsup{\mp@code{V}}{1}{}\mp@subsup{V}{1}{
(define name k-1 V V
(define n}\mp@subsup{n}{1}{\prime}\mp@subsup{E}{1[\mp@subsup{n}{1}{\prime}\mathrm{ for }\mp@subsup{n}{1}{}]\ldots[\mp@subsup{n}{N}{\prime}\mathrm{ for }\mp@subsup{n}{N}{}]}{}\mathrm{ )
(define nnN
\mathcal{C}}[\mp@subsup{E}{[\mp@subsup{n}{1}{\prime}}{\mathrm{ for }\mp@subsup{n}{1}{\prime}]\ldots[\mp@subsup{n}{N}{\prime}
```

In other words, we simply replaced L by the body of L with n_{1}, \ldots, n_{N} renamed and we added appropriate definitions for the new names in the sequence of define statements preceding the program body. Note that free occurences of the names n_{1}, \ldots, n_{N} must be renamed in the expressions E_{1}, \ldots, E_{N}, as well as E.

[^0]: ${ }^{1}$ Locally bound variables in E must be renamed if they clash with free variables in V_{1}, \ldots, V_{N}.

