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Abstract 
To accommodate polymorphic data types and operations, 

several computer scientists-most notably MacQueen, Plotkin, and 
Sethi-have proposed form&zing types as ideals. Although this 
approach is intuitively appealing, the resulting type system is both 
complex and restrictive because the type constructor that creates 
function types is not monotonic, and hence not computable. As a 
result, types cannot be treated as data values, precluding the for- 
malization of type constructors and polymorphic program modules 
(where types are values) as higher order computable functions. 
Moreover, recursive definitions of new types do not necessarily 
have solutions. 

This paper proposes a new formulation of types-called 
interuo&that subsumes the theory of types as ideals, yet avoids 
the pathologies caused by non-monotonic type constructors. In 
particular, the set of interval types contains the set of ideal types 
as a proper subset and all of the primitive type operations on 
intervals are extensions of the corresponding operations on ideals. 
Nevertheless, all of the primitive interval type constructors includ- 
ing the function type constructor and type quantifiers are comput- 
able operations. Consequently, types are higher order data values 
that can be freely manipulated within programs. 

The key idea underlying the formalization of types as intervals 
is that negafive information should be included in the description 
of a type. Negative information identifies the finite elements that 
do not belong to a type, just as conventional, positive information 
identifies the elements that do. Unless the negative information in 
a type description is the exact complement of the positive informa- 
tion, the description is partial in the sense that it approximates 
many different types-an interval of ideals between the positive 
information and the complement of the negative information. 
Although programmers typically deal with total (maximal) types, 
partial types appear to be an essential feature of a comprehensive 
polymorphic type system that accommodates types as data, just as 
partial functions are essential in any universal programming 
language. 

1. Introduction 
One of the major unresolved questions in programming 

language design is how to define the notion of dolo type. This 
paper focuses on type systems for abrfrocf programming languages 
(e.g., SETL, ML) which emphasize mathematical elegance and 
expressive power rather than execution efficiency. The justification 
for this focus is twofold. First, it is important to understand what 
type systems are mathematically possible, regardless of their 
impact on execution efficiency. Second, abstract programming 
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languages are steadily growing in importance 89 tools for program 
specifleation, prototyping, and implementation. In many 
contexts-particularly program specilleation and prototyping- 
execution is much less important than simplicity and elegance. 

The critical feature that distinguishes abstract programming 
languages from conventional ones is that data values are treated 
exclusively sa abstract objects; their underlying representation 
within a computer is completely hidden from the programmer. In 
this limited context, it is much easier to identify and compare pos- 
sible type systems because it avoids the difficult question of 
whether types refer to abstract data values or their representa- 
tions. In fact, nearly all of the type systems proposed for abstract 
programming languages (e.g., [Scot76], (ADJ77], (Gutt78], ]Cart80], 
[MacQ82]) shsre the basic intuition that a type identifies a mean- 
ingful subset of the program data domain. The principal issue on 
which they difler is the question of which subsets of the data 
domain ean be designated as types. 

1.1. Partltlon vs. Predhte Types 
There are two basic paradigms for subdividing a data domain 

into types: types as partilions (disjoint sets) and types as predi- 
cores (overlapping sets). In a partition type system, every data 
value belongs to a unique type. Most production programming 
languages (e.g., Fortran, Pascal, C, Ada) embrace this point of 
view. In a predicate type system, on the other hand, a data value 
can belong to many different types; a type is simply a designated 
subset of the program data domain. Most interactive program- 
ming languages (e.g., APL, LISP) subscribe to this approach. 

Partition typing is justifiably popular because it is easy to 
understand, easy to implement, and supports “static” 
(translation-time) type-checking-an effective tool for Rnding pro 
gram errors. Partition typing also facilitates the efficient imple- 
mentation of data values and operations, because the representa- 
tion for each type can be optimized independently of the represen- 
tations for other types. The major weakness of this approach is 
the severe limitation it imposes on the variety of possible types. 
For this reason, the domains (sets of intended inputs) of most prc- 
gram operations cannot be captured by type declarations. In par- 
tition type systems, many run-time errors such as division by zero 
are not classified as type errors. Consequently, a “type-correct” 
program can still generate errors at run-time. 

In contrast, predicate typing allows the domain of every pr0 
gram function to be declared as a type. “Type-correctness” in this 
discipline is a much stronger property than it is in the partition 
type discipline, because a predicate-typed program is type-correct 
iII it cannot generate a run-time error. The major disadvantage of 
this approach is that verifying the type-correctness of a program is 
an undecidable problem. Complete type-checking at translation 
time is impossible. 

Nevertheless, there are valuable, iess ambitious alternatives to 
complete type-checking that are feasible in predicate-typed 
languages. In fact, in a well-designed predicate type system (such 
as that in Typed LISP [Cart75a,76b]) it is straightforward to per- 
form “coarse” typtcheeking that detects ezoclly the same errors 
ss conventional “static” type-checking in the corresponding parti- 
tion type system. In coarse type-checking [Cart76a,76b], every 
predicate type is associated with a coarse type that contains the 
predicate type. Each coarse type is the union of a finite collection 
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of disjoint atomic types.1 Coarse type-checking ensures that the 
coarse type of every function argument list overlaps the declared 
coarse domain of the function. A program is “coars~type-corrcct” 
if and only if this condition holds. 

At Brst glance, coarse type-checking appears less stringent than 
conventional partition type-checking, because it does not preclude 
type errors during program execution. This conclusion, however, is 
erroneous, because the notions of type arc different. It is easy to 
show that a predicate-typed program P is coarse-type-correct if 
and only if the semantically equivalent partition-typed program P’ 
is type-correct. At every point in the program P, where the coarse 
type t of an argument u is not contained in the type u required by 
its context, the corresponding partition-typed program P’ must 
apply an explicit type conversion function Convertku to 0 to con- 
vert it from type t to type u (modifying the “tag” attached to the 
vaiue). If the vslue is not convertible from type t to u, the conrer- 
sion function Convert must generate a run-time error, even though 
the function application is “type-correct”. 

The primary advantage of predicate typing is that it enables 
programmers to document the intended behavior of program 
operations much more precisely than is possible within the rigid 
framework of partition type systems. This information can pokn- 
tidly be exploited by sophisticated heuristic type-checkers that 
detect far more program errors than conventional static type 
checkers. In essence, heuristic type-checking is a restricted form of 
program verification in which all program assertions are type 
de&rations. Much of technology devebped for program 
verigcation systems such as fsst simpligcation methods [Neis701 
should be applicable to this problem. 

1.2. The Impact of Polymorphism 
If we expand our discussion to include the subject of 

polymorphic operations-functions that work for every member of 
a family of structurally similar types-the diRerences between par- 
tition typing and predicate typing become even more dramatic. In 
predicatttyped languages the primitive functions for manipulating 
compcsite objects such as sequences are naturally polymorphic. 
Program-dellned functions that are constructed from these natur- 
ally polymorphic operations automatically inherit the polymorphic 
behavior. This property is one of the most attractiva features of 
predicate type systems. In LISP, for example, the squence openl- 
tions car, cdr, cons, and null work for dl sequences regardless of 
the element types involved. As a result, every LISP program con- 
structed from these polymorphic operations is polymorphic as well; 
the library functions append, reverse, and last are simple examples 
of this phenomenon. 

In contrsst, partition-typed languages must include distinct 
operations for each member of a family of structurally similar 
types (such as sequences), precluding natural polymorphism. To 
support polymorphic operations, additional machinery is required. 
The standard solution is to explicitly pass typss ae psrameters-a 
cumbersome convention for naturdly polymorphic operations 
where no type information is necessary. 

It. Research Objective 
The critical design decision in formulating a coherent predicate 

type system is determining the class of d&able predicates. If the 
class of degnable predicates is too small, then the domains and 
ranges of many program operations will not be deflnable ae types. 
On the other hand, if the class of degnable predicates is too large 
or poorly constructed, then the collection of definable types will 
form an amorphous set-preventing types from being treated as 
data values and eliminating the possibility of heuristic type 
checking. 

1In a data domain where the universe of values is formalized aa 
a free term algebra, it is natural to define an atomic type ss the 
set of all terms with the same outermost constructor. 

The primary objective of this paper is to develop a predicate 
type system suitable for any data domain D that accommodates a 
comprehensive set ol predicate types, yet is computationally tracet 
able. More specifically, the type system should satisfy the follow- 
ing requirements: 
1. 

2. 

3. 

2. 

Brcadlih: the type system should be applicable to any data 
domain in the sense proposed by Scott [ScoUS] (a countably- 
bssed, dgebraic cpo) that is likely to arise in practice. In par- 
ticular, the type system should accommodate higher order data 
vdues like functions and ingnite trees (lazy data objects). 
J%preuriuencsr: the set of deflnable types should be rich enough 
that every program operation, including naturally polymorphic 
ones, can be precisely typed. Although a rigorous definition 
and investigation of this property is beyond the scope of this 
paper, the informal intent is that the type constraints required 
to guarantee the absence of run-time errors should be logically 
implied by appropriate type declarations for the operations 
defined in the program. The notion is analogous to the well- 
known ezpremiucncrr property for program assertion 
Ibngubge8. 
Effectiveness: the set of types should form a tlnitary domain on 
which all of the primitive type constructors are computable 
functions. This property guarantees that recursive de6nition.s 
have computable least solutions and enables programs to mani- 
pulate types u data. 

Prevlow Work 
Among the predicate type disciplines discussed in the litera . . . . . . 

ture, the two that come closest to meeting this goal rue types 8s 
retracts and types LB ideals. Each system satisges two of the three 
criteria enumerated above. The system of retracts is broad and 
effective, but not expressive; the system of ideals is broad and 
potentially expressive*, but not ef?ective. Both or these disciplines 
rue rooted in Scott’s lhcory o/ domains which formaiizes data 
domsins ss countably-based, algebraic cpo’s. Scott cdis these 
structures flnilory domainr. The following overview of the two 
systems presumes some familiarity with domain theory, which is 
summariaed at the beginning of Section 4. 

2.1. Types M Retracts 
In the theory of types as retracts jScot76,81,83), every type t 

within a data domain D (a countably-based, algebraic cpo) is a 
subdomain of D: a subset of D that is generated by closing a set of 
finite elements of D under the lesst upper bound relation (with 
respect to D) on consistent subsets.8 Each type t forma a gnitary 
domain under the approximation ordering on D and conforms with 
the consistency, least upper bound, and Rniteness relations on D. 
To accomodate functions and infinite trees as data values and to 
support interesting type degnitions, the data domain D typically 
includes isomorphic images of its own function space [D-D, 
Cartesian product space [DxD). and codesced sum space [D+D . I 
In most cazes, these three subspacea sre disjoint, but it is not 
technically necessary. 

The theory of types ss retracts has many important mathemat 
ical properties including the following: 
1. 

2. 

The set of retracts over a Rnitsry domain D forms a gnitary 
domain Ret,,. If D is effective, then so is RetD. 

The three basic operations {+, X, +} for building composite 
types from simpler ones are computable functions on Ret,. In 
addition, all of the higher order operations used to define recur- 
sive types-in particular X-notation (usually formalized es com- 
binators) and the least flxed point operator p--are computable. 

*Depending on the mechanisms available for defining types. 

sScott has proposed two different formulations of retracts. See 
Section 4.1. 
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3. For each type t, there is a corresponding continuous function 
pL (called a projection) on the data domain D that coerces an 
arbitrary data value to the “nearest” value within t. The 
Bxed-point set of pI is precisely t. If D is effective, the projeo 
tion P; is computable ifI the Bnite elements of t sre recursively 
enumerable. 
Although the system of retracts obviously satisfies the go& of . . . - _ . . - . _.. 

breodfh and e~e.clivencs8 enumerated in Section 1.4, it fails to 
meet the czpressiwenese criterion. Formalizing types ss retracts 
precludes the precise typing of naturaIly polymorphic functions. 
In the theory of types as retracts, types are coercions that 
adversely affect the behavior of potentially polymorphic functions. 
Every function f of type A-B (where A and B are retracts) must 
yield outputs in B for all inputs regardless of whether or not they 
are in A. More precisely, f must satisfy the equation 

f= PA OfOPg 
where pA and pg are the projections (coercions) corresponding to 
A and B respectively. In informal terms, a function f belongs to 
type A-B only if it maps both legal (A) illegal inputs (A) into 
legal outputs (B). ConsequentIy, a function f that maps elements 
of type a(t) into elements of type a(t) for every type t does not 
generally belong to type a(t)-B(t) for every type t. 

To help clarify the situation, let us consider two simple exam- 
ples. First, assume we are given the identity function Xx.x for an 
arbitsry data domain D. Although this function D clearly works 
ss an identity function for any type (retract) t within D, it does 
not belong to the type t-+t for any type t except t=D. To obtain 
an identity function of type t-+t for type tCD, we must coerce 
Xx.x to pr D (Xx.x) o pc = pt. Consequently, it is impossible to 
write a polymorphic identity function that has type t-t for every 
retract t. 

As a more realistic example, zssume that we are given a data 
domain D that includes a type (retract) SeqAny consisting of the 
set of all Rnite sequences over D. Let Seq:RetD+RetD be the 
computable function that maps each type t in D to the type con- 
sisting of all finite sequences over t, and let Cat be the operation 
mapping SeqAny X SeqAny into SeqAny that concatenates 
sequences: 

Cat(Cxr ,...,X,~ ,<Y l,..., Yn>) = <Xl,...,X,,Yl,.-.,Yn> . 
The type SeqAny obviously contains the type Seq t) for all types t, 

\ yet Cat does not belong to the type Seq(t)xSeq(t +Seq(t) for any 
t other than the entire domain D, because Cat maps illegal inputs 
(within SeqAny) to illegal outputs. If t excludes any element deD, 
then Cat(<d>,<d>)=<d,d> does not belong to Seq(t), imply- 
ing that Cat does not belong to Seq(t)x Seq(t)-Seq(t). 

This anomaly is inherent in the formulation of types as 
retracts. It cannot be gxed by changing the definition of the func- 
tion type constructor 4. The set of continuous functions that 
map one retract into another does not necessarily form a retract 
unless at least one of two retracts is downward closed under the 
approximation ordering on the domain. 

The only approach to polymorphism that appears compatible 
with formulating types as retracts is to pass types explicitly as 
parameters. In this scheme, the naturally polymorphic behavior of 
operations like the identity function Xx.x and the sequence con- 
catenation function Cat is ignored; every definition of a 
polymorphic function must include an abstractions with respect to 
the type of each polymorphic argument zs well an abstraction with 
respect to the argument itself. Similarly, every application of a 
polymorphic function must include type arguments as well as con- 
ventional data arguments. This approach is explored in detail in 
IReyn74) and jMcCr791. 

2.2. Types as Ideals 
In contrast to the theory of types az retracts, the theory of 

types ae ideais \MacQS2,MacQ84aJ is speeillcally designed to 
exploit naturally polymorphic operations. Although the theory of 

deals is cast in same mathematical framework as the theory of 
retracts, it is based on a different intuitive notion of type. In the 
theory of types as idea!s, types are viewed ss conslrainfs rather 
than coercions. This change in viewpoint produces a profoundly 
diderent theory of types. 

To prevent data objects from having mulitiple interpretations, 
the theory of ideals assumes that the data domain D is dellned by 
a domain equation of the form 

D = [D-D] + [DxD] + [D+D] + Al + . . . + A,, 

where the equality symbol denotes isomorphism; the domain con- 
structors {+, +, X} have their usual meanings; and At,...,A, 
denote type expressions constructed from the symbol D, constant 
symbols denoting primitive domaina (e.g., the Rat domain of 
natural numbers), and function symbols denoting continuous 
operations on domains. Although this assumption appears restric- 
tive, it does not adversely affect the applicability of the theory, 
because any data domain of practical interest can easily be cast in 
this form. 

The most visible diRerence between the theory of idesis and the 
theory of retracts is the deflnition of the set of types. As its name 
suggests, the theory of ideals designates the set of idcole over D 
(denoted IdID) ss the types of D. An ideal of D is simply a 
downward-closed, directed-closed subset of D. In other words, a 
type must be closed under both approximations and limits. In 
contrast, a retract is closed under least upper bounds and limits. 

To support type definitions, the theory includes operations 
corresponding to all the standard type operations in the theory of 
retracts. With the exception of the function type constructor, the 
definitions of these operations are consistent with the correspond- 
ing operations on retracts. On the other hand, the function type 
constructor 3,’ is specillcally designed to accommodate polymor- 
phism. It is deened by the equation 

A30 = { K[D-tDJ 1 ‘%A f (x)EB } 
where A and B are types over D and ID-D\ denotes the domain 
of continuous functions mapping D into D. This definition of the 
function type constructor is incompatible with formalizing types as 
retracts: if A and B are retracts, A>B is not necessarily a retract. 
One of the principal resaons for formalizing types are ideals is the 
fact that are ideals are closed under the polymorphic function type 
constructor >, but retracts are not. 

In addition to adopting the “polymorphic” version of function 
type construction, the theory includes four extra primitive opera- 
tions to support polymorphism: the intersection and union opera 
tions {n, IJ} from naive set theory and the type quantillers V and 
3 (which map functions on ideals into ideals) defined by the equa- 
tions: 

t/(f) = l-ha&) f(t); 3(f) = kdlD w 
where U and ll denote the least upper bound and greatest lower 
bound operations. The expressions V(f) and 3(f) are usually writ 
ten Vt f(t) and 3t f(t). 

Using the theory of types sz ideals, MacQueen, Plotkin, and 
Sethi have generalized the elegant approach to polymorphic type 
dellnition and inference developed by Milner [Miln78] for the pro- 
gramming language of ML and by Hindley /Hind691 for typing 
expressions in the lambda calculus. In this approach to polymor- 
phism, a polymorphic operation is assigned a type that is the 
intersection (greatest lower bound) of many simpler types. For 
each application of the polymorphic operation, the appropriate 
type in the intersection is inferred ss the relevant typing for that 
application. For example, the function Cat described in Section 
2.1 belongs to the ideal type t/t Seq(t)X Seq(t)+Seq(t). 

‘Since the function type constructor > on ideals is inconsistent 
with the usual -+ constructor on retracts, it is denoted by a 
different symbol. 
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Like the system of retracts, the system of ideals has many 
important mathematical properties including the following: 

The set of ideals over a Unitary domain D form a llnitary 
domain Idl,. If D is effective, then so is IdID. 

With the exception of the function type constructor 3, all of 
the basic operations {x, +, n, l.J} for building composite types 
from simpler ones are computable functions. However, none of 
the higher order operations for deflning recursive and 
polymorphic types {cc, V, 3) are computable, because their 
input spaces (which include non-monotonic functions) are not 
finitary. 
For each type t, there is a corresponding continuous function 
tt (called a conefroinl) mapping D into the trivial domain 
{Ltrue} that identifies the elements of D that do not belong to 
t. In particular, t satislles the formula 

KED [[((x) = true ~3 x$t] . 

Unfortunately, the computable elements of IdID do not gen- 
erally correspond to computable constraints. 
The primary disadvantage of the theory of types sa ideals is 

the fact that the function type constructor ZI is not monotonic, 
much less computable. Hence, the theory fails to meet the goal of 
eflecliucnees stated in Section 1.4. This fact has three significant 
consequences. 

First, since > is an indispensable primitive operation on types, 
types cannot be treated as data values because expressions involv- 
ing > are not computable. As a result, type constructors (such as 
Seq in Section 2.1) and polymorphic program modules that take 
types as arguments6 cannot be formalized as higher order comput 
able functions. 

Second, there is no general mechanism-such as the familiar 
Kleene least fixed point construction-for solving recursive type 
equations. The function corresponding to a system of recursion 
equations is not necessarily monotonic. Although Iv&Queen, Plot 
kin, and Sethi [MacQSla] have established that unique solutions 
exist for an important syntactic class of recursive type equations 
(called form& conIrocfiue equations), the theory is restrictive; it 
is not applicable either to non-contraetive systems of. type equa- 
tions or to more general systems of recursive type equations that 
include the definition of type constructors. For this reason, it is 
synfaclicolly illegal to apply the fixed-point operator to type 
expressions that sre not formally contractive. 

Third, reasoning about ideal types is a complex problem that 
lies outside the scope of established deductive systems for data 
domains (such as Edinburgh LCF [Cord771 or the first order 
theory of domains described in [Cart82]). All of these systems 
presume that every function is continuous. 

3. Types ae Intervals 
The principal research contribution of this paper is the con- 

struction of a new theory of types-called lypce au intervol+that 
satisfles the three goals enunciated in section 1.4. The new theory 
of types is closely related to the theory of types as ideals, because 
it is baaed on exactly the same intuitive notion of type and 
approach to polymorphism. In fact, the set of interval types over 
a domain D forms a superset of the set of ideal types over D and 
the type operations on intervals are extensions of the correspond- 
ing operations on ideals. 

The motivation for formalizing types as intervals instead of 
ideals comes from the following observation. In the theory of 
types as ideals, the description of a computable type A specifies 
how to enumerate the set of llnite elements of D that belong to A, 
but it does not specify how to enumerate the set of finite elements 
that do not belong to A-even though this set is recursively enu- 
merable in almost all cases of practical interest. The omitted 
information is important; if it were available, the function type 

6As defined by Burstall and Lampson IBurs841. 

construction h>B would be computable, because all of the “one- 
step” functionse ai-+b in A-+B where a$A (vacuously satisfying 
the membership test for A>B) would be recursively enumerable, as 
well as those where aEA and bcB. Without it, the one-step func- 
tions that vacuously belong to A>B cannot be enumerated. 

The theory of types as intervals is specillcally designed to over- 
come this problem. The essential difference between the theory of 
types ss ideals and theory of types as intervals is that interval 
type descriptions contain negative information specifying the ele- 
ments that do not belong to a type as well poeitiue information 
specifying the elements that do belong. The interval type 
corresponding to an ideal type A includes both a description of A 
and a description of the complement of A. 

The addition of negative information to type descriptions has 
three major consequences. First, it forces the inclusion of “par- 
tial” elements in the space of types. These elements do not have 
any analogs in the system of types as ideals. If the negative infor- 
mation in an interval type description is not the exact complement 
of the positive information, the description is partial in the sense 
that it describes an interval of ideals between the positive informa- 
tion and the complement of the negative information. Although 
the total (maximal) types are the types of immediate practical 
importance, the partial types are required to make the set of inter- 
vals form a finitary domain under the approximation ordering 
determined by inclusion of information. 

Second, the approximation ordering on interval types does not 
agree with the approximation ordering on ideals. In the theory of 
types as ideals, type A approximates type B if and only A is a sub- 
set of B. In the theory of types as intervals, the interval 
corresponding to the ideal A is completely unrelated to the interval 
corresponding to B unless A and B are identical. 

Third, all of the standard type operations on ideals have 
natural extensions to the space of intervals which are 
compulaMe-even though the function type constructor and higher 
order type operations on ideals are not computable. The inclusion 
of additional information in type descriptions is responsible for this 
apparent paradox. 

3.1. DeAnftlon of Interval Types 

There are two different ways to construct the domain of inter- 
val types. The two constructions complement each other: one has 
a simple, intuitive explanation; the other reveals the computational 
structure of interval types. In the simple construction, an interval 
type over a llnitary domain D is dellned as the set (a,A] of all 
ideals over D that lie between two designated ideals a and A 
(inclusive) where asA. The approximation ordering on intervals 
is simply the superset relation on sets: [a,A] C [b,Bj w Ia,A] > 
[b,B]. The total (maximal) elements in the set of intervals over a 
domain are intervals of the form [A,A] that contain a single ideal 
A. 

In the computationally concrete construction, an interval type 
is defined ss a pair of sets <a,A> where a is an ideal over D and 
A is a c&deal (complement of an ideal) over D that does not 
intersect a. The approximation ordering in this formulation of 
intervals is the conjunction of the subset relations on correspond- 
ing components: <a,A> C <b,B> +> acb A AEEl. Simi- 
larly, the total elements are pairs of the form <A,A> where A is 
an ideal and A is is complement. 

The major advantage of the second construction is that it 
makes the finite elements of the domain manifest. They are sim- 
ply pairs of the form <b,B> where b is a finite element in the 
space of ideals and B is a finite element in the space of co-ideals 
over D. For readers that are familiar with the Scott topology, an 
interval type is simply a pair consisting of a Scott-closed and a 
Scott-open set that do not intersect. It is straightforward to prove 
that both the set of ideals (Scott-closed sets) over a finitary 

eThe one-step function a+bEA+B is the least function 
TEA-B such that b C f(a). 
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domain D and the set of co-ideals (Scott-open) sets over a Rnitary 
domain form Rnitary domains under the subset ordering. 

3.2. Standard Operations on Intervals 
The theory of types as intervals includes operations correspond- 

ing to all of the operations in the theory of types as inter&. All 
of basic (Rrst order) type operations on intervals are detlned so 
that their retrictions to total intervals are identical to the 
corresponding operations on ideals. They can be dellned in terms 
of the corresponding operations on ideals as follows: 

[a,A] n[b,B] = ]dlb,AnB] [a,A]x[b,B] = [axb,AxB] 
[a, A] U [b, B] = @b, AUB] [a, A]+[b, B] = [a+b, A+B] 
[a, A] > ]b, B] = ]A>b, a>B] 

Similarly, the higher order operations on intervals {V&J} sre gen- 
erslizations of the corresponding operations on ideals, assuming 
that we identify continuous totality-preserving functions on inter- 
vals (functions that map total intervals to total intervals) with the 
corresponding functions on ideals (which are not necessarily con- 
tinuous). For this reason, the parameter in an interval type 
quantiRcation ranges only over total intervals. In the theory of 
intervals, the type quantifiers are dellned by the equations 

3 r = < Ll&&p,Qt f(x)+ , llxglypqt f(x)- > 

VT= < l-lx-t f (xl+ , u,mt r (4- > 

where TypeDl denotes the set of lofal intervals over the data 

domain D and f+ and f- denote the component functions defined 
by the equation 

f(x) = <ff(x),f-(x)> . 
In contrast, the least Rxed-point operator p is simply the standard 
Y operator from domain theory. 

3.3. Important PropertIes of Interval Types 
The most important mathematical properties of interval types 

8re summarized in the following list: 
The set of intervals over the Rnitary domain D forms a Rnitary 
domain TypeD under the superset ordering relation. The total 
elements of TypeD ere all intervals of the form (A,A] where A 
is an arbitrary ideal over D. Hence, there is a natural one-to 
one correspondence between the maximal elements of TypeD 
and the ideals of D. 
All of the standard operations for building composite types 
from simpler ones including the type quantifiers V and 3 are 
computable functions. Moreover, if we identify the total inter- 
vals with the corresponding ideals and functions on intervals 
that preserve totality with function on ideals, all of the type 
operations on TypeD-including the higher order operations 
{V, 3, p}-are simply extensions of the corresponding type 
operations on ideals to a huger space of types (with a difierent 
approximation ordering). Consequently, every type definition 
and type inference in theory of ideals has an immediate analog 
in the space of total intervals. 
For each interval type u = [a,A], there are two corresponding 
continuous functions p,:D+D and (,:D+{1,true} called the 
projecfion and the conefroinl for a, respectively. The projec- 
tion function pa coerces an arbitrary element of D to the 
nearest value that lies within every ideal in LI. Hence, pa pro 
jects elements onto the ideal a forming the lower bound of a. 
Similarly, the constraint function [, identifies the elements of 
D that do nof belong to any ideal within a. In particular, Q 
satisdes the formula 

VXED IC,(x) = true -c+ x$A] . 

In contrast to the theory of ideals, a type t is a computable elt 
ment of TypeD iff both the projccfion and the conrfroinf 
corresponding to t are computable functions. 

3.4. Impllcatlons of Formulating Types as Intervals 
The most SigniRcant and surprising property in the preceding 

list is the fact that all of the standard type operations are comput 
able functions, yet they are extensiona of the corresponding opera- 
tions on ideals. This result is particulruly surprising for the higher 
order operations {V, 3, r}, since they are not computable in the 
theory of ideals. The construction required to compute the 
quantifiers V and 3 is described in detail in Section 4.7. 

The fact that all of the primitive type operations are comput 
able operations has three important con’sequences that are not 
immediately obvious. First, it enables programmers to deRne 
interesting new computable type conefrucfore. Since recursive 
type deRnitions are simply recursive deflnitions of constants (Gary 
functions), they can be freely incorporated in arbitrary recursive 
programs over any flnitary domain D that includes appropriate 
subspaces D%, D,, and D, isomorphic to the domains 
TypeD , [DxD], and ID-D]. Hence, it is possible to detine type 
constructors (functions from D to TypeD) using ordinary recur- 
sive deRnitions. For example, the following equation 

Tuple(n,t) = If n equal 0 then Empty else tXTuple(n-1,t) 
deRnes the computable type constructor Tuple: WXType 4 
Type where Empty is the total interval containing only the empty 
sequence and N* is the natural numbers augmented by the inRnite 
element w (the length of an inRnite sequence). Tuple(n,t) builds 
the total type consisting of all tuples of length n formed from type 
t. For each nEN*, Tuple(n,t) is a subtype of the the standard 
sequence type Seq(t) deaned by the equations 

Seq(t) = Empty u PropSeq(t) 
PropSeq(t) = tXSeq(t) . 

Second, since types sre ordinary data values, it is possible to 
generalize the type quantifiers V and 3 for a domain D so that they 
quantify over the total elements tt (t f-l Dt) of any total type 
(ideal) t that is Lowron-compacf. An ideel t over D is Laweon- 
compocf iR iff every inflnitc set of propositions of the form bl G x 

or bl]c x that is inconsistent with tl has a Rnite inconsistent sub- 
set. If the entire domain D is Lawson-compact, then every total 
type GType~ is Lawson-compact. As a result, for any Lawson- 
compact domain D, we can deRne generalized qu8ntiRers V* and 3* 
that are parameterized by the domain of quantiRc8tion (a total 
type). 

For any Lawson-compact domain D, the generalized quantiRers 
v* and 3* are the continuous functions from 
TypeDX (D+Type*] into TypeD defined by: 

3*(la,Al,f) = < U,,t f (xl+ , n,t f (x)- > 

V*([a,A],f) = < flxat f(x)+ , l-l,81 f(x)- > . 

For every total type [a,A], al and At 8re obviously identical. For 
the sake of notational clarity, we abbreviate the generalized 
qu8ntiRer expressions 3*(A,Xt.a(t)) and V*(A,Xt.a(t)) > by 3tGA 
u(t) and VteA a(t), respectively. 

If the domain D includes (an isomorphic image of) Type,, as a 
downward-closed retract then the standard type quantiRers are 
simply instantiations of the generalized type quantifiers where the 
type parameter is bound to Type = [Type, ,Type,-,I: 

V = Xf. V*( Type,f); 3 = Xf.3*tOPe,f) . 

On any Lawson-compact domain D, the parameterized 
quantiRers are not only continuous, they arc computable in virtu- 
slly all cases of prsctical interest. In particular, V* and 3* are 
computable for any Lawson-compact domain D with a lofolly 
eflecfiue enumeration. A domain D has a totally effective 
enumeration iR it is decidable for every Rnite set of propositions of 
the form bl C x or br]E x whether or not it is consistent with a 
total element of D. This property obviously depends on the 
details of the enumeration of the basis <bl [ iEN>. In practice, 
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data domains are almost always defined as the solutions of domain 
equations constructed using standard domain operations and finite 
primitive domains, a process that generates totally effective 
enumerations for the specified domains. 

The principal limitation on the applicability of parameterized 
quantification is the restriction to Lawson-compact types. In prac- 
tice, many data types are not Lawson-compact. The most impor- 
tant class of counterexamples is the set of infinite, flat data types 
such 8s the natural numbers augmented by I. Fortunately, it is 
possible to embed any finitely generated flat data type in a larger 
“lazy” type (see ICart for a discussion of lazy data domains) 
that is Lawson-compact simply by making all the constructors for 
the type (e.g. the sue operation for the flat natural numbers) non- 
strict. It is easy to show that every domain D that is freely gen- 
erated by non-strict constructors is Lawson-compact. 

Two interesting illustrations of the utility of generalized 
quantification occur in the context of the Tuple example presented 
above. First, by using parameterized quantification, we can define 
the types 3nEN* Tuple(n,t) and 3nEN Tuple(n+l,t) which are 
identical to Seq(t) and PropSeq(t), respectively; these facts are 
easily proved by Bxed-point induction. Second, we can assign the 
following precise typing6 to the standard operations Head, Tail, 
and Cat (concatenation) on sequences: 

Head: Vn/nEN* VttEType Tuple(n+l,t)>t 
Tail: Vn’nEN* VtEType Tuple(n+l,t)~Tuple(n,t) 
Cat: Vm,nEN* 

Vt’tEType Tuple(m,t)XTuple(n,t)>Tuple(m+n,t) . 
These types sre not only total; they are computable. They also 
imply the more familiar weaker typings: 

Head: Vt’tEType PropSeq(t)>t 
Tail: VtEType PropSeq(t)>Seq(t) 
Cat: t/t&Type Seq(t)X Seq(t)>Seq(t) . 

The third consequence of the eHectiveness of the type system is 
that it reduces the problem of type inference to the problem of 
reasoning about computable functions. It is straightforward to 
define both the domain of types (including all affiliated domains) 
and the standard operations on types within a conventional pro 
gramming logic for finitary domains such ss Edinburgh LCF 
[Cord771 or the first order theory of domains proposed in ICart82]. 
In this context, it is possible to derive a set of specialized type 
inference rules analogous to those proposed by MaeQueen, Plotkin, 
and Sethi for ideals. The only interesting issue involved in this 
exercise is determining how to generalize the notion of type 
membership to cope with the fact that an interval type is not a set 
of data values but a set of ideals (which are sets of data values). 
The simplest answer is to degne two different forms of member- 
ship: ncceeeory (xe[t]) and poeeible (xE[t]. A data value x neceu- 
uorily belong8 to type t ilI x belongs to every ideal in t (hence, to 
the lower bound of t). Similarly, a data value x possibly belong8 to 
type t ifI x belongs to some ideal in t (hence to the upper bound of 
t). Both of these notions are detlnable in terms of the approxima- 
tion relation C and computable functions on intervals. 

For each rule in the MPS type inference system for ideals, the 
corresponding interval type inference system contains two rules: 
one for necessary membership and one for possible membership. 
The interval type system also contains a rule asserting that neces- 
sary membership implies possible membership. With the exception 
of the rules for > introduction and elimination, the two interval 
rules corresponding to an ideal rule look identical to the ideal rule 
except that necessary and possible membership symbols, respec- 
tively, appear in place of conventional membership symbol. The 
most interesting rules are the rules of abstraction (3 introduction) 
and application (3 elimination) shown in Figure 1. 

For totsl intervals, the two notions of membership are obvi- 
ously equivalent. In practice, programmers deal almost 
exclusively with total types, eliminating the need to distinguish 
between the two forms of membership. For total types, the inter- 
val rules collapse to the corresponding rules for ideals. 

Abstraction Application 

Figure 1: Rules for abstraction and application. 

Consequently, all derivations of type assertions within the 
MacQueen-Plotkin-Sethi inference system for ideals can be dupli- 
cated verbatim in the corresponding inference system for intervals. 

In addition to providing a simple foundation for a type infer- 
ence system analogous to that proposed by MacQueen, Plotkin, 
and Sethi, the reduction of type inference to reasoning about com- 
putable functions enables us to perform more complex type infer- 
ences that require stronger proof rules such ss fixed-point induc- 
tion. The proof of the equivalence of the types3nEN* Tuple(n,t) 
and Seq(t) defined in Section 3.4 by hxed-point induction is a good 
example of this capability. 

4. A Mathematical Theory of Types 

The remainder of the paper presents a rigorous formalization of 
interval types and justifies the informal statements made in the 
previous section. Several of the theorems-most notably the com- 
putability of the quantifiers V and 3 over Lawson-compact 
spaces-are quite general and may be applicable in other contexts. 

With the possible exception of the naive powerdomain and the 
Scott and Lawson topologies, the fundamental detinitions and lem- 
mas of domain theory underlying the formulation of types as inter- 
vals should be familiar to computer scientists who are conversant 
with domain theory. All elementary definitions and routine proofs 
have been omitted to conserve space; the deRnitive reference on 
the mathematical foundations of domain theory is [Gier80]. 

Unfortunately, the terminology of domain theory has not been 
completely standardized. In addition, there are several different 
formulations of the theory with subtly different properties. This 
paper is based on Dana Scott’s most recent formulation of domains 
as information systems [Scot81,Scot83). The reader should be 
aware that the usage of the terms domain, universal domain, and 
subspace in this formulation of domain theory is not completely 
consistent with that found in some widely available references such 
as [Plot78]. The most significant difference between Scott’s new 
formulation and earlier versions of domain theory is that subspaces 
(“retracts”) are requirtd to be images of algebraic projections not 
just images of finitary retractions. 

The following set of definitions form the foundation for domain 
theory. 

Definltlon Given a partial order S = <S, C >, a subset 
RCS is coneisfenl iR it has an upper bound in S. R is directed ifi 
every finite subset EC_R has an upper bound in R. R is filtered ill 
every finite subset ECR has a lower bound in R. 

Deflnltlon A partial order Sis complefe iff every directed sub- 
set RCS (including the empty set) has a least upper bound in S. 
The least upper bound in S of the empty set is denoted Is. The 
phrase “complete partial order” is frequently abbreviated cpo. 

Deflnltlon An element s of a cpo S is finite iK for every 
directed subset RCS has the property that s C Us R implies that 
&ES such that s E r; it is inJinite ig it is not Rnite. An element s 
is lofol if it is maximal under the approximation ordering E : 
tkLxEsscx;,s=x. 

Not&Ion Let R be an arbitrary subset of a cpo S. The set of 
Rnite elements of R (within S) is denoted Ru. Similarly, the set of 
total elements of R is denoted Rt. 



Deflnltlon A subset R of a cpo S forms a bati for S iff it 
satisiies the following two properties: 
(i) R is closed under the least upper bound operation on flnite 

consistent subsets. 
(ii) Every element xE.9 is the least upper bound of the subset of R 

that approximates it, i.e. 

XES x = Us {YER I y G x}. 

Deflnltlon A domain D is a pair <O,p> consisting of a eom- 
plete partial order D and an enumeration /3 = {bf 1 IEN} of the 

finite elements Do of 0.7 

Definltlon A domain D is jinifory iff D is algebraic: the set 
De of finite elements forms a basis for D. 

Deflnltlon The finilory boric of a finitary domain D is the set 
DO of finite elements of D. 

Notstlon When no confusion is possible, we will frequently 
omit the subscripts (identifying a domain) on the symbols Ll (cup), 
il (inn, andl. In addition, we will often use the symbol D denot 
ing a domain in place of the symbols D and D. 

Deflnltlon An n-ary function T:Da-+D is monotonic itI 

v Ix I9...,%1, IY 1 ,..., ynl E D” x, E y1 A . . . A X~ E y,, > 

f(x1 I... ,Xn) c qy, I... ,Y,) . 

The function f preeervee direcfed eupr (filtered in/#) ig for every 
n-tuple Sr,...,S, of directed (filtered) subsets of D, 

qus ,,...,US,) = 
Ll (t-l) {f(d ,,..., d,) ( (d ,,..., d&S i x . ..x Se)} . 

It is stticf iff the image of every argument list containing1 isl: 
Vq ,..., x&D x1=1 . . . x,=1 > f(xl ,..., x,) =I. 

For reasons that we will explain in Section 4.2, functions that 
preserve directed sups are called Scoll-conlinuoue (or simply 
continuoue) functions. Similarly, functions that preserve both 
directed sups and filtered infs are called Lamson-conlinuoue. 

4.1. Fundamental Domain Constructlons 
In specifying dnitary domains, it is often convenient to con- 

struct composite domains from simpler ones. Although there 
are many userul domain constructors, most of those that occur 
in practice can be recursively defined in terms of three fund& 
mental constructions: the Cartesian product construction 
(denoted AXB), the coalesced sum construction (denoted 
A-1, and the (Scott) continuous function construction 
(denoted A-+B). For a precise definition of these construc- 
tions, see [Scot81,Scot83]. In this paper, we will also rely heavi- 
ly on four other domain constructions that are all related to 
the familiar powerset construction from set theory: the retract 
power domain, the open and closed power domains, and the 
naive power domain. Each power domain construction takes a 
finitary domain D and generates a finitary domain containing a 
different class of subsets of D. The definition of the retract 
power domain appears below. We will deilne the remaining 
power domain constructions ss soon as we introduce a sufficient 
set of supporting definitions. 

Deflnltlon A domain A is a relracf (or subspace) of the 
domain B ig2 
(i) AC_B; E ~=((x,y) 1 x,yEA A (x,y)E C B}; andlA=l,+ 

(ii) A0 = AnDo. 

(iii) For all directed subsets RCA, lJA R = LJB R. 

The function IIA defined by 

x*(x) = Ll {YEA” 1 y G x} 

‘Since the elements in the enumeration are not necessarily dis- 
tinct, D can be Rnite. 

is called the algebraic projecfion corresponding to A. 
Deflnltlon A domain A is a weak rcfrocf of the domain B 

ifl 
(i) AGB; G A={(x,y) 1 XJEA A (x,y)E C B}; andlA=la. 

(ii) For all x,yEA, {x,y} is consistent in A iII {x,y} is con- 
sistent in B. 

Any continuous function f:B+B such that f o f = f and f(B) 
= A is called a refroefion for A. 

Remark Every retract is obviously a weak retract. The 
converse, however, is false because a Rnite element of a weak 
retract is not necessarily a Rnite element of the parent domain. 
Similarly, the least upper bound relation within a weak retract 
may not be a restriction of the least upper bound relation on 
the parent space. 

For the remainder of the section, let D be an arbitrary 
domain with enumeration < bl 1 ieN>. 

Deflnltlon The domain of retracts RetD ia defined as the 
pair <RefD ,p> where RefD is the partial order consisting of 
the set of retracts of D under the subset relation and p is the 
enumeration <RJ ) iEN> consisting of all finite retracts (Rnite 
sets in Ret+) sorted by rank 

c (I I blER VJ<l bj#bl) 2’ * 

It is essy to verify that the set {RI 1 IEN} = (Ref#‘, 

conArming that RetD is in fact a domain. 

Lemma If D is Rnitary, then so is RetD. 

Definltlon The partially ordered set of weak retracts 
WeakRefD is deRned se the pair <WeakRet,,,s> where 
WeakRetD is the set of weak retracts of D and C is the subset 
relation on WeakRet,. 

Remark The partial order WeakRet,, is not complete, be- 
cause pairs of consistent weak retracts do not necessarily have 
least upper bounds. 

4.2. The Scott and Lawson Topologles 
Deflnltlon A subset S of a partially ordered set D is doum- 

ward closed iK &ES VycD (y E x 2 YES). S is upward closed 
iff VXES vy/y~D (y2x > YES). The upward closure ojS, denot 
ed St, is the set {XED ) 3yGI y C_ x}. The downward cloaure of 
S, denoted Sl, is the set {XED I3yES x E y}. We will abbrevi- 
ate the upward and downward closure of a singleton set {x} by 
the symbols xl and xl, respectively. 

Deflnltlon Let S be an arbitrary set. A fopofopy u on S is 
a family us ol subsets of S, called the u-open sets of S, with 
the following three properties: 
(i) SEOS. 

(ii) For every subset V of usI IJO SES. 

(iii) For every finite subset F of us, &p SES. 

Remark Note that property (iii) implies that the empty 
set d belongs to us. 

Deflnltlon Let u be a topology on the universe S. A sub- 
set t&u is a sub-bauie for u iR u is the closure of w under arbi- 
trary unions and Ilnite intersections. u is called the topology 
generated by the sub-basis w. 

DeAnltlon Let u be a topology on the universes A and B. 
A function f:A-+B is u-continuous ig the inverse image under f 
of every ug-open set is uA-open: V %u~ I-l(S)Euk 

Deflnftlon Let u be a topology on the universe A. A sub- 
set S of u couers a subset B of the universe A iff B C +s s. 
S is called a u-covering of B. A subset B of A is u-compacf ig 
every u-covering has a finite subset (called a finife O- 
aubcouering) that covers B. 
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DefMtlon Let u,, be a topology on the universe A. A 
subset SCA is u-cfoscd iR its complement A-S is u-open, i.e. 
A-S E Us 

Notatlon If the universe A is clear from context, we will 
denote the complement of a set S with respect to A by S (or al- 
ternately 4). 

DeAnltton (The Scott Topology) A subset S of the domain 
D is Scott-open (or simply open) iff S is upward closed and 
HES 3yES ly is finite A y C x] . 

DeAnitlon Let S be a downward closed subset of the 
domain D. The boundary of S (denoted AS) is the set {y& 1 
‘J’&(S)~ xl5 y }. The Scolf-closure of S (denoted ISI) is the set 
SuAS. The Scott-closure of an arbitrary subset SCD is the set 
IW 

Lemma S’is Scottclosed iff S = [Sl. 
DeRnltlon For every domain D, the open (closed) power- 

set OpD (C(D) is the cpo consisting of the universe OpD (CID) 

of open (closed) subsets of D under the subset relation. 
Lemma A Scott-open (Scott-closed) set 0~0~~ (CXCI,) 

is Anite in the cpo < OpD (Cl,) iff there exists Rnite set F of 
finite elements of D such that 0 = Ft (C = FL). 

Deflnltlon The domain OpD (Cl,) is the pair < OpD ,o> 

(<CUD ,a>) where o is the enumeration <Sl ( iEN> consist 

ing or all sets {St (Sl) 1 SCDn and S is finite} sorted by rank 

c 111 bJn t/kU b&b]) 2' * 

Theorem If D is Rnitary, then so is OpD (Cl,-,). 

Remark In the literature on types, the Scott-closed sets 
over a domain D are usually called the ideal8 of D. 

Theorem A function f mapping a Rnitary domain A into 
a Rnitsry domain B is Scot&continuous iR it preserves directed 
sups. 

DeAnltion (The Lawson Topology) A subset S of a finitary 
domain D is Lowon-open ifl it is a member of the family of 
sets X(D) generated by the sub-baeie {xt 1 XEP} u 

{D-xl 1 x@J}. 
Theorem A function f mapping a Rnitary domain A into 

a finitsry domain B is Lawson-continuous iR it preserves both 
directed sups and filtered infs. 

4.3. The Naive Powerdomain 
For any domain D, there is a corresponding domain of sub- 

sets 2D, called the naive powerdomain, that includes both OpD 
and CID and respects the same approximation and consistency 
relations. As before, let D be an arbitrary domain with basis 
enumeration <b, I iEN>. 

Deflnltlon A subset SCD is directed-closed iR tlRC_S R 
directed > URES. The directed-clorure of S (denoted 1.51) is 
the set {x 13RCS R directed UR=x}. 

Deflnltion The naive powerset tD over D is the cpo con- 
sisting the universe {SED 1 S = ISol} under the subset rela- 
tion. 

Lemma The finite elements of ID are precisely the finite 
sets in 2D. 

DeAnltlon The naive powerdomain 2D over D is the pair 
<dD,o> where cr is the enumeration <SI I iEN> consisting of 

all sets {ISI 1 ScDo and S is Anite} sorted by rank 

c (I l bJEs tiU bk+bJ) 21 . 

Lemma 2D is a Rnitary domain. 

We define analogs in 2D to the standard operations on sub- 
sets of D as follows: 

Deflnltlon The union and inter8ecfion functions , 2D-+2D 
are defined by: 

A B = lA%BOl ; A B = IAn nBnl 

The complement function -:2D-2D is defined by: -(S) = 
ID”-SOI . 

Lemma The functions and are continuous but the func- 
tion - is is antimonotonic and hence is not continuous. 

The set functions ,, and - do no1 necessarily yield the same 
answers as the analogous set operations n, U, and 7 on arbi- 
trary sets. The following lemma identifies sufficient conditions 
for ensuring that they agree. 

Lemma Let D be a Rnitary domain. 
(i) For all sets A,BEOp+CID , AB = A nB 

(ii) For arbitrary sets A,BE~D, AB = AuB. 
(iii) Lemma For every set AEOpDuCID , -A = 7\ . 

Definltlon Let D be a Rnitary domain and let 2D be the 
naive powerdomain over D. An n-ary function f:(2D)b-+2D is 
tidy iff 
(i) f is Lawson-continuous (preserves both directed sups and 

Altered inh), 

(ii) f precrerucr clored sets: if C~,...,C,ECID”, then f(Ci,...,Ca) 

E CIDu, and 

(iii) f prererueo open sela: if O,,...,O&OpDa, then f(Oi,...,O,) 

6 OpDn. 

All of the naive set operations that we discuss in the 
remainder of the paper will be tidy. We will subsequently show 
that every tidy set operation induces a continuous operation on 
interval types that preserves total types. 
4.4. Computability 

In order to formalize the idea of computable functions on a 
domain, we must identify a concrete representation for the ele- 
ments of the domain. 

Deflnitlon A domain D is eflectiue ill it is finitary and the 
following two relations are recursive: 
(i) The binary relation CON defined by 

CON(i,j) <=>3k bl E bk A bj E bk . 

(ii) The ternary relation LUB defined by 
LUB(i,j,k) +> bk=U{bJ,bJ} . 

Theorem The constructed domains ID+E), IDxE], 
D+E, B&D, OpD, ClpD , and 2D are effective if the com- 
ponent domains D and E are. 

Deflnltion A subspace A (with enumeraticn Q = <al 1 
iEN>) of a finitary domain B (with enumeration /3 = <b, 1 
iEN>) is efecfiue ifl the function repN-tN defined by 

rep(i) = min {j 1 bJ=al} 

is recursive. 
Deflnltlon An element d of an eRective domain D with 

enumeration S is computable iR the index set {i I 6, C_ d} is re- 
cursively enumerable. 

Deflnltlon Let A and B be effective domains with 
enumerations a = {a, I iEN} and @ = {bl 1 ieN}. A continu- 
ous function I:A+B is compufable iR f is a computable ele- 
ment. 

Theorem f is computable ifl the relation F defined by 
{(i,j) ( bJ C f(al) is recursively enumerable. 



Deflnltion For any flnitary domain D, the leaef @cd-point 
operafor Y: [D-+Dj-rD is deIlned by the equation 

Y r = LllEN f ‘(l) 

where f 1 denotes i compositions of the function I (I u = Xx. 1). 
Theorem Y has the property that Yf is the least Rxed- 

point of I, i.e. the least element d such that f(d)=d. 

Theorem If D is effective, then Y is computable. 
DeRnltlon A universal domoin U is an effective domain in 

which every data domain D is isomorphic to a subspace SD of 
U. In addition, if D is effective, 54, must be an effective sub- 
space of U. 

Theorem There exists a universal domain U. 
Proof See [Scot 81, Scot831. 0 
Since every domain D has an isomorphic image SD within 

the universal domain, the problem of detlning an arbitrary 
domain can be reduced to defining an arbitrary subspace of a 
particular universal domain. The following theorem (in con- 
junction with KIeene’s recursion theorem) implies that we can 
recursively define effective subspaces of a universal domain us- 
ing the domain constructors X, +, and -. 

Notation Let U, denote an e8ective subspace of U that 
is isomorphic to Ret u. 

Theorem Let U be a universal domain and let a,bERet u 
be elements of U representing the subspaces A,ERetU. For 
the three basic domain constructions (x, f, -+}, there are 
corresponding computable functions mkProd, mkSum, and 
mkFun:UmtXUr+t+U, such that mkProd(a,b) represents 
the subspace isomorphic to AXB, mkSum(a,b) represents the 
subspace isomorphic to A+B, and mkFun(a,b) represents the 
subspace isomorphic to A+B. Similarly, for the four power 
domain constructions {Ret, Op, Cl, Pow}, there are comput- 
able functions mkRet, mkOp, mkCI, mkPow: U,, -+ U~,I 
such that the applications mkRet(a), mkOp(a), mkCl(a), 
mkPow(a) yield elements representing the subspaces of U iso- 
morphic to Ret*, Op*,, Cl,, and 2*, respectively. 

4.5. Detlnltlon of Interval Types 

We have finally laid sufficient groundwork to define the set 
of interval types over a finitary domain D and show that it 
forms a fmitary domain. 

DeAnltIon An infcrval type (or simply inlerval) la,A) on 
the finitary domain D is the set of ideals {KCID 1 aGIEA} on 
D where aCA and a is non-empty. The set of interval types 
over a domain D is denoted Type,. 

Theorem For every finitary domain, the set TypeD of in- 
terval types over D forms a Iinitary domain under the superset 
ordering _> on intervals (as sets). The total elements of 
TypeD are intervals of the form [A,AI containing a single ideal 
A. 

Dednltlon A total element of the domain TypeD is called 
an ideal imate over D. The set or ideal images over D is 
denoted Id],. 

The easiest way to prove the preceding theorem is to show 
that Type,, is isomorphic to the domain of brackets, which are 
concrete representations for intervals that expose their compu- 
tational properties. The following collection of definitions and 
lemmas define the domain of brackets and formalize the rela- 
tionsbip relationship between brackets and intervals. 

Deflnltlon A brockcl <a,&> on the flnitary domain D is 
a pair of subsets a, A 2 D such that: (i) a is non-empty and 

A is open; and (iii) a and A are disjoint. The three 
and y(auA) are called the posiliue, ncgofiue, and ncu- 

Lrd regidns, respectively, of the bracket A. 

Remark The bracket <a$> represents the interval la,Al. 
Theorem The set of brackets on a flnitary domain D 

(denoted Bkt,) forms a flnitary domain under the approxima- 
tion ordering C defined by <a,A> E <b,B> iB acb A 
Tics . If D is eRective, then BktD is eIiective. A bracket 
<aJ> in the domain Bkt, is finite ig a is finite in CID and 
A is flnite in OpD. <a,A> is total iff au3 = D. Given a 

universal domain U, there is a computable function 
mkBkt:Ret ,, &Ret u that mapa each subspace D of the 
universal domain U into a subspace isomorphic to Bkt,. 

Since the domain of brackets and the domain ol’ intervals 
over a domain D are isomorphic, we can identify the two 
domains without any loss of precision. Henceforth, we will Ire- 
quently use a bracket expression <aJ> to denote the 
corresponding interval type [a$\. 

Notatlon Let r be an arbitrary interval [t,T] in TypeD. 
The positive and negative regions of (the bracket corresponding 
to) r are denoted r+ and r-, respectively. Obviously, r+ = t 
and r- = T. 

4.8. Type Operatlona 

For the remainder of the paper we will adopt the following 
notational conventions. 

Notatlon Let U denote a universal domain and let U,, 
U XI and U, denote computable subspaces of U that are iso 
morphic to IV-VI, [UXUI, and U-t-U, respectively. Let --* ,,, 

x u, and + u denote the computable functions from Ret u 2 

into Ret u that map arbitrary subspaces A and B into the iso 
morphic images of A-rB, AXB, and A+B within U,, U,, 
and U+, respectively. Let (a,b) u and f u denote the iso- 
morphic images (in U) of the elements (a,b)EAXB and 
GIA-+BJ, respectively. Similarly, let inL(a) and in,(b) denote 
the isomorphic images of the elements (O,a)EA+B and 
(l,b)EA+B, respectively. In contexts where no confusion is 
possible, we will omit the subscript u from the functions -) “, 

x U, +u,and(,)u 
In a programming language, the data domain D typically 

consists of a disjoint collection of subspaces such ss truth 
values, integers, tuples, and functions. Consequently, we will 
restrict our attention to program data domains that satisfy the 
following condition. 

Definltlon Let A ,,...,An br Rat subspaces of U. The 
ufandord domain D with atomic types AI,...,A, is the subspace 
of U defined by the domain equation 

D = D-D + DxD + (D+D) + A, + . . . f A,, 

We will denote the unary injection functions mapping each of the 
component spaces A, ,..., Au, D+ vD, DX vD, and D+ “D into 
D by the function symbols In1, . . . . In,, In,, In x, and In,, 
respectively. Similarly, we will denote the subspaces of D that are 
the injections of each of the same component spaces by D,, . . . . 

D,, D,, D x, and D,, respectively. 

With the exception of the polymorphic function type construc- 
tor EJ, al1 of the basic type constructors {x, +, U, n ) on a stan- 
dard domain D are defined in a uniform way from tidy operations 
on the corresponding naive powerdomain 2D. For the sake of con- 
creteness, we will describe the constructions in terms of bracket 
notation. 

Deflnltlon Let D be a Anitary domain and let t:(ZD)n+tD be 
an n-ary tidy operation on fD. The type operation T on TypeD 
induced by t is the function T defined by: 

41% AlI, . . . . b,,A,I) = Ith, . . . . ad,t(A1,...,A.)I 
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where lai,A,l,...,la,,A,I denotes an n-tuple of intervals. 

Remark It is easy to demonstrate that 
~[al,AIJ,...,Ian,AaI) must be an interval because t is tidy. 

Lemma r is a continuous function from TypeDn-+TypeD 

that preserves totality. 
Proof It is obvious from the dellnition of the induced 

operation r that it preserves totality. The easiest way to prove 
that r is continuous to express T in terms of brackets. The 
function r clearly decomposes into two separate functions 
r+:Cl,,n+CI, and r:OpDn+Op, deflned by: 

r(lal,AI],...,IanlAnl) = lW1,...,an), 1 ~-(~,,...,&,)I 

f+(al ,..., an) = t(at ,..., an) 

~$4~ ,..., A,) = - t(A, ,..., An) 

that yield the positive and negative regions of the output of r. 
If we reexpress the same decomposition in terms of brackets, it 
takes the following form: 

7(<a,,Al >,..., <an,&>) = <r+(a, ,..., a,), 7-(A, ,..., A,)> 

r+(al,..., a.) = t(a,,...,a,) 

?-(A, ,...) A,) = - t(4, )...) 4,) = -t(-A, )...) -A,) 

Since the llnite elements of Type,, are pairs of disjoint llnite 
elements in CIDX Op, , the continuity of r reduces to the con- 

tinuity of the component functions r+ and r-. Moreover, since 
t is continuous and preserves closed sets, the function r+ must 
be continuous, reducing the continuity of r to the continuity of 
the negative component function r. 

To prove that T- is continous, let R be a directed set of n- 
tuples in TypeD*. We must show that 

r(UR) = UIER r-(r) . 

By the definition of the lunctions r- and -, we can simplify 
both sides of preceding equation ss follows: 

(1) r-(UR) = -t(-UR) = -t(ll -R) 

c4 &Ft r-(r) = U, -t(7) = -(nEeR t(s)) , 

reducing it to 
(3) -t(n -32) = -(nsEwR t(s)). 
Since R is a directed set of n-tuples of open sets, the set -R must 
be a Rltered set of n-tuples of closed sets. Hence, (3) is an immedi- 
ate consequence of the Lawson-continuity of t, which forces t to 
preserve the inf of -R. 0 

Definltlon The boeic Dupe conefruclors {X, +, U, ft} on a 
standard domain D are the type operations induced by the tidy 
set functions { XD, +D, , } on 2D where XD and +D are 
defined by 

R~~S={inx((r,s)~)IrER,s@} 
R +I) S = { in+(inL(r)) ) rER } u { in+(inR(s)) ( sER } . 

Remark The subscript D refers to the fact that the func- 
tions X D and +D are derived from the standard set theoretic 
functions x and + by injecting their outputs first into U and 
then into D. 

Although tidy set operations always induce continuous type 
constructors, the induced constructors are not necessarily 
computable-even when the inducing operations are comput 
able. The reason for this anomaly is that the complement 
operation - appearing in the dctlnition of the negative com- 
ponent function r- is not computable (it is not even monoton- 
ic). Fortunately, all of the basic type constructors happen to 
be computable, because in each case the non-computable ex- 
pression denoting the negative component can be transformed 

into an equivalent expression composed from computable 
operations. The appropriate transformation, however, depends 
on the particular operation. 

Lemma Let D be a standard domain. The type construc- 
tors {x, +, u, i-l} on Type,, induced by the corresponding 

tidy operations {X ,, , +D , , } on 3D are computable. 

Prooj The positive components in the definition of all the 
type constructors are computable because the inducing opera- 
tions on SD are obviously computable. Hence, the proof of the 
lemma reduces to showing that for each type constructor T, the 
negative component r(<a,A>,<b,R>)- of an arbitrary appli- 
cation is computable. Since -(D XD D) and -(D+D D) are 

both computable elements of 3D, the following identities- 
which hold for arbitrary sets A,DEOpDuClD--reduce the 

negative components of X and + to computable form: 
-(-AX.-B)= -(DxDD)u(AxDD)u(DxDB) 
-(-A+,-B) = -(D+DD) u in.+(inL(A)) u in+inR(B)) 

Similarly, DeMorgan’s Laws for sets A,BEOpDuCID reduce the 
negative components of U and n to computable form 

-(-A-B) = AB ; -(-A-B) = (AR). 
Although many interesting type operations are induced by tidy 
functions on the naive powerdomain, the polymorphic function 
type constructor 3 is not among them because it does not main- 
tain the strict separation of positive and negative information that 
characterizes induced operations. It must be defined as a special 
case. 

Definltlon Let D be a standard domain. The polymorphic 
/unclion uel conalruclor >D on 3D on D is defined by 

R>D S = {in,(f “) I fE[D -DI A VxCR f(x)ES) . 

The function type constructor 3 on TypeD determined by >D 
is defined by the rule 

Ia,A]>lb,Bj = IA>Db, a>$] 

In bracket notation, 
<a,A>><b,B> = <-AJDb, -(a>,-B)> . 

Remark To confirm that >D maps !tDxZD into 3D, we 

must show that given arbitrary elements R and S in 3D R>, S 

is an element of 3D. Let the notation f, abbreviate the ex- 
pression in,(f). Let flu be an arbitsry element in the set 
RI>, S. We must show that f,, = Ll {glr,ERBD S 1 gu, is Rnite 
A glr, C fh} or equivalently that f = U {gED-D 1 b%R 
gas A g is Rnite in D-+D A g C f}. But every function g E f 
has the property that VXER g(x) C f(x)&. Hence, for every 
finite element g in D-+D approximating f, glr, is a finite ele- 
ment in RxDS. Since the finite elements of D+D form a 
basis, fl,, is the least upper bound of the finite elements of 
R-4 that approximate it. II 

Theorem Let D be a standard domain. The function type 
constructor 3 on TypeD is computable and preserves totality. 

Proof Let <a$> and <b,B> be arbitrary effective ele- 
ments of TypeD. To prove that > is computable, we must 
show that <a$>>< b,B> is effective, i.e. the set of Anite 
elements of TypeD that approximate <a,K>><b,B> is re- 
cursively enumerable. Since the set of finite elements in a stan- 
dard domain D belonging to the complement of the function 
subspace (i.e., the set (D)n) . IS recursively enumerable, the 
effectiveness of <a,A> 3<b,B> reduces to the recursive 
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enumerabikity of the following two sets: the one-step-functions” 
u+v (u,v~Do) that are members of A>,b and the one-step- 
functions that are members of a>&. In the former case, a 
finite element upv E A2Db iff either I& or vEb which are 
both recursively enumerable by hypothesis the effectiveness of 

Ir the inputs). In the latter case, u+v E aI),, iff uEa and v&k, 
which are also both recursively enumerable. Hence, ZI is com- 
putable. 

To show that > preserves totality, we simply observe that if 
[a,A] and fb,B/ are total intervals (ideal images) then a = A 
and b = B, implying that [a,A]>[b,BI = [a>Db,a>Db]. 0 

4.7. Quantlflcetlon over Lawson-Compact Sets 

Deflnltlon Let D, A,, ._., A, be finitary domains. The 

quantifier operations 3n and Vn for the function domain 
A, x...XA,-+TypeRD, are deflned by 

3’ f= < Llx~lt I- (xl I &,A1 t f(x)- > 
3” f = X y2:A,, ,.., y,,:A, . 

< !-la&t f(x,Y,,...,Y,)+ P n,,t fb,Y2Y.*Yn)- > 

v1 f = < f-&t f(x) I &Alt f(x)- > 

V” f = X y2:AI, . . . . yn:An . 

<fl aAlt f (x,y,,-.,Y,)+ , &L&t r (x,Y2.-**Yn)- > . 

Theorem The quantifier operations 3” and V” preserve totah- 
ty: for any f E A,X...XA, -+TypeD and Iy2 ,..., y,] E A2X . . . 

xA, such that T(x,y2,...,yn) is total for all xFAt, the types @” 

f)(y* ,..., yn) and (Vn f)(y2 ,..., yn) are total. 

Proof Immediate from the definition of 3” and V”. 0 

In contrast to their strong totality properties, the quantifiers]” 
and k~‘n are not necessarily continuous for some domain A,. The 
critical property of the domain that ensures continuity is Lawson- 
compactness. Fortunately, the domain of types TypeD over any 
finitary domain D is Lawson-compact. 

Deflnitlon A subset S of a finitary domain D is Lowson- 
compacf iff S is compact in the Lawson topology for D. A finitary 
domain A is Loutson-compact itT the set At of total elements of A 
is a Lawson-compact subset of A. 

Lemma For any Rnitary domain D, the domain of types 
TypeD is Lawson-compact. 

Proof A routine verification. I7 
Theorem If A, is Lawson-compact, then for all n>O the 

operations 3n and Vn are continuous. 
Proof Assume that we are given a directed set of continuous 

functions F & [A, % ._. X A,--+ TypeDI. We must show that 3”(U 

F) = Ur,, sn(f) and t/“(U F) = IIre,, t/n(f) For each fcF, let 

C+:A1x...~A,~CID and f-:A,x...xA,-OpD denote the con- 
tinuous functions defined by: 

f+(x,h...,h) = ~(x,Y~ ,... .~d+ 

f-(x,Y, ,... ,Y,) = rky,, . . . . Y,j- 

Since 39 and ‘@C are (n-l)-ary functions, the continuity 013” 
and Vn reduces to showing that lor arbitrary elements y2, .,., 
y,, in A,x...xA., the sets E and A defined by 

6The one-step-function upv where U,VEDO is defined by Xx . 
If u C x then v elsel. It is the least function f such that v C r(u). 
The one-step-functions of D-+D form a sub-basis for D+D. 

E = {<ueAlt r+ ~GY~,....Y~~ n,,t f- (x,Y~,...,Y,)> 1 raq 
A = {<I-&t f+ (x,Y,,...,Y n) t Umlt f- (X.Y s..-.,Y,+ ( fEF} 

satisfy the equations 
(4) U E = 

<Uelt (I-W+ (X,Y .a...,~ ,I , n,+t (UF)- (X,Y D-..‘Y ,I> 
(5) U A = 

<n,+t (t-IF)+ (x,Ys,.-.,~n) . U,,t (UV (x,Yz,...,Y,,) > . 

The positive components of equation (4) are clearly identical 
because 

Ll xEAlt f+ (x,Y~,...,Y~) = uel f+ (KY~,...,Y~) 
for every continuous function r. By an analogous argument, 
the negative components of (5) are identical. 

On the other hand, proving the equality of the negative 
components of (4) and the positive components of (5) requires a 
more delicate analysis. The proof critically depends on the fact 
that A, is Lawson-compact. 

The infinite total elements or a Lawson-compact finitary 
domain A correspond to the infinite paths through an infinite 
binary tree T where each branch point at level n indicates 
whether or not the finite element with index n approximates 
the infinite total element. As a result, For any Scott-continuous 
function P:A-+B (where B is an arbitrary finitary domain), a 
finite element y approximates f(x) for all total elements xEAt 
if7 there exists a finite binary tree-derived from T by pruning 
subtrees-such that every path from the root to a leaf is either 
inconsistent (with all fofof elements) or includes y in the image 
of its sup under f. Otherwise, by Konig’s Lemma, there is an 
infinite path in T denoting an element ZEB such that y@(z). 

By employing this construction, we can prove the following 
critical lemma. 

Lemma Let A and B be effective domains where A is 
Lawson-compact. The function &+,:[A+B]+B defined by 

nAtB (9) = rh.4 f3b) 
is continuous. 

Prooj ojLemmo To prove the lemma, we need to introduce 
several definitions. 

Deflnltlon Let <aI I ZN> be the enumeration of A0 in 
A. A path A over A is a finite, non-empty sequence po, . . . . pn 
where each element pI is either a, or ‘aI. A path II over A is 

iotafly-consistent iK there exists a fobf element efA that con- 
forms with the constraints specified by n: 

k$O<j<_n I(a@r -+ al !Z e) (-alEn -+ a,lG e) 

A path is tofaf[y-inconaiefenf iff it is not totally-consistent. 
The meaning of a totally-consistent path R is LJn+ where z+ = 
{ajE* 1 O<j<n}. If S is a set of paths over A, the meaning of 
S (denoted US) is the set {UT I pES’ and p is totally- 
consistent}. There is an obvious one-to-one correspondence 
between paths over A and finite, non-empty paths in a com- 
plete, infinite binary tree T. 

Definltlon A unijorm binary free W is a finite binary tree 
in which every internal node has two sons. 

Deflnitlon Let. y be an finite element approximating 
nx,tg(x). A g-uifnees free W for y is a uniform binary tree 
such that every totally-consistent path % in W from a root to a 
leaf yields y under g: y E g&In). 

The proof of the lemma breaks down into a series of three 
claims. 

Claim 1 For any continuous function g: A --+ B, every 

finite element in (nxEAt g(x))O has a g-witness tree. 
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Proo/ 01 Claim Assume that some finite element y in 

(n,,t g(x))0 does not have a g-witness tree. Let T, denote 

the uniform tree obtained by deleting all nodes from T (the 
complete infinite tree) below any path that is totally- 
inconsistent or yields y. T, must be infinite; otherwise T, is a 

witness tree for y. By Konig’s Lemma, T, contains an infinite 

path K. By the definition of T,, no initial segment of n yields 

y or is totally-inconsistent. Let K be the set dellned by 

K = {Llx 1 n is an initial segment of K} . 

Since n is totally-consistent, K must be a directed subset of A. 
In addition, UK must be a total element of A because every 

finite element in A0 is. either below UK or totally-inconsistent 
with it. 

Since g is continuous and K is directed, g(UK) = IJk,, g(k). 

But by the definition of the path n, y does not approximate 
g(k) for any element k in K. Hence, y does not approximate 

4-w~ contradicting the assumption that y belongs to 

(fl,,tg(x))O. 0 (of Chim 1) 

Claim 2 Let g,h: A + B and g& h. If Wb is a g-witness 

tree for LEB, then Wb is an h-witness tree for b. 

Proof (of Claim 2) The claim follows immediately from the 

fact that V aEAn,bEBo b C g(a) -+ b E h(a). 0 

Claim 3 For any directed set G of functions in A -+ B, 

~A-B W) = UEG ~A+B 6. 

Proof(of Claim 3) The function (-)A+* is obviously mono- 

tonic. Consequently, all that we have to show is nAdB (UC) 

s UBEG n A-B g. Given an arbitrary element bEB” such 

that b C n,,(LJG), we must prove that b C Ll,&A+, g . 

By Claim 1, b must have a UG-witness tree Wb. Let wb be the 

finite function determined by pairing the meaning of each con- 
sistent path in Wb with b. Wb obviously approximates UG. 

Since wb C UG and Wb is finite, there exists an element hEG 

such that Wb c h. By Claim 2, Wb must be h-witness tree as 

well a UG-witness 

bEnA-.: c &GnA& 

tree, implying that 
0 (of Claim, Lemma, and 

Theorem) 

Although the preceding theorem establishes that the 

quantifiers 3n and Vn are continuous, it says nothing about 
whether or not they are computable. Since both quantifiers in- 
volve infinite intersections, a naive approach to computing the 
functions clearly will not work. Fortunately, the witness tree 
construction used in the proof of continuity provides the criti- 
cal trick required to compute the inflnite intersections. The 
only obstacle is deciding when Anite sets of basis elements are 
totally-inconsistent. Although the total-inconsistency of flnite 
sets of basis elements is not decidable in general for effective 
domains, it is decidable for most domains of practical interest 
including the domain Type,, of interval types over a arbitrary 

effective domain D 

Detlnltlon An effective domain D is fofsl[y-eflecfiue iii the 

total-consistency of arbitrary finite subsets of Do is decidable. 

Theorem For every effective domain D, the domain 
Type,, is totally-effective. 

Proof A routine verification. 0 

Theorem For all nil, the operations 3n and Vn are com- 
putable if the domain A, is Lawson-compact and totally- 

effective. 

Prooj Assume that we are given a computable function 

T:TypeDn+TypeD. We must show that the sets of dnite ele- 

ments approximating gnf and Vnf are recursively enumerable. 
Since 3nf and Vnf are (n-l>ary functions, the computability of 

P and Vu reduces to showing that for arbitrary computable 

elements y2, __., yn in D, the objects c and o defined by the 

equations 

6 = < UxEldlD f+(x,Y,v-BY,,) , &,I,, f-(xsY2,-.,Yn) > 

a = <~Xml~ f+(x,Y,,-.vY,) , UxcIdl,, f-(x,y,,.vy~) > 

are computable. 

The set of finite elements of Cl, approximating the positive 

component of c is clearly recursively enumerable since 

kldl, r f(x,y*,...,y”) == LlXE?4peD f+(x,Y,,...?Y,) 

and I’+ is a computable function from TypeD” to Cl,,. Simi- 

larly, the negative component of a is computable. 

Since A is Lawson-compact, a finite element eEOpDo ap- 

proximates t- ifi a witness-tree T, exists for e. Consequently, 

to compute the the set of finite elements of Op,, that approxi- 

mate the negative component of t, we enumerate all pairs 

<e,U> where e6OpoO and U is a uniform tree and check to 

see if U is a witness-tree for e. Since A is totally-effective, we 
can decide for each finite path w in U whether or not it is total- 
ly consistent. Similarly, for every totally-consistent finite path 
1~ in U we can enumerate all of the finite elements e that ap- 
proximate the image under of I of the meaning of a. Hence, if 
U is a witness-tree for e, we will eventually discover that fact 
by determining for each path that it is totally-inconsistent or 
includes e in the image of its meaning. The computation 
enumerates a finite element e as soon az it discovers a witness 
tree for it. 

An analogous procedure will enumerate all of the finite ele- 

ments acClno such that a C a+-. 0 (of Theorem) 

Notatlon The expressions 3 t, ,..., tn r and V t, ,..., t, 7, 
where t ,,...,t,, are distinct variables, abbreviate the expressions 

3n X t r ,..., tn . T and Vn X t, ,..., tn r, respectively, 

Deflnltlon Let A ,, . . . . A, be finitary domains. For each 

function domain A,X...XA”-t AIX...XA, n>m>l, the 

fixed point operator prnn is defined by: 

/I”,” I = Y x [x1 ,...) x,] . f(x, ,..., x,) = Y f 

pmn f = xlxm I,..., x,1 Y XIX I,..., x,1 f(x, ,...) x,) 

where Y denotes the standard least fixed point operator. 

Remark p n,n is simply a notational generalization of the Y 

operator that accommodates free variables in the expression denot- 
ing the input function. 

Lemma For all n>mzl, ~,.,.,,, is continuous. If D is effective, 

then lrmn is computable. 

Proof An immediate consequence of the corresponding proper- 
ties of Y. 0 

4.8. Solvtng Recursive Type Equattons 

Deflnltlon Let D be an effective domain. A ayslem of lype 
equalions E over D is a set of equations 

{ t,=r*, . . . . t,=r, } 

where t ,,...,tn are distinct variables and r,,...,rn are expressions 

constructed from continuous operations on Type,, and the 

variables t r,...,t,,. The funclion o:D”--D” determined by E is 

defined by the equation 

u = x [t, ,...) t,l IT ,,..., rn) 

E is computable iff 0 is a computable function. A solufion to 
the system of type equations E is an n-tuple Idr,...,dn] of ele- 

ments of D such that o(ld, ,..., dnl) = (d r ,..., drill , 
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Theorem Every set of type equations C over a Rnitary 
domain D has a least solution consisting of the tuple of inter- 
vals Ya where tr is the function determined by C. Moreover, if 
all the functions appearing in C are computable, then the solu- 
tion Ya is computable. 

Proof The theorem is an immediate consequence of the 
definition of the least fixed point operator Y and the fact that 
every closed expression constructed from computable functions 
denotes a computable a computable function. lJ 

Although the preceding theorem shows that every system of 
recursive type equations has a least solution, that solution is 
not necessarily total. Since programmers are almost always in- 
terested in defining types that are total, the practical value of 
the theory of types as intervals rests on whether the least solu- 
tions to type equations are total in typical cases. Fortunately, 
the situation is roughly analogous to that which prevails in 
practical programming languages: although type delinitions 
(programs) are not necessarily total, those that programmers 
typically write-even when they contain errors-typically are. 

The following examples illustrate the potential problem. 
DefInltIon Let C be an n-sry system of type equations 

over a data space D, and let u denote the function determined 
by C. An ideal solulion of C is a solution that is a total elt 
ment of TypeD , i.e. a tuple of ideal images [II,...,I,]EIdlr,n 
su ch that ~((1, ,..., I,,]) = 11, ,..., I,]. 

Observatlon A system of type equations may not have an 
ideal solution. 

Proo/ A simpie counterexample is the type equation 
c = -c 

over the flat domain Boo1 = {true, false, 1) where 7 denotes 
the computable function defined by the equation 

+@I) = [{l}u~,{l}u~l 
The preceding equation has no ideal solution because it comple- 
ments the set of total elements on each side of the interval. 
The only interval solution is the least interval I{l},Bool]. 0 

Observatlon A system of type equations may have a 
unique ideal solution that is distinct from the least interval 
solution. 

Proof Let Bool denote the same flat Boolean domain as 
above and let if-then-else and is-defined denote the standard 
ternary conditional and unary dednedness functions, respective- 
ly, on BBool. The type equation 

T = ij is-defined(T) fhen Boo1 else T 
has the unique ideal solution [Bool,Bool] but the least interval 
solution is the least interval \{I),Bool). 0 

Fortunately, these pathologies do not often arise in the con- 
text of standard domains because standard domains form a 
very special kind of metric space that ensures the solutions to 
most type equations are total. In fact, we can prove a theorem 
that asserts that the least solution to every formally contrac- 
tive system of equations is total. The proof of theorem is based 
on essentially the same metric space analysis that MaeQueen, 
Plotkin, and Sethi used to prove the ezislencc of solutions to 
formally contractive systems of equations over the space of 
ideals. As groundwork for this theorem, this section of paper 
develops a metric space theory for intervals based on the 
corresponding theory for ideals presented in in [MacQ84a]. 

The most surprising feature of the new theory is that the 
natural generalization of every theorem in the original theory 
holds in the new theory-even though there are systems of 
equations that are contractive on ideals but not on intervals. 
The explanation is that the basic type operations over a stan- 
dard domain satisfy are contractive on intervals-not just 
ideals (a weaker property). Consequently, the syntactic notion 
of /ormol confrocliuencse proposed in [MacQBla] not only en- 
sures that a system of equations is contractive on ideals, but on 

intervals as well. 
The metric space of intervals is more elegant and robust 

than the original for two reasons. First, it attaches stronger SC 
mantic content to the notion of formal contractiveness. 
Second, it has simpler, sturdier formsl foundations because is 
formulated entirely in terms of continuous functions on finitary 
domains. In contrast, the theory of ideals involves discontinu- 
ous functions and domains (such ss the set of all functions over 
a Anitary domain) that are not flnitary. As a consequence, the 
solutions to formally contractive systems of type equations arc 
computable in the framework of intervals, but not in the 
framework of ideals. 

Deflnltlon A ranked domain <D,r> is a pair consisting 
of a tlnitary domain and a rank fun&on r mapping the Anite 
elements of D into the natural numbers such that (i) r(j) = 0, 
and (ii) r(x) > 0 for all x#j. 

We will frequently use the following three mechanisms for con- 
structing composite ranked domains from simpler ranked domains. 
The underlying intuition is that the rank of a Rnite element in a 
domain defined by an equation should correspond to the index in 
the ascending chain of approximate solutions where the element 
Rrst appears. 

Deflnitlon Let A = <D,dA> and P = <G,ge> be ranked 
domains. 
(i) The ranked Cartesian product domain Ahxr is the pair con- 

sisting of the domain DXG and the rank function r defined 
by 

~<x,Y>) = m~{4x),tdy)) . 
(ii) The ranked function domain A+P is the pair consisting of the 

function domain D+G and the rank function r defined by 

r(f) = max{ msx(x,y) I xED”.yECo 
x+y is essential in f y E f(x)} 

where a one-step function xi-+y is eerenticl in Ihe finite func- 
lion f ifI %r~Do, vEGo u+v implies u+v S xky. 

(iii) The ranked domain of types Type,, is the pair <TypeD ,r> 

consisting of the domain TypeD and the rank function 
detlned by 

r([t,T]) = max{d(d) I d is maximal in a d is minimal in k) 
This deRnition is meaningful because the Rniteness of /a,A] implies 
that the maximal elements of a and minimal elements of A must 
be Rnite elements of D. 

Deflnltlon Let A = <D,r> be a ranked domain. For any 
two distinct elements x,y~D, a wifnur for (x,y) is a Rnite element 
WED such that w S x but w\C- y or vice-versa (since x and y are 
distinct, such an element must exist). The aflinity of two distinct 
elements x,y~D (denoted Ix,yI) is the least rank of a witness for 
(x,y). The met& upoce determined by A is a pair <D,d) consist- 
ing of the domain universe D and the function d mapping D* into 
the real numbers dellned by 

(4x,x) = 0 
d(x,y) = 2-1x31 if x,y are distinct . 

d is called the rank mefric determined by r. 
Remark In this paper, we will conRne our attention 

exclusively to rank metrics. For economy of notation, we will 
universally use the symbol d to denote the rank metric correspond- 
ing to a ranked domain. The intended domain and rank function 
should be clear from context. 

Deflnltlon Let <A,a>, <B,b> be ranked domains. A func- 
tion I:A+B is controctive on C s A iff 

(i) f preserve8 lolalily: for every total element aEAt f(a)EBi. 

(ii) Vx,ycC d(f(x),f(y)) 5 r #d(x,y) for some constant r < 1. 
The function f is non-ezponuiue on C C A iff f preserves totality 
and condition (ii) holds for some constant r 5 1. 
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Deflnltlon Let <AI,oI . . . . <A,,a,>, and E be ranked 

domains and let CC_Al. An nary function I:A 1 X . . . X A,+B is 
conltocliue is conlrac~iuc (non-ezponriuc) on C in orgumenl i iR 
(i) f preserve8 totality. 

(ii) The curried function fl defined by 

1x1 . x 1x1, ...I q-1, q+lt ..-&I . f(X,,...J,) 

is contractive (non-expansive) on C. 
Lemma An n-ary function is contractive (non-expansive) in 

each argument i ilT the corresponding unary function is contrac- 
tive. 

Proo/ An immediate consequence of the deRnitions of the 
Cartesian and function domain rank functions and the rank 
metric. 0 

Deflnltlon Let <D,r> be a ranked domain, and let 
<TypeD ,f> be the ranked domain of types determined by 

<D,r>. A continuous function f:TypeDm+TypeDn is ideal- 

contraclive (inleruuf-contractiuc) ilI f is contractive on ldlDm 

(Tymm). 
Lemma If a function f is interval-contractive, then it is ideal- 

contractiye. 
ProoJ An immediate consequence of the definitions. 0 
Theorem Let <D,r> be a ranked domain and let C be a 

system of type equations over D. If the function o determined by 
C is interval-contractive, then C has a unique solution which muef 
be total. 

Proof By the Banach fixed-point theorem [Bana22], u has a 
unique ideal solution and a unique interval solution. Since every 
ideal solution is an interval solution, the two must coincide. n 

Definltlon Let D be a subspace over a universal domain U 
determined by a domain equation C and let u denote the function 
mapping subspaces to subspaces determined by C. The conrfruc- 
tiue rank r of a Rnite element dED is the least k such that ok(l)(d) 
= d. The conefrucfiue metric on TypeD is the rank metric deter- 
mined by the constructive rank function r. 

Although there are many type constructors that sre not con- 
tractive or non-expansive on intervals under any metric, the basic 
type operations { 3, X, +, U, n, V, 3, P } on a ufandord domain D 
are very well-behaved in this regard. 

Deflnltlon A standard ranked domain <D,r> is a standard 
domain D together with the constructive rank function r deter- 
mined by the domain equation defining D. 

Theorem In the domain of types determined by a standard 
ranked domain <D,r>, the type constructors (2, X, i-} are 
interval-contractive. Similarly, the type constructors {U, n} are 
non-expansive on intervals. The higher order operations @u, t/“} 
preserve the contractiveness (non-expansiveness) of a function 
f:TypeDn-+TypeD in each argument position 1 < i 5 n. Simi- 
larly, if f is contractive in its first m arguments, then the Axed 
point operator prnn preserves the contractiveness (non- 
expansiveness) of f in each argument position i > m. 

The definition of formal contractiveness of type expressions 
presented in [MacQgQal is based directly on the precise anslog (for 
ideals) of preceding theorem and the obvious properties of 
contractive/non-expansive functions under composition and 
tupling. With the exception of a simple extension to accommodate 
the mutually recursive Axed-point operator ~,,,u, the dellnition for 
the theory of intervals is identical to that presented in [MacQ&la]. 
Consequently, the following theorem holds. 

Theorem If a type expression r with free variables t,, . . . . t, 
is formally contractive in the variable tl, then the function X [tr, 
. . . . L,,] r is interval-contractive in its ith argument. 

Dellrrltlon A system of type equations { tr=ri, . . . . t,=r, } 
is /ormollg conlrccfiuc ill each expression rr, ,..., r,, is formally 
contractive in each of the variables tr,...,t,. 

Since all of the operations in formally contractive type expres- 
sions are computable over the domain of intervals, the following 
corrollary is an immediate consequence of the detinition of formal 
contractiveness and the fact that an interval-contractive system 
has a unique solution. 

Clalm IT C is a /ormolly contractive system of type equations, 
then the ideal solution is computable. 

Prooj By the preceding theorem, the ideal solution must be 
the least interval solution, which is obviously computable. Cl 
6. Generallzlng the Formal Theory 

In Section 4, we focused our attention on showing that all of 
the basic interval type operations are computable and tha the for- 
mulation of types as intervals subsumes the formulation of types 
as ideals. Now we brieRy shift our attention to discussing con- 
structions within the theory of types as intervals that have no ana- 
log (to the author’s knowledge) within the theory of types as 
ideals. 

The primary advantage of formalizing types as intervals is that 
it supports a richer class of type definitions and type operations 
including programmer defined type constructors and extended 
forms of quantification-all of which are computable. Since inter- 
val types are ordinary data values and all the basic operations on 
intervals are computable, a system of type equations is simply a 
stylized form of higher order recursive program. In this frame- 
work, there is no reason to limit the objects defined by a system of 
type equations to just types; the type system accommodate the 
deRnition of arbitrary computable objects and operations which 
may be useful in declaring the types of program operations. 

Two important illustrations of this extra power-programmer 
defined type constructors and generalized quantiRcation- were 
discussed brieRy in Section 3.4. Only two minor extensions to the 
formal theory are required to justify these generalizations. 

First, the domain of interval types TypeD must be included as 
one of the disjoint components in the equation defining the domain 
D. This extension makes types part of the domain of values D 
that the programmer can access within programs. It also makes 
the ideal of types [TypeD ,TypeDI into a type that can be mani- 
pulated in type definitions and programs. Since the interval type 
constructor is a very simple function, none of the properties of the 
domain (such as total-effectniveness) are compromised by its addi- 
tion 

Second, the formal definition of type quantiftcation must be 
generalized to accommodate quantication over the total elements 
tl (relative to the domain D) of any total type it,tl where tt is 
Lawson-compact. This extension provides a formal foundation for 
generalized quantiders (that take any Lawson-compact type as a 
parameter specifying the quantiacation set) discussed in Section 
3.4. Since it is decidable for any computable total type [t,tj 
whether an arbitrary Rnite element e belongs to t, an essentially 
identical witness-tree construction works in the general case. The 
only difference is that the decision procedure for determining the 
total-consistency of paths uses the negative information embedded 
in the total type t ss well as the information on the path to deter- 
mine whether or not the path is consistent. This strategy reduces 
the total-consistency of Rnite paths over the type t to the total- 
consistency of Rnite paths in the parent domain D. 

Although a systematic classiRcation of the closure properties of 
various type constructors with respect to Lawson-compactness is 
an open research problem, it is easy to show that all total subtypes 
of any type that is freely generated by non-strict constructors is 
Lawson-compact. Moreover, it is clearly possible to write a higher 
order program that implements the required construction. If a 
programmer applies this program to a type that is not Lawson- 
compact, the function will still produce a well-defined result 
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(possibly divergence); it simply does not match the inlinitary 
definition of quantification. 

8. Dlrectlons for Future Research 

Although the theory oI types as intervals is mathematically 
elegant and theoretically instructive, its value as the basis for a 
practical type system has not yet been demonstrated. For this 
reason, a research group at Rice is designing a new version of the 
executable specification language TTL ICart to support interval 
types. The next stage in the research project will be study the 
problem of type inference much more carefully and build a heuris- 
tic type checking system for the new version of TTL. 
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