
Comp 311: Sample Exam II

November 24, 2008

Name:

Id #:

Instructions

1. The examination is closed book. The type checking rules for (Implicitly)
Polymorphic Jam are given on the first three pages of the exam as a
reference.

2. Fill in the information above and the pledge below.

3. There are 7 problems on the exam worth a total of 110 points.

4. You have four hours to complete the exam. You must take the exam
during a continuous four hour block plus an optional 10 minute break. Do
not discuss the contents of the exam with anyone other than the instructor
and teaching assistants between now and the due date for the exam.

Pledge:

1

Synopsis of Implicitly Polymorphic Jam

The syntax of (Implicitly) Polymorphic Jam is a restriction of the syntax of
untyped Jam. Every legal Polymorphic Jam program is also a legal untyped
Jam Program. But the converse is false, because there may not be a valid typing
for a given untyped Jam program.

Abstract Syntax

The following grammar describes the abstract syntax of Polymorphic Jam. Each
clause in the grammar corresponds directly to a node in the abstract syntax
tree. The let construction has been limited to a single binding for the sake
of notational simplicity. It is straightforward to generalize the rule to multiple
bindings (with mutual recursion). Note that let is recursive.

M ::= M (M · · ·M) | P (M · · ·M) | if M then M else M | let x := M in M
| V
V ::= map x · · ·x to M | x | n | true | false | null

n ::= 1 | 2 | . . .
P ::= cons | first | rest | null? | cons? | + | - | / | * | = | < |
<= | <- | + | - | ~ | ref | !

x ::= variable names

In the preceding grammar, unary and binary operators are treated exactly
like primitive functions.

Monomorphic types in the language are defined by τ , below. Polymorphic
types are defined by σ. The → corresponds to a function type, whose inputs
are to the left of the arrow and whose output is to the right of the arrow.

σ ::= ∀α1 · · ·αn. τ
τ ::= int | bool | unit | τ1 × · · · × τn → τ | α | list τ | ref τ
α ::= type variable names

Type Checking Rules

In the following rules, the notation Γ[x1 : τ1, . . . , xn : τn] means the Γ ∪
{x1 : τ1, . . . , xn : τn}.

Γ ` true : bool Γ ` false : bool Γ ` n : int

Γ[x1 : τ1, . . . , xn : τn] `M : τ
Γ ` map x1 . . . xn to M : τ1 × · · · × τn → τ

[abs]

Γ `M : τ1 × · · · × τn → τ Γ `M1 : τ1 · · · Γ `Mn : τn
Γ `M (M1 · · ·Mn) : τ

[app]

2

Γ `M1 : bool Γ `M2 : τ Γ `M3 : τ
Γ ` if M1 then M2 else M3 : τ

[if]

Note that there are two rules for let expressions. The [letmono] rule corre-
sponds to the let rule of Typed Jam; it places no restriction on the form of the
right-hand side M1 of the let binding. The [letpoly] rule generalizes the free
type variables (not occurring in the type environment Γ) in the type inferred
for the right-hand-side of a let binding – provided that the right-hand-side M1

is a syntactic value: a polymorphic constant like null, a map expression, or a
variable. Syntactic values are expressions whose evaluation is trivial, excluding
evaluations that allocate storage.

Γ[x : τ] ` x : τ
Γ[x : τ ′] `M1 : τ ′ Γ[x : τ ′] `M2 : τ

Γ ` let x := M1; in M2 : τ
[letmono]

Γ[x : τ ′] ` V : τ ′ Γ[x : CLOSE(τ ′,Γ)] `M : τ
Γ ` let x := V ; in M : τ

[letpoly]

Γ[x : ∀α1, . . . , αn. τ] ` x : OPEN(∀α1, . . . , αn. τ, τ1, . . . , τn)

The functions OPEN and CLOSE are the keys to polymorphism. Here is
how CLOSE is defined:

CLOSE(τ,Γ) := ∀{FTV(τ)− FTV(Γ)}. τ

where FTV(α) means the “free type variables in the expression (or type envi-
ronment) α”.

When closing over a type, you must find all of the free variables in τ that are
not free in any of the types in the environment Γ. Then, build a polymorphic
type by quantifying τ over all of those type variables.

To open a polymorphic type

∀α1, . . . , αn. τ,

substitute the chosen type terms τ1, . . . , τn for the quantified type variables
α1, . . . , αn:

OPEN(∀α1, . . . , αn. τ, τ1, . . . , τn) = τ[α1:=τ1,...,αn:=τn]

which creates a monomorphic type from a polymorphic type. For example,

OPEN(∀α. α→ α, τ) = τ → τ

3

Types of Primitives

The following table gives types for all of the primitive functions and operators
and the polymorphic constant null. Programs are type checked starting with
a primitive type environment consisting of this table.

null ∀α. list α
cons ∀α. α× list α→ list α
first ∀α. list α→ α
rest ∀α. list α→ list α
cons? ∀α. list α→ bool
null? ∀α. list α→ bool

= ∀α. α× α→ bool

+ int× int→ int
- int× int→ int
* int× int→ int
/ int× int→ int

< int× int→ bool
<= int× int→ bool

(unary) - int→ int
(unary) + int→ int
(unary) ˜ bool→ bool

<- ∀α. ref α× α→ unit
ref ∀α. α→ ref α
! ∀α. ref α→ α

Typed Jam

The Typed Jam language used in Assignment 5 (absent the explicit type infor-
mation embedded in program text) can be formalized as a subset of Polymorphic
Jam. For the purposes of this test, Typed Jam is simply Polymorphic Jam less
the letpoly inference rule which prevents it from inferring polymorphic types
for program-defined functions.

4

Problem 1. [15 points]

(i) [5 points] Give a simple example of an untyped Jam expression (which is
not a value) that is not typable in Polymorphic Jam, yet does not generate a
run-time error when executed. Briefly but convincingly explain why.

The program (map x to x(x)) (map x to x(x)), commonly called Omega,
is not typable in Polymorphic Jam yet does not generate a run-time error.
It is not typable because the body of the function (map x to x(x)) con-
tains the self-application x(x) which is not typable. x(x) is not typable
because x has a function type α → β with an input type α that equals
the function type α → β. But these two type are not unifiable because
α→ β contains α. Circular bindings of type variables are not allowed in
Polymorphic Jam.

The program does not generate a run-time error because (map x to x(x))

(map x to x(x)) is not a value but directly (“in one step”) reduces to
itself generating a divergent computation.

(ii) [5 points] Give a simple example of an untyped Jam expression that is
not typable in Typed Jam, but is typable in Polymorphic Jam. Briefly but
convincingly explain why.

The program let id = map x to x; in (id(id))(17) is typable in Poly-
morphic Jam but not in Typed Jam because the id function is polymor-
phic. It is used with two different typings in the body of the let. Tbe
inner occurrence of id has type int → int while the outer occurrence
has type (int → int) → (int → int).

(iii) [5 points] Assume that we extend Polymorphic Jam by dropping the
“value restriction” on the right hand side of bindings in letpoly rule and add
the block construct (definable as an expansion into map application) and the
corresponding typing rule. Give a simple example of a program that is typable in
extended Polymorphic Jam but generates a run-time type error (misinterpreting
one type of data as another) when it is executed.

let fn := ref(map x to x);

in {

fn <- map x to x+1;

(!fn)(true);

}

The preceding program uses fn polymorphically: once as type ref(int →
int)), so the assigment to fn is type correct, and once as type ref(bool

→ bool, so the application of !fn to true is type correct. But the assign-
ment places a function of type int → int in the cell fn, which fails when
it is applied to true because !fn tries to add 1 to its argument x.

There are no polymorphic values in Polymorphic Jam (or in ML/OCaml
for that matter) only amibiguous ones (like null and map x to x) with
types that are determined by context.

5

Problem 2. [30 points]

(i) [15 points] Is the following Typed Jam program typable? Justify your
answer either by giving a proof tree (constructed using the inference rules given
at the beginning of the exam) or by showing a conflict in the type constraints
generated by matching the inference rules against the program text.

let foldr := map f,e,l to
if null?(l) then e
else f(first(l), foldr(f, e, rest(l)));

in foldr(cons, null, cons(foldr(map x,y to x+y, 0, cons(1,null)), null))

No. It is not typable. The function bound to foldr has type (α × β →
β)× β × α− list→ β but the type variables α and β are not generalized
in Typed Jam because Typed Jam does not support parametric poly-
morphism (and the type schemes [polymorphic types] required to type
polymorphic expressions). In the body of the let, foldr is used with
two different typings: (int×int→int)×int×int-list → int in the
inner application and (int×int-list→int-list)×int-list×int-list
→ int-list in the outer one.

In untyped Jam, the preceding program evaluates to the list (1) .

6

(ii) [15 points] Is the same program

let foldr := map f,e,l to
if null?(l) then e
else f(first(l), foldr(f, e, rest(l)));

in foldr(cons, null, cons(foldr(map x,y to x+y, 0, cons(1,null)), null))

typable in Polymorphic Jam? Justify your answer in same way as in part (i).

Yes. The detailed proof derivation is elided, but the subproof generating
a type for the right-hand-side of the foldr binding generates the type
(α × β → β) × β × α − list → β where α and β are fresh type variables
(not in Γ for the typing of the entire program). In the subproof assigning
a type to the body of the let, foldr has the polymorphic type (a type
scheme) ∀α, β[(α × β → β) × β × α − list → β] which enables foldr to
have the two distinct typings described in the solution to part (i).

7

Problem 3. [25 points]
Convert the following untyped Jam program to CPS. Use the identity func-

tion as your top level continuation and do not CPS either nested lets or applica-
tions of primitive operations (primitive functions or operators). Note that let
is recursive.

let foldr := map f,e,l to
if null?(l) then e
else f(first(l), foldr(f, e, rest(l)));

in foldr(map x,y to x+y, 0, cons(1,null))

Your CPS translation simply has to put all calls on program defined functions
in tail position.

let foldrK := map fK,m,l,k to

if null?(l) then k(e)

else foldrK(f, e, rest(l), map v to fK(first(l), v, k));

in foldrK(map x,y,k to k(x+y), 0, cons(1,null), map v to v)

8

Problem 4. [10 points]
Convert the program

let foldr := map f,e,l to
if null?(l) then e
else f(first(l), foldr(f, e, rest(l)));

in foldr(map x,y to x+y, 0, cons(1,null))

from the preceding problem (before CPS conversion!) to use static distance
coordinates instead of symbolic variable references. Recall that static distance
coordinates are pairs of natural numbers.

let [*1*] map [*3*] to

if null?(0:2) then 0:1

else (0:0)(first(0:2), (1:0)(0:0, 0:1, rest(0:2)));

in (0:0)(map [*2*] to (0:0)+(0:1), 0, cons(1,null))

9

