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Abstract

To accommodate polymorphic data types and operations,
several computer scientists—most notably MacQueen, Plotkin, and
Sethi—have proposed formalizing types as ideals. Although this
approach is intuitively appealing, the resulting type system is both
complex and restrictive because the type constructor that creates
function types is not monotonic, and hence not computable. As a
result, types cannot be treated as data values, precluding the for-
malization of type constructors and polymorphic program modules
(where types are values) as higher order computable functions.
Moreover, recursive definitions of new types do not necessarily
have solutions.

This paper proposes a new formulation of types—called
intervale—that subsumes the theory of types as ideals, yet avoids
the pathologies caused by non-monotonic type constructors. In
particular, the set of interval types contains the set of ideal types
as a proper subset and all of the primitive type operations on
intervals are extensions of the corresponding operations on ideals.
Nevertheless, all of the primitive interval type constructors includ-
ing the function type constructor and type quantifiers are comput-
able operations. Consequently, types are higher order data values
that can be freely manipulated within programs.

The key idea underlying the formalization of types as intervals
is that negative information should be included in the description
of a type. Negative information identifies the finite elements that
do not belong to a type, just as conventional, positive information
identifies the elements that do. Unless the negative information in
a type description is the exact complement of the positive informa-
tion, the description is partial in the sense that it approximates
many different types—an interval of ideals between the positive
information and the complement of the negative information.
Although programmers typically deal with total (maximal) types,
partial types appear to be an essential feature of a comprehensive
polymorphic type system that accommodates types as data, just as
partial functions are essential in any universal programming
language.

1. Introduction

One of the major unresolved questions in programming
language design is how to define the notion of data type. This
paper focuses on type systems for abstract programming languages
(e.g., SETL, ML) which emphasize mathematical elegance and
expressive power rather than execution efliciency. The justification
for this focus is twofold. First, it is important to understand what
type systems are mathematically possible, regardless of their
impact on execution efficiency. Second, abstract programming
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languages are steadily growing in importance as tools for program
specification, prototyping, and implementation. In many
contexts—particularly program specification and prototyping—
execution is much less important than simplicity and elegance.

The critical feature that distinguishes abstract programming
languages from conventional ones is that data values are treated
exclusively as abstract objects; their underlying representation
within & computer is completely hidden from the programmer. In
this limited context, it is much easier to identify and compare pos-
sible type systems because it avoids the difficult question of
whether types refer to abstract data values or their representa-
tions. In fact, nearly all of the type systems proposed for abstract
programming languages (e.g., [Scot76], [ADJ77], |Gutt78], [Cart80],
[MacQ82]) share the basic intuition that a type identifies 2 mean-
ingful subset of the program data domain. The principal issue on
which they differ is the question of which subsets of the data
domain can be designated as types.

1.1. Partition vs. Predlcate Types

There are two basic paradigms for subdividing a data domain
into types: types as partitions (disjoint sets) and types as predi-
cates (overlapping sets). In a partition type system, every data
value belongs to a unique type. Most production programming
languages (e.g., Fortran, Pascal, C, Ada) embrace this point of
view. In a predicate type system, on the other hand, a data value
can belong to many different types; a type is simply a designated
subset of the program data domain. Most interactive program-
ming languages (e.g., APL, LISP) subscribe to this approach.

Partition typing is justifiably popular because it is easy to
understand, easy to implement, and supports ‘static”
(translation-time) type-checking—an eflective tool for finding pro-
gram errors. Partition typing also facilitates the efficient imple-
mentation of data values and operations, because the representa-
tion for each type can be optimized independently of the represen-
tations for other types. The major weakness of this approach is
the severe limitation it imposes on the variety of possible types.
For this reason, the domains (sets of intended inputs) of most pro-
gram operations cannot be captured by type declarations. In par-
tition type systems, many run-time errors such as division by zero
are not classified as type errors. Consequently, a “type-correct”
program can still generate errors at run-time.

In contrast, predicate typing allows the domain of every pro-
gram function to be declared as a type. “Type-correctness” in this
discipline is a much stronger property than it is in the partition
type discipline, because a predicate-typed program is type-correct
ifl it cannot generate a run-time error. The major disadvantage of
this approach is that verifying the type-correctness of a program is
an undecidable problem. Complete type-checking at translation
time is impossible.

Nevertheless, there are valuable, less ambitious alternatives to
complete type-checking that are feasible in predicate-typed
languages. In fact, in a well-designed predicate type system (such
as that in Typed LISP [Cart76a,76b]) it is straightforward to per-
form “coarse” type-checking that detects ezactly the same errors
as conventional ‘‘static’ type-checking in the corresponding parti-
tion type system. In coarse type-checking [Cart76a,76b|, every
predicate type is associated with a coarse type that contains the
predicate type. Each coarse type is the union of a finite collection



of disjoint atomic types.! Coarse type-checking ensures that the
coarse type of every function argument list overlaps the declared
coarse domain of the function. A program is ''coarse-type-correct’
if and only if this condition holds.

At first glance, coarse type-checking appears less stringent than
conventional partition type-checking, because it does not preclude
type errors during program execution. This conclusion, however, is
erroneous, because the notions of type are different. It is easy to
show that a predicate-typed program P is coarse-type-correct if
and only if the semantically equivalent partition-typed program P’
is type-correct. At every point in the program P, where the coarse
type t of an argument « is not contained in the type u required by
its context, the corresponding partition-typed program P’ must
apply an explicit type conversion function Convert,_,, to « to con-

vert it from type t to type u (modifying the *“tag” attached to the
value). If the value is not convertible from type t to u, the conver-
sion function Convert must generate & run-time error, even though
the function application is “type-correct”.

The primary advantage of predicate typing is that it enables
programmers to document the intended behavior of program
operations much more precisely than is possible within the rigid
framework of partition type systems. This information ¢an poten-
tially be exploited by sophisticated heuristic type-checkers that
detect far more program errors than conventional static type-
checkers. In essence, heuristic type-checking is a restricted form of
program verification in which all program assertions are type
declarations. Much of technology developed for program
verification systems such as fast simplification methods [Neis79]
should be applicable to this problem.

1.2. The Impact of Polymorphism

If we expand our discussion to include the subject of
polymorphic operations—functions that work for every member of
a family of structurally similar types—the differences between par-
tition typing and predicate typing become even more dramatic. In
predicate-typed languages the primitive functions for manipulating
composite objects such as sequences are naturally polymorphiec.
Program-defined functions that are constructed from these natur-
ally polymorphic operations automatically inherit the polymorphic
behavior. This property is one of the most attractive features of
predicate type systems. In LISP, for example, the sequence opera-
tions car, edr, cons, and null work for all sequences regardless of
the element types involved. As a result, every LISP program con-
structed from these polymorphic operations is polymorphic as well;
the library functions append, reverse, and last are simple examples
of this phenomenon.

In contrast, partition-typed languages must include distinet
operations for each member of a family of structurally similar
types (such as sequences), precluding natural polymorphism. To
support polymorphic operations, additional machinery is required.
The standard solution is to explicitly pass types as parameters—a
cumbersome convention for naturally polymorphic operations
where no type information is necessary.

1.3. Research Objective

The critical design decision in formulating a coherent predicate
type system is determining the class of definable predicates. If the
class of definable predicates is too small, then the domains and
ranges of many program operations will not be definable as types.
On the other hand, if the class of definable predicates is too large
or poorly constructed, then the collection of definable types will
form an amorphous set—preventing types from being treated as
data values and eliminating the possibility of heuristic type-
checking.

lIn a data domain where the universe of values is formalized as
a [ree term algebra, it is natural to define an atomic type as the
set of all terms with the same outermost constructor.
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The primary objective of this paper is to develop a predicate
type system suitable for any data domain D that accommodates a
comprehensive set of predicate types, yet is computationally tract-
able. More specifically, the type system should satisfly the follow-
ing requirementas:

1. Breadth: the type system should be applicable to any data
domain in the sense proposed by Scott [Seot83] (a countably-
based, algebraic cpo) that is likely to arise in practice. In par-
ticular, the type system should accommodate higher order data
values like functions and infinite trees (lazy data objects).

2. Ezpreesivencas: the set of definable types should be rich enough
that every program operation, including naturally polymorphic
ones, can be precisely typed. Although a rigorous definition
and investigation of thia property is beyond the scope of this
paper, the informal intent is that the type constraints required
to guarantee the absence of run-time errors should be logically
implied by appropriate type declarations for the operations
defined in the program. The notion is analogous to the well-
known ezpressiveness property for program assertion
languages.

Effectivencss: the set of types should form a finitary domain on
which all of the primitive type constructors are computable
functions. This property guarantees that recursive definitions
have computable least solutions and enables programs to mani-
pulate types as data.

2. Previous Work

Among the predicate type disciplines discussed in the litera-
ture, the two that come closest to meeting this goal are types as
retracts and types as ideals. Each system satisfies two of the three
criteria enumerated above. The system of retracts is broad and
effective, but not expressive; the system of ideals is broad and

potentially expressive2, but not effective. Both of these disciplines
are rooted in Scott's theory of domains which formalizes data
domains as countably-based, algebraic cpo’s. Scott calls these
structures finitary domains. The following overview of the two
systems presumes some familiarity with domain theory, which is
summarized at the beginning of  Section 4.

2.1. Types as Retracts

In the theory of types as retracts [Scot76,81,83], every type t
within a data domain D (a countably-based, algebraic cpo) is a
subdomain of D: a subset of D that is generated by closing a set of
finite elements of D under the least upper bound relation (with

respect to D) on consistent subsets.3 Each type t forms a finitary
domain under the approximation ordering on D and conforms with
the consistency, least upper bound, and finiteness relations on D.
To accomodate functions and infinite trees as data values and to
support interesting type definitions, the data domain D typically
includes isomorphic images of its own function space [D—D},
Cartesian product space [DX D), and coalesced sum space [D+D).
In most cases, these three subspaces are disjoint, but it is not
technically necessary.

The theory of types as retracts has many important mathemat-

ical properties including the following:

1. The set of retracts over a finitary domain D forms a finitary
domain Retp. If D is effective, then so is Retp,.

2. The three basic operations {—, X, +} for building composite
types from simpler ones are computable functions on Rety,. In
addition, all of the higher order operations used to define recur-

sive types—in particular A-notation (usualty formalized as com-
binators) and the least fixed point operator u—are computable.

2Depending on the mechanisms available for defining types.

3Scott has proposed two different formulations of retracts. See
Section 4.1.



3. For each type t, there is a corresponding continuous function
py (called a projection) on the data domain D that coerces an

arbitrary data value to the ‘*‘nearest’” value within t. The
fixed-point set of p is precisely t. If D is effective, the projec-

tion p, is computable iff the finite elements of t are recursively
enumerable.

Although the system of retracts obviously satisfles the goals of
breadth and effectivencse enumerated in Section 1.4, it fails to
meet the ezpressivencss criterion. Formalizing types as retracts
precludes the precise typing of naturally polymorphic functions.
In the theory of types as retracts, types are coercions that
adversely affect the behavior of potentially polymorphic functions.
Every function f of type A-—B (where A and B are retracts) must
yield outputs in B for all inputs regardless of whether or not they
are in A. More precisely, [ must satisfy the equation

f = PA® fo B
where p, and py are the projections (coercions) corresponding to
A and B respectively. In informal terms, a function I belongs to
type A—B only if it maps both legal (A) illegal inputs (A) into
legal outputs (B). Consequently, a function f that maps elements
of type a(t) into elements of type B(t) for every type t does not
generally belong to type aft)—sB(t) for every type t.

To help clarify the situation, let us consider two simple exam-
ples. First, assume we are given the identity function Ax.x for an
arbitary data domain D. Although this function D clearly works
as an identity function for any type (retract) t within D, it does
not belong to the type t—t for any type t except t=D. To obtain
an identity function of type t—t for type tCD, we must coerce
Ax.x to py o (Axx)o p, = p,. Consequently, it is impossible to
write a polymorphic identity function that has type t—t for every
retract t.

As a more realistic example, assume that we are given a data
domain D that includes a type (retract) SeqAny consisting of the
set of all finite sequences over D. Let SeqRetp,—Retp be the
computable function that maps each type t in D to the type con-
sisting of all finite sequences over t, and let Cat be the operation
mapping SeqAnyXSeqAny into SeqAny that concatenates
sequences:

Cat(<Xy,eeX >, <¥1,ee0¥p>) = <XppeeXm¥ 19e-0¥ 0> -

The type SeqAny obviously contains the type SeqSt) for all types t,
yet Cat does not belong to the type Seq(t)x Seq(t)—Seq(t) for any
t other than the entire domain D, because Cat maps illegal inputs
(within SeqAny) to illegal outputs. If ¢ excludes any element deD,
then Cat(<d>,<d>)=<d,d> does not belong to Seq(t), imply-
ing that Cat does not belong to Seq(t) X Seq(t)—Seq(t).

This anomaly is inherent in the formulation of types as
retracts. It cannot be fixed by changing the definition of the funec-
tion type constructor —. The set of continuous functions that
map one retract into another does not necessarily form a retract
unless at least one of two retracts is downward closed under the
approximation ordering on the domain.

The only approach to polymorphism that appears compatible
with formulating types as retracts is to pass types explicitly as
parameters. In this scheme, the naturally polymorphic behavior of
operations like the identity function Ax.x and the sequence con-
catenation function Cat is ignored; every definition of a
polymorphic function must include an abstractions with respect to
the type of each polymorphic argument as well an abstraction with
respect to the argument itself. Similarly, every application of a
polymorphic function must include type arguments as well as con-
ventional data arguments. This approach is explored in detail in
[Reyn74) and |McCr79].

2.2. Types as Ideals

In contrast to the theory of types as retracts, the theory of
types as ideals [MacQ82MacQ84a| is specifically designed to
exploit naturally polymorphic operations. Although the theory of
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deals is cast in same mathematical framework as the theory of
retracts, it is based on a different intuitive notion of type. In the
theory of types as ideals, types are viewed as constrainis rather
than coercions. This change in viewpoint produces & profoundly
different theory of types.

To prevent data objects from having mulitiple interpretations,
the theory of ideals assumes that the data domain D is defined by
a domain equation of the form

D = [D-D] + [DXD| + [D+D} + A} + .. + Ay

where the equality symbol denotes isomorphism; the domain con-
structors {—, +, X} have their usual meanings; and A,,..A,

denote type expressions constructed from the symbol D, constant
symbols denoting primitive domains (e.g., the flat domain of
natural numbers), and function symbols denoting continuous
operations on domains. Although this assumption appears restric-
tive, it does not adversely affect the applicability of the theory,

because any data domain of practical interest can easily be cast in
this form.

The most visible difference between the theory of ideals and the
theory of retracts is the definition of the set of types. As its name
suggests, the theory of ideals designates the set of ideals over D
(denoted Idlp) as the types of D. An édeal of D is simply a

downward-closed, directed-closed subset of D. In other words, a
type must be closed under both approximations and limits. In
contrast, a retract is closed under least upper bounds and limits.

To support type definitions, the theory includes operations
corresponding to all the standard type operations in the theory of
retracts. With the exception of the function type constructor, the
definitions of these operations are consistent with the correspond-
ing operations on retracts. On the other hand, the function type
constructor D,4 is specifically designed to accommodate polymor-
phism. It is defined by the equation

ADB = {fe|D—D]|V¥xeA f(x)eB }
where A and B are types over D and (D—D)| denotes the domain
of continuous functions mapping D into D. This definition of the
function type constructor is incompatible with formalizing types as
retracts: if A and B are retracts, ADB is not necessarily a retract.
One of the principal reasons for formalizing types are ideals is the

fact that are ideals are closed under the polymorphic function type
constructor D, but retracts are not.

In addition to adopting the “polymorphic” version of function
type construction, the theory includes four extra primitive opera-
tions to support polymorphism: the intersection and union opera-
tions {N, U} from naive set theory and the type quantifiers ¥V and
3 (which map functions on ideals into ideals) defined by the equa-
tions:

() = Mgt 1(t); ) = Useray, 1(t)
where || and Il denote the least upper bound and greatest lower

bound operations. The expressions ¥(f) and 3(f) are usually writ-
ten Wt I{t) and 3t f(t).

Using the theory of types as ideals, MacQueen, Plotkin, and
Sethi have generalized the elegant approach to polymorphic type
definition and inference developed by Milner [Miln78| for the pro-
gramming language of ML and by Hindley [Hind69} for typing
expressions in the lambda calculus. In this approach to polymor-
phism, a polymorphic operation is assigned a type that is the
intersection (greatest lower bound) of many simpler types. For
each application of the polymorphic operation, the appropriate
type in the intersection is inferred as the relevant typing for that
application. For example, the function Cat described in Section
2.1 belongs to the ideal type W Seq(t)X Seq(t)—Seq(t).

4Since the function type constructor O on ideals is inconsistent
with the usual — constructor on retracts, it is denoted by a
different symbol.



Like the system of retracts, the system of ideals has many
important mathematical properties including the following:

1. The set of ideals over a finitary domain D form a finitary
domain Idlp. If D is effective, then so is Idlp.

2. With the exception of the function type constructor D, all of
the basic operations {X, +, N, U} for building composite types
from simpler ones are computable functions. However, none of
the higher order operations for defining recursive and
polymorphic types {p, V, 3} are computable, because their
input spaces (which include ron-monotonic functions) are not
finitary.

3. For each type t, there is a corresponding continuous function
&, (called a consiraint) mapping D into the trivial domain

{J_,true} that identifies the elements of D that do not belong to
t. In particular, t satisfies the formula

VXED [€4(x) = true <=> x¢t].
Unfortunately, the computable elements of Idlp do not gen-
erally correspond to computable constraints.

The primary disadvantage of the theory of types as ideals is
the fact that the function type constructor O is not monotonie,
much less computable. Hence, the theory fails to meet the goal of
effectiveness stated in Section 1.4. This fact has three significant
consequences,

First, since D is an indispensable primitive operation on types,
types cannot be treated as data values because expressions involv-
ing D are not computable. As a result, type constructors (such as
Seq in Section 2.1) and polymorphic program modules that take

types as arguments® cannot be formalized as higher order comput-
able functions.

Second, there is no general mechanism-—such as the familiar
Kleene least fixed point construction—f{or solving recursive type
equations. The function corresponding to a system of recursion
equations is not necessarily monotonic. Although MacQueen, Plot-
kin, and Sethi [MacQ84a] have established that unique solutions
exist for an important syntactic class of recursive type equations
(called formally contractive equations), the theory is restrictive; it
is not applicable either to non-contractive systems of type equa-
tions or to more general systems of recursive type equations that
include the definition of type constructors. For this reason, it is
syntactically illegal to apply the fixed-point operator to type
expressions that are not formally contractive,

Third, reasoning about ideal types is a complex problem that
lies outside the scope of established deductive systems for data
domains (such as Edinburgh LCF [Gord77| or the first order
theory of domains described in [Cart82]). All of these systems
presume that every function is continuous.

3. Types as Intervals

The principal research contribution of this paper is the con-
struction of a new theory of types—called lypes as intervale—that
satisfles the three goals enunciated in section 1.4. The new theory
of types is closely related to the theory of types as ideals, because
it is based on exactly the same intuitive notion of type and
approach to polymorphism. In fact, the set of interval types over
a domain D forms a superset of the set of ideal types over D and
the type operations on intervals are extensions of the correspond-
ing operations on ideals.

The motivation for formalizing types as intervals instead of
ideals comes from the following observation. In the theory of
types as ideals, the description of a computable type A specifies
how to enumerate the set of finite elements of D that belong to A,
but it does not specify how to enumerate the set of finite elements
that do not belong to A—even though this set is recursively enu-
merable in almost all cases of practical interest. The omitted
information is important; if it were available, the function type

5As defined by Burstall and Lampson [Burs84],
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construction ADB would be computable, because all of the ‘‘one-

step” functions® aj»b in A—*B where a¢ A (vacuously satisfying
the membership test for ADB) would be recursively enumerable, as
well as those where acA and beB. Without it, the one-step func-
tions that vacuously belong to ASB cannot be enumerated.

The theory of types as intervals is specifically designed to over-
come this problem. The essential difference between the theory of
types as ideals and theory of types as intervals is that interval
type descriptions contain negative information specifying the ele-
ments that do not belong to a type as well positive information
specifying the elements that do belong. The interval type
corresponding to an ideal type A includes both a description of A
and a description of the complement of A.

The addition of negative information to type descriptions has
three major consequences. First, it forces the inelusion of ‘‘par-
tial” elements in the space of types. These elements do not have
any analogs in the system of types as ideals. If the negative infor-
mation in an interval type description is not the exact complement
of the positive information, the description is partial in the sense
that it describes an interval of ideals between the positive informa-
tion and the complement of the negative information. Although
the total (maximal) types are the types of immediate practical
importance, the partial types are required to make the set of inter-
vals form a finitary domain under the approximation ordering
determined by inclusion of information.

Second, the approximation ordering on interval types does not
agree with the approximation ordering on ideals. In the theory of
types as ideals, type A approximates type B if and only A is a sub-
set of B. In the theory of types as intervals, the interval
corresponding to the ideal A is completely unrelated to the interval
corresponding to B unless A and B are identical.

Third, all of the standard type operations on ideals have
natural extensions to the space of intervals which are
compulable—even though the function type constructor and higher
order type operations on ideals are not computable. The inclusion
of additional information in type descriptions is responsible for this
apparent paradox.

3.1. Definitlon of Interval Types

There are two different ways to construct the domain of inter-
val types. The two constructions complement each other: one has
a simple, intuitive explanation; the other reveals the computational
structure of interval types. In the simple construction, an interval
type over a finitary domain D is defined as the set [a,A] of all
ideals over D that lie between two designated ideals a and A
(inciusive) where aCA. The approximation ordering on intervals
is simply the superset relation on sets: [a,A] € [bB] <> {a,A] 2
[b,B]. The total (maximal) elements in the set of intervals over a
domain are intervals of the form [A,A] that contain a single ideal
A.

In the computationally conecrete construction, an interval type
is defined as a pair of sets <<a,A> where a is an ideal over D and
A is & co-ideal (complement of an ideal) over D that does not
intersect a. The approximation ordering in this formulation of
intervals is the conjunction of the subset relations on correspond-
ing components: <a,A> € <bB> <« aCb A ACB. Simi-
larly, the total elements are pairs of the form <A,A> where A is
an ideal and A is is complement.

The major advantage of the second construction is that it
makes the finite elements of the domain manifest. They are sim-
ply pairs of the form <b B> where b is a finite element in the
space of ideals and B is a finite element in the space of co-ideals
over D. For readers that are familiar with the Scott topology, an
interval type is simply a pair consisting of a Scott-closed and 2
Scott-open set that do not intersect. It is straightforward to prove
that both the set of ideals (Scott-closed sets) over a finitary

®The one-step function apbeA—B is the least function
feA—B such that b C f(a).



domain D and the set of co-ideals (Scott-open) sets over a finitary
domain form finitary domains under the subset ordering.

3.2. Standard Operations on Intervals

The theory of types as intervals includes operations correspond-
ing to all of the operations in the theory of types as interals. All
of basic (first order) type operations on intervals are defined so
that their retrictions to total intervals are identical to the
corresponding operations on ideals. They can be defined in terms
of the corresponding operations on ideals as follows:

|a, AN [b, B] = [anb, ANB} [a, A]X[b, B] = [aX b, AXB]|

[a, A] U [b, B] = [aub, AUB| [a, A]+[b, B] = [a+b, A+B]

|2, A] D [b, B] = [ADb, aDB]

Similarly, the higher order operations on intervals {V3,u} are gen-
eralizations of the corresponding operations on ideals, assuming
that we identify continuous totality-preserving functions on inter-
vals (functions that map total intervals to total intervals) with the
corresponding functions on ideals (which are not necessarily con-
tinuous). For this reason, the parameter in an interval type
quantification ranges only over total intervals. In the theory of
intervals, the type quantifiers are defined by the equations

31 = < Ugetypept f(X)* ) Myerypept T (x)~ >
Vfi= < nxmpeD1 f(x)+ , Umef f(x)* >

where Typept denotes the set of total intervals over the data

domain D and f+ and - denote the component functions defined

by the equation
f(x) = <f+{x),f~(x)> .

In contrast, the least fixed-point operator pu is simply the standard

Y operator from domain theory.

3.3. Important Propertles of Interval Types
The most important mathematical properties of interval types

are summarized in the following list:

1. The set of intervals over the finitary domain D forms a finitary
domain Typep, under the superset ordering relation. The total
elements of Typep, are all intervals of the form |A,A] where A
is an arbitrary ideal over D. Hence, there is a natural one-to-
one correspondence between the maximal elements of Typep
and the ideals of D.

2. All of the standard operations for building composite types
from simpler ones including the type quantifiers ¥V and 3 are
computable functions. Moreover, if we identify the total inter-
vals with the corresponding ideals and functions on intervals
that preserve totality with function on ideals, all of the type
operations on Typep—including the higher order operations
{V, 3, p}—are simply extensions of the corresponding type
operations on ideals to a larger space of types {with a different
approximation ordering). Consequently, every type definition
and type inference in theory of ideals has an immediate analog
in the space of total intervals.

3. For each interval type & = [a,A], there are two corresponding
continuous functions p,:D—D and £,:D—{|,true} called the
projection and the constraint for a, respectively. The projec-
tion function p, coerces an arbitrary element of D to the
nearest value that lies within every ideal in a. Hence, p, pro-

jects elements onto the ideal a forming the lower bound of a.
Similarly, the constraint function £, identifies the elements of

D that do not belong to any ideal within a. In particular, a
satisfies the formula

WED [£,(x) = true <=> x¢A] .
In contrast to the theory of ideals, a type t is a computable ele-

ment of Typep iff both the projection and the constraint
corresponding to t are computable functions.
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3.4. Implications of Formulating Types as Intervals

The most significant and surprising property in the preceding
list is the fact that all of the standard type operations are comput-
able functions, yet they are extensions of the corresponding opera-
tions on ideals. This result is particularly surprising for the higher
order operations {V, 3, u}, since they are not computable in the
theory of ideals. The construction required to compute the
quantifiers ¥V and 3 is described in detail in Section 4.7.

The fact that all of the primitive type operations are comput-
able operations has three important consequences that are not
immediately obvious. First, it enables programmers to define
interesting new computable type consiructors. Since recursive
type definitions are simply recursive definitions of constants (Q-ary
functions), they can be freely incorporated in arbitrary recursive
programs over any finitary domain D that includes appropriate
subspaces Dqype, Dy, and D_, isomorphic to the domains
Typep, [DXD), and [D—D|. Hence, it is possible to define type
constructors (functions from D to Typep) using ordinary recur-
sive definitions. For example, the following equation

Tuple(n,t}) = If n equal 0 then Empty else t X Tuple(n-1,t)
defines the computable type constructor Tuple: N#XType —
Type where Empty is the total interval containing only the empty
sequence and N# is the natural numbers augmented by the infinite
element w (the length of an infinite sequence). Tuple(n,t) builds
the total type consisting of all tuples of length n formed from type
t. For each n€Ns, Tuple(n,t) is a subtype of the the standard
sequence type Seq(t) defined by the equations

Seq(t) = Empty U PropSeq(t)

PropSeq(t) = tXSeq(t) .

Second, since types are ordinary data values, it is possible to
generalize the type quantifiers ¥ and 3 for a domain D so that they
quantify over the total elements tt (t N D) of any total type
(ideal) t that is Lawson-compact. An ideal t over D is Lowson-
compact iff iff every infinite set of propositions of the form by € x

or by|C x that is inconsistent with t! has a finite inconsistent sub-

set. If the entire domain D is Lawson-compact, then every total
type tETypep is Lawson-compact. As a result, for any Lawson-
compact domain D, we can define generalized quantifiers V¢ and J*
that are parameterized by the domain of quantification (a total
type).

For any Lawson-compact domain D, the generalized quantifiers
Vs and 3 are the continuous functions from
Typep X |[D—Typep| into Typey, defined by:

Je([a,A]f) = < Uxeat £(x)F, Nyeat £ (%)~ >
Ve((B,AL) = < Myeat £ (X)* , Ugeat (x)- > .

For every total type [a,A], at and At are obviously identical. For
the sake of notational clarity, we abbreviate the generalized
quantifier expressions 3%(At.a(t)) and Ve(A\t.aft)) > by 3teA
aft) and Vt€A a(t), respectively.

If the domain D includes (an isomorphic image of) Typep, as 2
downward-closed retract then the standard type quantifiers are
simply instantiations of the generalized type quantifiers where the
type parameter is bound to Type = [Typep, , Typep):

V= M. Va( Type,f); 3 = M.3¢(Type,f) .

On any Lawson-compact domain D, the parameterized
quantifiers are not only continuous, they are computable in virtu-
ally all cases of practical interest. In particular, V* and 3¢ are
computable for any Lawson-compact domain D with a {totally
effective enumeration. A domain D has a totally eflective
enumeration iff it is decidable for every finite set of propositions of
the form by C x or by|S x whether or not it is consistent with a

total element of D. This property obviously depends on the
details of the enumeration of the basis <b; | iEN>. In practice,



data domains are almost always defined as the solutions of domain
equations constructed using standard domain operations and finite
primitive domains, a process that generates totally effective
enumerations for the specified domains,

The principal limitation on the applicability of parameterized
quantification is the restriction to Lawson-compact types. In prac-
tice, many data types are not Lawson-compact. The most impor-
tant class of counterexamples is the set of infinite, flat data types
such as the natural numbers augmented by |. Fortunately, it is
possible to embed any finitely generated flat data type in a larger
“lazy” type (see [Cart82] for a discussion of lazy data domains)
that is Lawson-compact simply by making all the constructors for
the type (e.g. the suc operation for the flat natural numbers) non-
strict. It is easy to show that every domain D that is freely gen-
erated by non-strict constructors is Lawson-compact.

Two interesting illustrations of the utility of generalized
quantification occur in the context of the Tuple example presented
above. First, by using parameterized quantification, we can define
the types In€Ns Tuple(n,t) and 3n€N Tuple(n+1,t) which are
identical to Seq(t) and PropSeq(t), respectively; these facts are
easily proved by fixed-point induction. Second, we can assign the
following precise typings to the standard operations Head, Tail,
and Cat (concatenation) on sequences:

Head: VneN* Vi€ Type Tuple(n+1,t)Dt
Tail: VnEN» VteType Tuple(n+1,t)>Tuple(n,t)
Cat: Vm,neN»
VteType Tuple(m,t)X Tuple(n,t)>Tuple(m+n,t) .
These types are not only total; they are computable. They also
imply the more familiar weaker typings:

Head: WVt€Type PropSeq(t)ot
Tail: Vt€Type PropSeq(t)>Seq(t)
Cat: VteType Seq{t)x Seq(t)>Seq(t) .

The third consequence of the eflectiveness of the type system is
that it reduces the problem of type inference to the problem of
reasoning about computable functions. It is straightforward to
define both the domain of types (including all affiliated domains)
and the standard operations on types within a conventional pro-
gramming logic for finitary domains such as Edinburgh LCF
|{Gord77] or the first order theory of domains proposed in |Cart82).
In this context, it is possible to derive a set of specialized type
inference rules analogous to those proposed by MacQueen, Plotkin,
and Sethi for ideals. The only interesting issue involved in this
exercise is determining how to generalize the notion of type
membership to cope with the fact that an interval type is not a set
of data values but a set of ideals (which are sets of data values).
The simplest answer is to define two different forms of member-
ship: necessary (x€[t]) and possible (x€[t]. A data value x neces-
sarily belongs to type t iff x belongs to every ideal in t (hence, to
the lower bound of t). Similarly, a data value x poseibly belongs to
type t iff x belongs to some ideal in t (hence to the upper bound of
t). Both of these notions are definable in terms of the approxima-
tion relation € and computable functions on intervals.

For each rule in the MPS type inference system for ideals, the
corresponding interval type inference system contains two rules:
one for necessary membership and one for possible membership.
The interval type system also contains a rule asserting that neces-
sary membership implies possible membership. With the exception
of the rules for O introduction and elimination, the two interval
rules corresponding to an ideal rule look identical to the ideal rule
except that necessary and possible membership symbols, respec-
tively, appear in place of conventional membership symbol. The
most interesting rules are the rules of abstraction (> introduction)
and application (D elimination) shown in Figure 1.

For total intervals, the two notions of membership are obvi-
ously equivalent. In practice, programmers deal almost
exclusively with total types, eliminating the need to distinguish
between the two forms of membership. For total types, the inter-
val rules collapse to the corresponding rules for ideals.
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Figure 1. Rules for abstraction and application.

Consequently, all derivations of type assertions within the
MacQueen-Plotkin-Sethi inference system for ideals can be dupli-
cated verbatim in the corresponding inference system for intervals.

In addition to providing a simple foundation for a type infer-
ence system analogous to that proposed by MacQueen, Plotkin,
and Sethi, the reduction of type inference to reasoning about com-
putable functions enables us to perform more complex type infer-
ences that require stronger proof rules such as fixed-point induc-
tion. The proof of the equivalence of the types In€N#* Tuple(n,t)
and Seq(t) defined in Section 3.4 by fixed-point induction is a good
example of this capability.

4. A Mathematlcal Theory of Types

The remainder of the paper presents a rigorous formalization of
interval types and justifies the informal statements made in the
previous section. Several of the theorems—most notably the com-
putability of the quantifiers ¥V and 3 over Lawson-compact
spaces—are quite general and may be applicable in other contexts.

With the possible exception of the naive powerdomain and the
Scott and Lawson topologies, the fundamental definitions and lem-
mas of domain theory underlying the formulation of types as inter-
vals should be familiar to computer scientists who are conversant
with domain theory. All elementary definitions and routine proofs
have been omitted to conserve space; the definitive reference on
the mathematical foundations of domain theory is [Gier80).

Unfortunately, the terminology of domain theory has not been
completely standardized. In addition, there are several different
formulations of the theory with subtly different properties. This
paper is based on Dana Scott’s most recent formulation of domains
as information systems [Scot81,Scot83]. The reader should be
aware that the usage of the terms domain, universal domain, and
subspace in this formulation of domain theory is not completely
consistent with that found in some widely available references such
as [Plot78]. The most significant difference between Scott’s new
formulation and earlier versions of domain theory is that subspaces
(“'retracts™) are required to be images of algebraic projections not
just images of finitary retractions.

The following set of definitions form the foundation for domain
theory.

Definition Given a partial order § = <«S,C >, a subset
RCS is consistent iff it has an upper bound in S. R is directed iff
every finite subset ECR has an upper bound in R. R is filtered iff
every finite subset ECR has a lower bound in R.

Definitlon A partial order Sis complete iff every directed sub-
set RCS (including the empty set) has a least upper bound in S.
The least upper bound in S of the empty set is denoted |5. The
phrase “complete partial order” is frequently abbreviated cpo.

Definition An element s of a cpo S is finite iff for every
directed subset RCS has the property that s C Ug R implies that
3reS such that s Cr; it is infindte iff it is not finite. An element s
is total if it is maximal under the approximation ordering C:
WweS s C x D s=x.

Notatlon Let R be an arbitrary subset of a cpo S. The set of
finite elements of R (within S) is denoted RO. Similarly, the set of
total elements of R is denoted Rt.



Definition A subset R of a cpo S forms a basie for § iff it
satisfies the following two properties:

(i) R is closed under the least upper bound operation on finite
consistent subsets.

(ii) Every element X<S is the least upper bound of the subset of R
that approximates it, s.e.

x€8 x = Ug {yeR | y € x}.

Definition A domain D is a pair <D,§> consisting of a ¢com-
plete partial order D and an enumeration 8 = {b; | iEN} of the

finite elements DO of D.7

Deflnitlon A domain D is finitary iff D is algebraic: the set
DO of finite elements forms a basis for D.

Definition The finitary basis of a finitary domain D is the set
DP® of finite elements of D.

Notatlon When no confusion is possible, we will frequently
omit the subscripts (identifying a domain) on the symbols U (sup),
N (inf), and |. In addition, we will often use the symbol D denot-
ing a domain in place of the symbols D and D.

Definition An n-ary function f:D®—D is monotonic iff
V [XyeXnls [Y15¥n] EDP® X, €y, A . Ay Cyp D
f(xqyXn) €AY 11een¥n) -

The function  preserves directed sups (filtered infs) iffi for every
n-tuple S,,...,8, of directed (filtered) subsets of D,

f(US,....1S ) =
U {rdy,...dp) | {d1,dpn)ES ) X ... XS)} -
It is strict iff the image of every argument list containing | is |:
Y%y Xg €D xp=] ... xp=] D f(x},...xg)=1.

For reasons that we will explain in Section 4.2, functions that
preserve directed sups are called Scoll-continuous (or simply
continuous) functions. Similarly, functions that preserve both
directed sups and filtered infs are called Lawson-continuous.

4.1. Fundamental Domain Constructions

In specifying finitary domains, it is often convenient to con-
struct composite domains from simpler ones. Although there
are many useful domain constructors, most of those that occur
in practice can be recursively defined in terms of three funda-
mental constructions: the Cartesian product construction
(denoted AXB), the coalesced sum construction (denoted
A+B), and the (Scott) continuous function construction
(denoted A~+B). For a precise definition of these construc-
tions, see [Scot81,Scot83). In this paper, we will also rely heavi-
ly on four other domain constructions that are all related to
the familiar powerset construction from set theory: the retract
power domain, the open and closed power domains, and the
naive power domain. Each power domain construction takes a
finitary domain D and generates a finitary domain containing a
different ¢lass of subsets of D. The definition of the retract
power domain appears below. We will define the remaining
power domain constructions as soon as we introduce a sufficient
set, of supporting definitions.

Definitlon A domain A is a retract (or subspace) of the
domain B iff2
(i) ACB; € o={(x.y) | x.yEA A (x,y)€ € }; and | o=lp.
(i) A9 = ANBO.
(iii) For all directed subsets RCA, IJ, R = UgR.
The function 7 5 defined by

7A(x) = U {yeA® |y S x}

7Since the elements in the enumeration are not necessarily dis-
tinct, D can be finite.

is called the algebrasc projection corresponding to A.
Definitlon A domain A is a weak refract of the domain B

iff

(i) ACB; C o={(xy) | xy€A A (xy)€ € g}; and [ ,=lp.

(i) For all x,y€A, {xy} is consistent in A iff {x,y} is con-
sistent in B.

Any continuous function f:B—B such that f o = [ and {(B)
= A is called a retraction for A,

Remark Every retract is obviously a weak retract. The
converse, however, is false because a finite element of a weak
retract is not necessarily a finite element of the parent domain.
Similarly, the least upper bound relation within a weak retract
may not be a restriction of the least upper bound relation on
the parent space.

For the remainder of the section, let D be an arbitrary
domain with enumeration <bj|i€N>.

Definltlon The domain of retracts Retp, is defined as the
pair <Retp ,p> where Retp is the partial order consisting of

the set of retracts of D under the subset relation and p is the
enumeration <R, | i€EN> consisting of all finite retracts (finite
sets in Retp) sorted by rank

Y1 iR W<t bjsdy) 2!

It is easy to verify that the set {R, | i€N} = (Retp)°,
confirming that Retp is in fact a domain.

Lemma If D is finitary, then so is Retp,

Definitlon The partially ordered set of weak retracts
WeakRelp, is defined as the pair <WeakRetp ,C> where
WeakRetp is the set of weak retracts of D and C is the subset
relation on WeakRetp,.

Remark The partial order WeakRetp, is not complete, be

cause pairs of consistent weak retracts do not necessarily have
least upper bounds.

4.2. The Scott and Lawson Topologles

Definltion A subset S of a partially ordered set D is down-
ward closed iff Vx€S VyeD (y € x D y€S). S is upward closed
iff Wx€S VyeD (y2x O y€S). The upward closure of S, denot-
ed ST, is the set {x€D |3y€S y € x}. The downward closure of
S, denoted S|, is the set {x€D |Jy€S x S y}. We will abbrevi-
ate the upward and downward closure of a singleton set {x} by
the symbols xt and x|, respectively.

Definition Let S be an arbitrary set. A fopologyoon S is
a family og of subsets of S, called the o-open sets of S, with
the following three properties:
(i) Seos.
(ii) For every subset V of g, U,y s€S.
(iii) For every finite subset F of ag, {\pep 8€S.

Remark Note that property (iii} implies that the empty
set ¢ belongs to og.

Definltion Let o be a topology on the universe S. A sub-
set wWC o is a sub-basis for o iff o is the closure of w under arbi-
trary unions and finite intersections. ¢ is called the topology
generated by the sub-basis w.

Definitlon Let o be a topology on the universes A and B.
A function f:A—B is o-continuous iff the inverse image under f
of every og-open set is 0 s-open: V S€og [-1(S)e0o 4.

Definition Let o be a topology on the universe A. A sub-
set S of o covers a subset B of the universe A iff B C Ugyg s.

S is called a o-covering of B. A subset B of A is o-compact iff
every o-covering has a finite subset (called a finite o-
subcovering) that covers B.



Definltion Let o, be 2 topology on the universe A. A
subset SCA is o-closed ifl its complement A-S is g-open, i.e.
A-S € [\

Notatlon If the universe A is clear from context, we will
denote the complement of a set S with respect to A by § (or al-
ternately -S).

Definition (The Scott Topology) A subset S of the domain
D is Scott-open (or simply open) iff S is upward closed and
YxeS Jy€S |y is finite Ay S x] .

Definition Let S be a downward closed subset of the
domain D. The boundary of S (denoted AS) is the set {y€S |

¥xe(8)9 x|S y }. The Scott-closure of S (denoted [S]) is the set
[SSUHAS. The Scott-closure of an arbitrary subset SCD is the set

Lemma S'is Scott-closed iff S = [S].

Definition For every domain D, the open (closed) power-
set Opp, (Clp) is the cpo consisting of the universe Opp, (Clp)
of open {closed) subsets of D under the subset relation.

Lemma A Scott-open {Scott-closed) set O€Opy, (CEClp)
is finite in the cpo < Opp (Clp) iff there exists finite set F of
finite elements of D such that O = F1 (C = F|).

Definition The domain Opy, (Clp) is the pair < Opp 0>
(< Clp ,0>) where o is the enumeration <S|i€IN> consist-

ing of all sets {S1 (S]) | SCDO and S is finite} sorted by rank
22001 vyes Viey bty 2 -
Theorem If D is finitary, then so is Opp (Clp).
Remark In the literature on types, the Scott-closed sets

over a domain D are usually called the ideals of D.

Theorem A function f mapping a finitary domain A into
a finitary domain B is Scott-continuous iff it preserves directed
sups.

Definition (The Lawson Topology) A subset S of a finitary
domain D is Lawson-open iff it is 2 member of the family of

sets A(D) generated by the sub-basis {x1|xeD0} U
{D-xt | x€ D9}.

Theorem A function f mapping a finitary domain A into
a finitary domain B is Lawson-continuous iff it preserves both
directed sups and filtered infs.
4.3. The Nalve Powerdomaln

For any domain D, there is a corresponding domain of sub-
sets 2D, called the naive powerdomain, that includes both Opp
and Clp and respects the same approximation and consistency
relations. As before, let D be an arbitrary domain with basis
enumeration <b; | iIEN>.

Definition A subset SCD is directed-closed if YRCS R
directed > LIRES. The directed-closure of S (denoted |S|) is
the set {x | 3RCS R directed LUR=x}.

Definition The naive powerset £D over D is the cpo con-

sisting the universe {SCD | S == |SO|} under the subset rela-
tion.

Lemma The finite elements of £D are precisely the finite
sets in 2D,

Definition The naive powerdomain 2D over D is the pair
<2B,0> where o is the enumeration <8, | iEN> consisting of

all sets {|S| | SC DO and S is finite} sorted by rank
20 1byes Viey bty 2! -

Lemma 2D is a finitary domain.
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We define analogs in 2D to the standard operations on sub-
sets of D as follows:

Definitlon The union and intersection functions , 2P—-2D
are defined by:

A B = |AOUB?|; A B=|AOnBY|.
The complement function ~:2P—2D is defined by: ~(S) =
|D0-S9} .

Lemma The functions and are continuous but the fune-
tion ~ is is antimonotonic and hence is not continuous.

The set functions ,, and ~ do no! necessarily yield the same
answers as the analogous set operations n, U, and ~ on arbi-
trary sets. The following lemma identifies sufficient conditions
for ensuring that they agree.

Lemma Let D be a finitary domain.
(i) For all sets A,B€OppuClpy, AB = AnNB .

(i) For arbitrary sets A,Be2D, AB = AuUB,
(iii) Lemma For every set ACOppUCl,, “A = A .

Definition Let D be a finitary domain and let 2D be the
naive powerdomain over D. An n-ary function f:(2D)R—2D js
tidy iff
(i) f is Lawson-continuous (preserves both directed sups and

filtered infs),

{ii)  preserves closed sets: if C|,...,C,€ClpP, then f(C,,...,.Cy)

€ Clp?, and

(iii) [ preserves open sets: if 0,,...,0,€0pp?, then {(0,,..,0,)
€ Opp™.
All of the naive set operations that we discuss in the
remainder of the paper will be tidy. We will subsequently show

that every tidy set operation induces a continuous operation on
interval types that preserves total types.

4.4. Computability
In order to formalize the idea of computable functions on a

domain, we must identify a concrete representation for the ele-
ments of the domain.

Definitlon A domain D is effective iff it is finitary and the
following two relations are recursive:

(i} The binary relation CON defined by
CON(i,j) <=3k by S by Aby S by .

(ii) The ternary relation LUB defined by
LUB(i,j,k) <> by=U{bpb)} .

Theorem The constructed domains [D—E|, [DxE],
D+E, Retp,, Opp, Clpp, and 2D are effective if the com-
ponent domains D and E are.

Definition A subspace A (with enumeraticn o =
iEN>) of a finitary domain B {with enumeration g =
iEN>) is effective iff the function repN—N defined by

rep(i) = min {j | b;=a,}
is recursive.

Definitlon An element d of an effective domain D with
enumeration & is computable iff the index set {i | §; € d} is re-
cursively enumerable.

Definitlon Let A and B be effective domains with
enumerations & = {a; | i€EN} and g = {b; | iEN}. A continu-
ous function tA—B is compulable iffil f is a computable ele-
ment.

Theorem f is computabie iff the relation F defined by
{(i.j) | by € f(a;} is recursively enumerable.

<a, |
<by |



Definition For any finitary domain D, the least fized-point
operator Y: [D—D|—D is defined by the equation

Y £ = Uen [ H))

where [ ! denotes i compositions of the function f (f 0 = Ax. {).

Theorem Y has the property that YT is the least fixed-
point of f, i.¢. the least element d such that f(d)=d.

Theorem If D is effective, then Y is computable.

Definltion A universal domain U is an effective domain in
which every data domain D is isomorphic to a subspace Sp of
U. In addition, if D is effective, Sp must be an effective sub-
space of U.

Theorem There exists a universal domain U.

Proof See [Scot 81, Scot83]. O

Since every domain D has an isomorphic image Sp within
the universal domain, the problem of defining an arbitrary
domain can be reduced to defining an arbitrary subspace of a
particular universal domain. The following theorem (in con-
junction with Kleene's recursion theorem) implies that we can
recursively define eflective subspaces of a universal domain us-
ing the domain constructors X, +, and —.

Notatlon Let Ug, denote an effective subspace of U that
is isomorphic to Ret ;.

Theorem Let U be a universal domain and let a,b€Ret 4
be elements of U representing the subspaces A,€ERety. For

the three basic domain constructions {X, +, —}, there are
corresponding computable functions mkProd, mkSum, and
mkFun:Ugey XUge—URgey such that mkProd(a,b) represents
the subspace isomorphic to AXB, mkSum(a,b) represents the
subspace isomorphic to A+B, and mkFun(a,b) represents the
subspace isomorphic to A—B. Similarly, for the four power
domain constructions {Ret, Op, Cl, Pow}, there are comput-
able functions mkRet, mkOp, mkCl, mkPow: Ugy — Upge
such that the applications mkRet{a), mkOp(a), mkCl(a),
mkPow(a) yield elements representing the subspaces of U iso-
morphic to Ret,, Op 4, Cl,, and 24, respectively.

4.5. Definltion of Interval Types

We have finally laid sufficient groundwork to define the set
of interval types over a finitary domain D and show that it
forms a finitary domain.

Definition An interval type {or simply inlerval) [a,A] on
the finitary domain D is the set of ideals {IcClp | aCICA} on
D where aCA and a is non-empty. The set of interval types
over a domain D is denoted Typep.

Theorem For every finitary domain, the set Typey, of in-
terval types over D forms a finitary domain under the superset
ordering O on intervals (as sets). The total elements of
Typep are intervals of the form [A,A| containing a single ideal
A.

Definition A total element of the domain Typep is called

an ideal image over D. The set of ideal images over D is
denoted Idlp,.

The easiest way to prove the preceding theorem is to show
that Typep is isomorphic to the domain of brackets, which are

concrete representations for intervals that expose their compu-
tational properties. The following collection of definitions and
lemmas define the domain of brackets and formalize the rela-
tionship relationship between brackets and intervals.

Definition A bracket <a,A> on the finitary domain D is
a pair of subsets a, A D D such that: (i) a is non-empty and
closed; (ii) A is open; and (iii) 2 and A are digjoint. The three
sets a, A, and —~(aUA} are called the positive, negative, and neu-
tral regions, respectively, of the bracket A.
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Remark The bracket <<a,A> represents the interval [a,A].

Theorem The set of brackets on a finitary domain D
(denoted Bktp) forms a finitary domain under the approxima-

tion ordering < defined by <a,A> € <bB> iff aCb A
ACB . If D is effective, then Bktp, is eflective. A bracket

<a,A> in the domain Bkt is finite iff a is finite in Clp and
A is finite in Opp. <a,A> is total iff aUA = D. Given 2

universal domain U, there is 8 <computable function
mkBkt:Ret ; ~Ret ; that maps each subspace D of the
universal domain U into a subspace isomorphic to Bktp,.

Since the domain of brackets and the domain of intervals
over a domain D are isomorphic, we can identify the two
domains without any loss of precision. Henceforth, we will fre-

quently use a bracket expression <a,/> to denote the
corresponding interval type [o,B].

Notatlon Let 7 be an arbitrary interval [¢,T] in Typep.
The positive and negative regions of (the bracket corresponding
to) 7 are denoted 7+ and 7, respectively. Obviously, 7+ =t
and - = T. ’

4.0. Type Operatlons

For the remainder of the paper we will adopt the following
notational conventions.

Notation Let U denote a universal domain and let U_,
Uy, and U denote computable subspaces of U that are iso-
morphic to JU—Uj, [UXU|, and U+U, respectively. Let — y,
X y, and + ¢y denote the computable functions from Ret (; ?
into Ret ; that map arbitrary subspaces A and B into the iso-
morphic images of A—B, AXB, and A+B within U, U,
and Uy, respectively. Let (a,b)y and fy denote the iso
morphic images (in U) of the elements (a,b)JEAXB and
fc|A—B|, respectively. Similarly, let iny(a) and ing{b) denote
the isomorphic images of the elements (0,2)€éA+B and
(1,b)eA+B, respectively. In contexts where no confusion is
possible, we will omit the subscript {; from the functions — y,
X us +U!and(')U'

In a programming language, the data domain D typically
eonsists of a disjoint collection of subspaces such as truth
values, integers, tuples, and functions. Consequently, we will

restrict our attention to program data domains that satisfy the
following condition.

Definitlon Let A;,..,A, be flat subspaces of U. The
standard domain D with atomic types Ay,...,A  is the subspace
of U defined by the domain equation
D=D-D +DXD + (D+D)+ A, +...+ A,
We will denote the unary injection functions mapping each of the
component spaces A,,..,Ay, D— D, DX ¢yD, and D+ D into
D by the lunction symbols In,, .., Iny, In_, Iny, and Ing,

respectively. Similarly, we will denote the subspaces of D that are
the injections of each of the same component spaces by D,,

D,, D_, Dy, and D, respectively.

With the exception of the polymorphic function type construc-
tor D, all of the basic type constructors {x, +, U, N } on a stan-
dard domain D are defined in a uniform way from tidy operations

on the corresponding naive powerdomain 2D, For the sake of con-
creteness, we will describe the constructions in terms of bracket
notation.

Definition Let D be a finitary domain and let t:(2P)n—2D be
an n-ary tidy operation on 2P. The type operation 7 on Typep
induced by t is the function 7 defined by:

T([al'All- wn [80,Agl) = [t'(a'l' any an)nt(Aln'“vAn)l



where |a;,A,},...,[a,,A,| denotes an n-tuple of intervals.

Remark It is easy to demonstrate
{|a),Aq},-.[apsAp]) must be an interval because t is tidy.

that

Lemma 7 is a continuous function from Typep*—Typep
that preserves totality.

Proof It is obvious from the definition of the induced
operation 7 that it preserves totality. The easiest way to prove
that 7 is continuous to express r in terms of brackets. The
function 7 clearly decomposes into two separate functions

r+:Clp8—Clp and m:0pp2—Opp, defined by:

T([al'Al]P'"[a‘nrAn]) == {r+(a'1v'"ra'u)v - 7_(_Aln"~rKn)]

r+(ay,...,an) = t(ay,...,ap)

(A, Ap) = " t{Ay,.,A )
that yield the positive and negative regions of the output of 7.
If we re-express the same decomposition in terms of brackets, it
takes the following form:

(<a,,A;>,..,<8gAp>) = <rt(a,,...a,), (A, Ap)>

t(2,,...85) = t(a,...,a,)

(A,,...,Ap) = ~t(-A,,..,mA,) = ~t(~A,,..,"A,) .
Since the finite elements of Typep are pairs of disjoint finite
elements in Clp X Opyp,, the continuity of 7 reduces to the con-
tinuity of the component functions 7+ and 7~. Moreover, since

t is continuous and preserves closed sets, the function r+ must
be continuous, reducing the continuity of r to the continuity of

the negative component function -,

To prove that 7~ is continous, let R be a directed set of n-
tuples in Typep®. We must show that

7(LUR) = Uyer r{r) -

By the definition of the functions 7~ and ~, we can simplify
both sides of preceding equation as follows:

(1) r(UR) = ~(~UR) = ~t(N ~R)

(2) Urer 7(r) = Uper ~47) = ~(Mee-r 4s)) ,

reducing it to

(3) ~tN -R) = (Mg ts)) |

Since R is a directed set of n-tuples of open sets, the set ~R must
be a filtered set of n-tuples of closed sets. Hence, (3) is an immedi-

ate consequence of the Lawson-continuity of t, which forces t to
preserve the inf of ~R. 00

Definitlon The basic type constructors {x, +, U, N} on a
standard domain D are the type operations induced by the tidy
set funetions { Xp, +p, , } on 2D where Xp and +p are
defined by

R xpS = {ing((rs)y)|reR, ses }
R +p§ = { iny(ing()) | ER }u {in4(inp(s)) | s€R } -

Remark The subscript D refers to the fact that the {unc-
tions X p and +p are derived from the standard set theoretic

functions X and + by injecting their outputs first into U and
then into D.

Although tidy set operations always induce continuous type
constructors, the induced constructors are not necessarily
computable—even when the inducing operations are comput-
able. The reason for this anomaly is that the complement
operation ~ appearing in the definition of the negative com-
ponent function 7~ is not computable (it is not even monoton-
ic). Fortunately, all of the basic type constructors happen to
be computable, because in each case the non-computable ex-
pression denoting the negative component can be transformed
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into an equivalent expression composed from computable
operations. The appropriate transformation, however, depends
on the particular operation.

Lemma Let D be a standard domain. The type construe-
tors {X, +, U, N} on Typep induced by the corresponding
tidy operations {X p, +p,, } on 2P are computable.

Proof The positive components in the definition of all the
type constructors are computable because the inducing opera-

tions on 2D are obviously computable. Hence, the proof of the
lemma reduces to showing that for each type constructor r, the

negative component r{<a,A>,<b,B>)- of an arbitrary appli-
cation is computable. Since ~(DXpD) and ~(D+p D)} are
both computable elements of 2D, the following identities—
which hold for arbitrary sets AB€OppuClp—reduce the
negative components of X and + to computable form:

~(~AXp~B) = ~(DX D) u(AXD)u (DX B}

~{~A+p"B) = ~(D+D)uin (in (A)) v in,ing(B)) .
Similarly, DeMorgan’s Laws for sets A BEOp puClp reduce the
negative components of U and N to computable form

~(~A~B) = AB; ~(~A-B) = (AB).

Although many interesting type operations are induced by tidy
functions on the naive powerdomain, the polymorphic function
type constructor D is not among them because it does not main-

tain the strict separation of positive and negative information that

characterizes induced operations. It must be defined as a special
case.

Definition Let D be a standard domain. The polymorphic
Junction set constructor D on 2D on D is defined by

R>p S = {in_{fy) | f€[D-D| A ¥x€R f{x)eS} .
The lunction type constructor D on Typep, determined by D,
is defined by the rule

[a,A]>[b,B] = [ADpb, aDB] .
In bracket notation,

<a,A>><bB> = <~A>pb, ~(adp~B)> .

Remark To confirm that > maps 2Px 2D into 2P, we
must show that given arbitrary elements R and S in 2P RO, S

is an element of 2. Let the notation fy, abbreviate the ex-
pression in_(f). Let [y, be an arbitary element in the set
R>pS. We must show that fiy = || {ga€RDp S | gy, is finite
A g € fn} or equivalently that f = U {geD—D | ¥eR
g(x)eS A g is finite in D—D A g € {}. But every function g € f

has the property that Vxe€R g(x) € f(x)€S. Hence, for every
finite element g in D—D approximating f, gi, is a finite ele-

ment in RDp §. Since the finite elements of D—D form a
basis, fj, is the least upper bound of the finite elements of
RS that approximate it. [

Theorem Let D be a standard domain. The function type
constructor > on Typep is computable and preserves totality.

Proof Let <a,A> and <bB> be arbitrary effective ele-
ments of Typep. To prove that D is computable, we must
show that <a,A>><bB> is effective, i.e. the set of finite
elements of Typep that approximate <a,A>><b B> is re-
cursively enumerable. Since the set of finite elements in a stan-
dard domain D belonging to the complement of the function
subspace (i.e., the set (D)0) is recursively enumerable, the
effectiveness of <a,A>D><bB> reduces to the recursive



enumerability of the following two sets: the one-step-functions®
up+v (u,v€DO) that are members of ADpb and the one-step-
functions that are members of a>pB. In the former case, a
finite element ul»v € ADpb iff either u€A or v€b which are

both recursively enumerable by hypothesis (the effectiveness of
the inputs). In the latter case, upsv € ad> B iff u€a and veB,

which are also both recursively enumerable. Hence, O is com-
putable.

To show that D preserves totality, we simply observe that if
|2,A] and {b,B] are total intervals (ideal images) then a = A
and b = B, implying that a,A|D[b,B| = [aDpb,adpb|. O
4.7. Quantification over Lawson-Compact Sets

Definition Let D, A, ..., A, be finitary domains. The
quantifier operations 3® and VY for the function domain
A X..xAy,—~TypeRp, are defined by

al = < UXGAl' f'(x) ’ ﬂxeAlf r(x)_ >

I = Nyq:Ay, ., YpiAp -

< Ugeagt TxYarn¥ )T, Myeagt F{XYo,0¥n)™ >
V= < Meayt F(x), Uyea,t F(x)- >
VAL = \yqAp, ..., ¥YpiAp -
< Nyeapt T{xY20¥n)t ) Uxeayt f(X.You¥n) > .
Theorem The quantifier operations 3" and V2 preserve totali-
ty: for any { € A;X..XA,—~Typep and |ys,...yp} € AgX ...
X Ap such that f(x,¥5,...yn) is total for all x€At, the types (@®
)y2,...yn) and (V0 )(yq,....¥ ) are total.
Proof Immediate from the definition of 3™ and Y. [J
In contrast to their strong totality properties, the quantifiers 3™

and VP are not necessarily continuous for some domain A,. The

critical property of the domain that ensures continuity is Lawson-
compactness. Fortunately, the domain of types Typep over any

finitary domain D is Lawson-compact.

Definition A subset S of a finitary domain D is Lawson-
compact iff S is compact in the Lawson topology for D. A finitary

domain A is Lawson-compact iff the set At of total elements of A
is a Lawson-compact subset of A.

Lemma For any finitaty domain D, the domain of types
Typep is Lawson-compact.

Proof A routine verification. O

Theorem If A; is Lawson-compact, then for all n>0 the
operations 3% and V2 are continuous.

Proof Assume that we are given a directed set of continuous
functions F C A >...x Ag—Typep]. We must show that 3°(U
F} = Ugp 3°(f) and YU F) = lgp VYP(f) For each feF, let
A, X..XA—Clp and A} X.. X A—Opp denote the con-
tinuous functions defined by:

frxyoi¥n) = F(xyo,ya)t

f~(%,¥ 0¥ n) = [ (X,¥0,..¥pn}" -

Since 3°f and V®f are (n-1)-ary functions, the continuity of 3°

and VB reduces to showing that for arbitrary elements y,,
Yo in ApX.. XA, the sets E and A defined by

8The one-step-function uj>v where u,v€D? is defined by »x .
If u € x then v else]. It is the least function f such that v € f(u).
The one-step-functions of DD form a sub-basis for D-D.
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E = {<Uxea;t I* (X¥20¥0) s Mpeast 17 (XY 2,¥5)> | fEF}
A= {<Nyea,t I (X¥2¥ ) s Uxeat 17 (XY 20¥ a}> | FEF}
satisfy the equations
(YUE =

<Ugea,t (UF)T (Y 2,¥n) » Mxeagt (UF)” (XY 20-¥0)>
5) UA =

<Myeayt (UF)F (XY 2,¥n) » Ugeayt (UF)™ (x,Y2,-0¥0) >

The positive components of equation (4) are clearly identical
because

I—IXGA11 f+ (x,yg,...,yn) = UXEAI f+ (x)y‘Z)"'»Y!\)
for every continuous function f. By an analogous argument,
the negative components of (5) are identical.

On the other hand, proving the equality of the negative
components of (4) and the positive components of (5) requires 2
more delicate analysis. The proof critically depends on the fact
that A, is Lawson-compact.

The infinite total elements of a Lawson-compact finitary
domain A correspond to the infinite paths through an infinite
binary tree T where each branch point at level n indicates
whether or not the finite element with index n approximates
the infinite total element. As a result, for any Scott-continuous
function f:A—B (where B is an arbitrary finitary domain), a

finite element y approximates f(x) for all total elements xcAt
ifl there exists a finite binary tree—derived from T by pruning
subtrees—such that every path from the root to a leaf is either
inconsistent (with all fotal elements) or includes y in the image
of its sup under f. Otherwise, by Konig's Lemma, there is an
infinite path in T denoting an element zEB such that y¢f(z).

By employing this construction, we can prove the following
critical lemma,

Lemma Let A and B be effective domains where A is
Lawson-compact. The function () ,_p:[A—>B|—B defined by

Ma-s (8) = Mxeat 8(x)
is continuous.

Proof of Lemma To prove the lemma, we need to introduce
several definitions.

Definitlon Let <a; | i€N> be the enumeration of A® in
A. A path m over A is a finite, non-empty sequence pg, ..., Py
where each element p is either a; or —a). A path 7 over A is
totally-consistent iff there exists a tolal element e€A that con-
forms with the constraints specified by :

¥i:0<j<n [(ajen — ay S e) (~ayem — aj|Se)
A path is totlally-inconsistent iff it is not totally-consistent.
The meaning of a totally-consistent path 7 is Lin, where 2, =
{ay€7 | 0<j<n}. If S is a set of paths over A, the meaning of
S (denoted LIS) is the set {lr | p€S and p is totally-
consistent}. There is an obvious one-to-ome correspondence

between paths over A and finite, non-empty paths in a com-
plete, infinite binary tree T.

Definitlon A uniform binary tree W is a finite binary tree
in which every internal node has two sons.

Definition Let' y be an finite element approximating
Nyeat&(x). A g-witness trec W for y is & uniform binary tree
such that every totally-congistent path « in W from a root to a
leaf yields y under g: y C g(Lin).

The proof of the lemma breaks down into a series of three
claims.

Clalm 1 For any continuous function g: A — B, every
finite element in ((MNycat 8(x))° has a g-witness tree.



Proof of Claim Assume that some finite element y in
(Mxgat 8(x))? does not have a g-witness tree. Let T, denote

the uniform tree obtained by deleting all nodes from T (the
complete infinite tree) below any path that is totally-
inconsistent or yields y. Ty must be infinite; otherwise Ty is a

witness tree for y. By Konig's Lemma, Ty contains an infinite
path k. By the definition of Ty, no initial segment of « yields
y or is totally-inconsistent. Let K be the set defined by

K = {Un | 7 is an initial segment of x} .
Since & is totally-consistent, K must be a directed subset of A.
In addition, UK must be a total element of A because every
finite element in AO is.either below LIK or totally-inconsistent
with it.

Since g is continuous and K is directed, g(UK) = Uyek glk).
But by the definition of the path x, y does not approximate

g(k) for any element k in K. Hence, y does not approximate
g{LIK), contradicting the assumption that y belongs to

(Nyeate(x))°. O (of Claim 1)
Clalm 2 Let gh: A - Band gC h. If Wy is a g-witness
tree for beB, then W, is an h-witness tree for b.

Proof {of Claim 2} The claim follows immediately from the
fact that Va€A0beBO b C g(a) -» b < h(a). [

Clalm 3 For any directed set G of functions in A — B,
Ma=p (UG) = Ugeg Na-8 8-

Proof (of Claim 3) The function [},_,p is obviously mono-
tonic. Consequently, all that we have to show is (M_p (LG)

€ Ugeg Ma_p g . Given an arbitrary element beBO such
that b C Mo p(LUG), we must prove that b C Lleca.p8 -
By Claim 1, b must have a LIG-witness tree Wy,. Let wy, be the
finite function determined by pairing the meaning of each con-
sistent path in W, with b. w, obviously approximates LIG.
Since wp & UG and wy is finite, there exists an element heG
such that wy € h. By Claim 2, Wy, must be h-witness tree as
well as a |IG-witness tree, implying that
bEMpwp b S UgegMa.ps- O (of Claim, Lemma, and
Theorem)

Although the preceding theorem establishes that the
quantifiers 32 and VP are continuous, it says nothing about
whether or not they are computable. Since both quantifiers in-
volve infinite intersections, a naive approach to computing the
functions clearly will not work. Fortunately, the witness tree
construction used in the proof of continuity provides the criti-
cal trick required to compute the infinite intersections. The
only obstacle is deciding when finite sets of basis elements are
totally-inconsistent. Although the total-inconsistency of finite
sets of basis elements is not decidable in general for effective
domains, it is decidable for most domains of practical interest
including the domain Typep of interval types over a arbitrary

effective domain D

Definitlon An effective domain D is tolally-effective iff the
total-consistency of arbitrary finite subsets of D9 is decidable.

Theorem For every eflective domain D, the domain
Typep is totally-eflective.

Proof A routine verification. O

Theorem For all n>1, the operations 3® and V2 are com-
putable if the domain A, is Lawson-compact and totally-
effective.

Proof Assume that we are given a computable function
(. Typep?—Typep. We must show that the sets of finite ele-
ments approximating 32 and VI are recursively enumerable.
Since 3°f and V2f are (n-1)-ary functions, the computability of
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10 and V0 reduces to showing that for arbitrary computable
elements yo, .., y; in D, the objects ¢ and a defined by the
equations

€ = < Ugeraip, M(xy2:-¥n) MNyetdip f~(xyg,¥p) >
o = <ﬂx€ldlD f+(x’y2l"'ryn) ’ UxeldlD f_(xvav"'ryn) >
are computable.

The set of finite elements of Cl approximating the positive
component of ¢ is clearly recursively enumerable since

Uxcidip fH(x,¥0,¥p) = Uxetypep T (XY 2043 )

and {+ is a computable function from Typep? to Clp. Simi-
larly, the negative component of a is computable.

Since A is Lawson-compact, a finite element e€Opp® ap-

proximates ¢~ iff a witness-tree T, exists for e. Consequently,
to compute the the set of finite elements of Opp, that approxi-
mate the negative component of ¢, we enumerate all pairs
<e,U> where e€Opp9 and U is a uniform tree and check to

see if U is a witness-tree for e, Since A is totally-eflective, we
can decide for each finite path w in U whether or not it is total-
ly consistent. Similarly, for every totally-consistent finite path
7 in U we can enumerate all of the finite elements e that ap-
proximate the image under of f of the meaning of 7. Hence, if
U is a witness-tree for e, we will eventually discover that fact
by determining for each path that it is totally-inconsistent or
includes e in the image of its meaning. The computation
enumerates a finite element e as soon as it discovers a witness
tree for it.

An analogous procedure will enumerate all of the finite ele-
ments a€Clp0 such that a € a*. [J (of Theorem)

Notation The expressions 3 ty,...,tp 7and V t .t 7
where t,,...,t, are distinct variables, abbreviate the expressions
PN ty,.ty . Tand VB X b, by o 7, respectively.

Definition Let A}, ..., A, be finitary domains. For each
function domain A ;X .. XA — A;X..XAp n>m>1, the
fixed point operator gy, is defined by:

Bon T =Y XN [xy,xp)  f(x,... %) =Y T
Bon = MXmeroXol - Y XXX - f(Xy,00%,)
where Y denotes the standard least fixed point operator.
Remark 4, is simply a notational generalization of the Y

operator that accommodates free variables in the expression denot-
ing the input function.

Lemma For all n>m>1, pp,, is continuous. If D is effective,
then g, is computable.

Proof An immediate consequence of the corresponding proper-
tiesof Y. O
4.8. Solving Recursive Type Equations

Definition Let D be an effective domain. A system of lype
equations £ over D is a set of equations

{t,=7p o tp=ry }
where t,,...t, are distinct variables and r,...,r, are expressions
constructed from continuous operations on Typep and the
variables t,...,t ;. The function o:D"-—~D™ determined by T is
defined by the equation

=X [ty,..ty] . |7y0Tal -
L is computable ifl ¢ is a computable function. A solution to
the system of type equations L is an n-tuple [d,,...,d ]| of ele-
ments of D such that ¢(|d,,...d}]) = {d},..,dp] .



Theorem Every set of type equations L over a finitary
domain D has a least solution consisting of the tuple of inter-
vals Yo where o is the function determined by L. Moreover, if
all the functions appearing in £ are computable, then the solu-
tion Yo is computable.

Proof The theorem is an immediate consequence of the
definition of the least fixed point operator Y and the fact that
every closed expression constructed from computable functions
denotes a computable a computable function. []

Although the preceding theorem shows that every system of
recursive type equations has a least solution, that solution is
not necessarily total. Since programmers are almost always in-
terested in defining types that are total, the practical value of
the theory of types as intervals rests on whether the least solu-
tions to type equations are total in typical cases. Fortunately,
the situation is roughly analogous to that which prevails in
practical programming languages: although type definitions
(programs) are not necessarily total, those that programmers
typically write—even when they contain errors—typically are.

The following examples illustrate the potential problem.

Deflnitlon Let £ be an n-ary system of type equations
over a data space D, and let o denote the function determined
by . An ideal solution of L is a solution that is a total ele-

ment of Typep, i.e. a tuple of ideal images {I,,...I ]€ldi5D
su ch that o({l,,...Ip]) = [1,,...14)-

Observatlon A system of type equations may not have an
ideal solution.

Proof A simple counterexample is the type equation
C=-C
over the flat domain Bool = {true, false, |} where - denotes
the computable function defined by the equation

~([b.B]) = [{t}uB,{L}ub] .
The preceding equation has no ideal solution because it comple-

ments the set of total elements on each side of the interval.
The only interval solution is the least interval [{1},Bool|. D

Observatlon A system of type equations may have a
unique ideal solution that is distinet from the least interval
solution.

Proof Let Bool denote the same flat Boolean domain as
above and let if-then-else and is-defined denote the standard
ternary conditional and unary definedness functions, respective-
ly, on BBool. The type equation

T = if is-defined(T) then Bool else T

has the unique ideal solution {Bool,Bool] but the least interval
solution is the least interval {{1},Bool|. O

Fortunately, these pathologies do not often arise in the con-
text of standard domains because standard domains form a
very special kind of metric space that ensures the solutions to
most type equations are total. In fact, we can prove a theorem
that asserts that the least solution to every formally contrae-
tive system of equations is total. The proof of theorem is based
on essentially the same metric space analysis that MacQueen,
Plotkin, and Sethi used to prove the ezistence of solutions to
formally contractive systems of equations over the space of
ideals. As groundwork for this thecrem, this section of paper
develops a metric space theory for intervals based on the
corresponding theory for ideals presented in in [MacQ84a].

The most surprising feature of the new theory is that the
natural generalization of every theorem in the original theory
holds in the new theory-—even though there are systems of
equations that are contractive on ideals but not on intervals.
The explanation is that the basic type operations over a stan-
dard domain satisfy are contractive on intervals—not just
ideals (a weaker property). Consequently, the syntactic notion
of formal contractiveness proposed in [MacQ84a| not only en-
sures that a system of equations is contractive on ideals, but on
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intervals as well.

The metric space of intervals is more elegant and robust
than the original for two reasons. First, it attaches stronger se-
mantic content to the notion of formal contractiveness.
Second, it has simpler, sturdier formal foundations because is
formulated entirely in terms of continuous functions on finitary
domains. In contrast, the theory of ideals involves discontinu-
ous functions and domains (such as the set of all functions over
a finitary domain) that are not finitary. As a consequence, the
solutions to formally contractive systems of type equations are
computable in the framework of intervals, but not in the
framework of ideals,

Definitlon A ranked domain <D,r> is a pair consisting
of a finitary domain and a rank functien r mapping the finite
elements of D into the natural numbers such that (i) r (I} = O,
and (ii) r (x) > 0 for all x54.

We will frequently use the following three mechanisms for con-
structing composite ranked domains from simpler ranked domains.
The underlying intuition is that the rank of a finite element in a
domain defined by an equation should correspond to the index in
the ascending chain of approximate solutions where the element
first appears.

Definitlon Let A = <D,d,> and I' = <G,gg> be ranked
domains.

(i) The ranked Cartesian product domain A XT is the pair con-
sisting of the domain DX G and the rank function r defined
by

f{<xy>) = max{d(x)gy)} .

(i) The ranked function domain A—T is the pair consisting of the

function domain D—G and the rank function r defined by

#f) = max{ max(x,y) | x€ D%,y GO
x>y is essential in f y € f(x)}
where a one-step function xtry is essential in the finite func-
tion [ iff YueDO, v€ GO up»v implies uprv S xpsy.

(iif) The ranked domain of types Type, is the pair <Typep ,r>
consisting of the domain Typep and the rank function
defined by

r{[t,T]) = max{d(d) | d is maximal in a d is minimal in A}

This definition is meaningful because the finiteness of {a,A] implies

that the maximal elements of a and minimal elements of A must
be finite elements of D.

Definltlon Let A = <D,r> be a ranked domain. For any
two distinct elements x,y€D, a witness for (x,y) is a finite element
wcD such that w € x but w|Sy or vice-versa (since x and y are
distinct, such an element must exist). The sffinity of two distinct
elements x,y€D (denoted |x,y|) is the least rank of a witness for
(x,y). The metric space determined by A is a pair <D,d) consist-
ing of the domain universe D and the function d mapping D2 into
the real numbers defined by

dxx) =0

d(x,y) = 2~ if x,y are distinct .
d is called the rank metric determined by r.

Remark In this paper, we will confine our attention
exclusively to rank metrics. For economy of notation, we will
universally use the symbol d to denote the rank metric correspond-

ing to a ranked domain. The intended domain and rank function
should be clear from context.

Deflnitlon Let <A,a>, <B,b> be ranked domains. A func-
tion :A—B is coniractive on C C A iff

(i} f preserves totality: for every total element ac At f(a)cBt.

(ii) Yx,yeC d(f(x)f(y)) < r #d(x,y) for some constant r < 1.

The function f is non-ezpansive on C C A iff [ preserves totality
and condition (ii) holds for some constant r < 1.



Definition Let <A,,8; .., <A,,8,>, and B be ranked
domains and let CCA|. An n-ary function f:A; X .. XA, —B is
contractive is contractive (non-czpansive) on C in argument i iff
(i) f preserves totality.

(1) The curried function f; defined by

Axp N [Xp, e Xy Xpps oXp) - (X g,00%p)

is contractive (non-expansive) on C. )

Lemma An n-ary function is contractive (non-expansive) in
each argument i iff the corresponding unary function is contrac-
tive.

Proof An immediate consequence of the definitions of the
Cartesian and function domain rank functions and the rank
metric. O

Definitlon Let <D,r> be a ranked domain, and let
<Typep ,t> be the ranked domain of types determined by

<D,r>. A continuous function {:TypepMm—Typep? is ideal-
contractive (inlerval-conliractive) iffi f is contractive on Idip™
(Typep™) .

Lemma If a function f is interval-contractive, then it is ideal-
contractive.

Proof An immediate consequence of the definitions. O
Theorem Let <D,r> be a ranked domain and let £ be a
system of type equations over D. If the function o determined by

L is interval-contractive, then ¥ has a unique solution which mus!
be total.

Proof By the Banach fixed-point theorem |Bana22|, ¢ has a
unique ideal solution and a unique interval solution. Since every
ideal solution is an interval solution, the two must coincide. []

Definitlon Let D be a subspace over a universal domain U
determined by a domain equation ¥ and let o denote the function
mapping subspaces to subspaces determined by L. The construc-
tive rank r of a finite element d€D is the least k such that ok(i)(d)
= d. The constructive metric on Typey, is the rank metric deter-
mined by the constructive rank function r.

Although there are many type constructors that are not con-
tractive or non-expansive on intervals under any metric, the basic
type operations { D, X, +,U, N, V,3, # } on a standard domain D
are very well-behaved in this regard.

Definitlon A standard ranked domain <D,r> is a standard
domain D together with the constructive rank function r deter-
mined by the domain equation defining D.

Theorem In the domain of types determined by a standard
ranked domain <D,r>, the type constructors {2, X, +} are
interval-contractive. Similarly, the type constructors {U, N} are
non-expansive on intervals. The higher order operations 3%, Vn}
preserve the contractiveness (non-expansiveness) of a function
{:Typep®—Typep in each argument position 1 < i < n. Simi-
larly, if f is contractive in its first m arguments, then the fixed
point operator pp, preserves the contractiveness (non-
expansiveness) of f in each argument position i > m.

The definition of formal contractiveness of type expressions
presented in [MacQ84a) is based directly on the precise analog (for
ideals) of preceding theorem and the obvious properties of
contractive/non-expansive functions under composition and
tupling. With the exception of a simple extension to accommodate
the mutually recursive fixed-point operator pp,,, the definition for
the theory of intervals is identical to that presented in [MacQ84a|.
Consequently, the following theorem holds.

Theorem If a type expression 7 with free variables t,, ..., t,
is formally contractive in the variable t;, then the function X [t,,
.y ty] . 7 is interval-contractive in its ith argument.
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Definition A system of type equations { t==r, ..., tp=7p }
is formally contractive iff each expression 7y, ,.., 7y is formally
contractive in each of the variables ty,...,t ;.

Since all of the operations in formally contractive type expres-
sions are computable over the domain of intervals, the following
corrollary is an immediate consequence of the definition of formal
contractiveness and the fact that an interval-contractive system
has a unique solution.

Clalm If £ is a formally contractive system of type equations,
then the ideal solution is computable.

Proof By the preceding theorem, the ideal solution must be
the least interval solution, which is obviously computable.

5. Generalizing the Formal Theory

In Section 4, we focused our attention on showing that all of
the basic interval type operations are computable and tha the for-
mulation of types as intervals subsumes the formulation of types
as ideals. Now we briefly shift our attention to discussing con-
structions within the theory of types as intervals that have no ana-
log (to the author's knowledge) within the theory of types as
ideals.

The primary advantage of formalizing types as intervals is that
it supports a richer class of type definitions and type operations
including programmer defined type constructors and extended
forms of quantification—all of which are computable. Since inter-
val types are ordinary data values and all the basic operations on
intervals are computable, a system of type equations is simply a
stylized form of higher order recursive program. In this frame-
work, there is no reason to limit the objects defined by a system of
type equations to just types; the type system accommodate the
definition of arbitrary computable objects and operations which
may be useful in declaring the types of program operations.

Two important illustrations of this extra power—programmer
defined type constructors and generalized quantification— were
discussed briefly in Section 3.4. Only two minor extensions to the
formal theory are required to justify these generalizations.

First, the domain of interval types Typep must be included as

one of the disjoint components in the equation defining the domain
D. This extension makes types part of the domain of values D
that the programmer can access within programs. It also makes
the ideal of types [Typep ,Typep]| into a type that can be mani-

pulated in type definitions and programs. Since the interval type
constructor is a very simple function, none of the properties of the
domain (such as total-effectniveness) are compromised by its addi-
tion.

Second, the formal definition of type quantification must be
generalized to accommodate quantication over the total elements

t! (relative to the domain D) of any total type {t,t] where tt is
Lawson-compact. This extension provides a formal foundation for
generalized quantifiers (that take any Lawson-compact type as a
parameter specifying the quantification set) discussed in Section
3.4. Since it is decidable for any computable total type [tt]
whether an arbitrary finite element e belongs to t, an essentially
identical witness-tree construction works in the general case. The
only difference is that the decision procedure for determining the
total-consistency of paths uses the negative information embedded
in the total type t as well as the information on the path to deter-
mine whether or not the path is consistent. This strategy reduces
the total-consistency of finite paths over the type t to the total-
consistency of finite paths in the parent domain D.

Although a systematic classification of the closure properties of
various type constructors with respect to Lawson-compactness is
an open research problem, it is easy to show that all total subtypes
of any type that is freely generated by non-strict constructors is
Lawson-compact. Moreover, it is clearly possible to write a higher
order program that implements the required construction. If a
programmer applies this program to a type that is not Lawson-
compact, the function will still produce a well-defined result



(possibly divergence); it simply does not match the infinitary
definition of quantification.

8. Directions for Future Research

Although the theory of types as intervals is mathematically
elegant and theoretically instructive, its value as the basis for a
practical type system has not yet been demonstrated. For this
reason, a research group at Rice is designing a new version of the
executable specification language TTL [Cart80] to support interval
types. The next stage in the research project will be study the
problem of type inference much more carefully and build a heuris-
tic type checking system for the new version of TTL.
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