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Key Intuitions of Domain Theory

• Computation is incremental not monolithic

• Slogan: general computation is successive

approximationtypically in response to
successive demand for more information from

the context that is applying the function).

In simple computations, only the standard

output stream is repeatedly demanded until

EOF (end-of-file) datum is encountered.  Think

Of a function that returns the infinite stream of

primes in ascending order.



Key Mathematical Concepts
• A partial order (po) is a set S with a reflexive, transitive, anti-

symmetric binary relation  See Wikipedia for a complete definition.

• A chain in a po is a countable totally ordered set c0 ⊑ c1 ⊑ c2 … ⊑ ck

⊑ … .  See Wikipedia for the definition of a countable set, which may 

be empty.

• A po is chain-complete iff every chain has a least upper bound (LUB) 

in the po.  Such a partial order is called a complete partial order (cpo). 

Since a chain can be empty,  every cpo must have a least element, 

which we denote by the symbol ⊥, called “bottom”. In the domain 

theory monograph, directed sets are used instead of  chains; it is easy 

to prove the two notions are equivalent for domains with a countable 

basis (defined below).  We are only interested in cpos with countable 

bases (because we are computer scientists!).

• A subset S within a po is consistent iff it has an upper bound in the po.

• A po is finitely consistent if every finite subset has a LUB.

• A finitary basis is a countable po in which every finite consistent set 

has a LUB.  



Mathematical Details

• Given a finitary basis B, the (Scott) domain determined by B is the 

cpo created by adding LUBs for infinite chains in B.  The elements 

of B are called the finite elements of this domain.  The monograph 

contains an explicit construction of this domain using ideals.  The 

intuition is simple: the generated domain simply adds an element 

for each infinite chain of finite elements that is only above all 

elements in the downward closure of the chain.  Note that several 

different chains may have the same LUB.

• Given any subset S of a domain D,  the downward closure S↓ of S 

is the set of all elements of D less than some element of S.  Two 

chains are equivalent if their downward closures are identical.

• The topologically finite elements of the cpo determined by B are 

precisely the elements of B.  (Don’t worry about the definition of 

topologically finite; it is defined in the monograph.  It is 

comparatively unimportant since we will always construct domains 

using a finitary basis.)



More Mathematical Details

• All (incrementally) computable functions f mapping domain A into 

domain B are:

• monotonic: x ⊑ y ⇒ f(x) ⊑ f(y)       [information preserving]

• continuous: given a chain C = {ci | i ∈ N}, f(⊔C) = ⊔ {f(c) | c ∈ C }

• All computable functions are continuous, but the converse is false.  A 

continuous function may not be computable as shown on the next slide.

• A function f mapping domain A into domain B is strict iff f maps ⊥ to ⊥. 

A function f  mapping A1×…×A n into B is strict iff f (x1,…, xn) = ⊥ when 

any input is ⊥.

• In practical programming languages, all primitive and library functions f

are strict with the exception of control operators like

if-then-else, and, and or which are typically not classified as primitive 

functions [values, constant expressions].  (In the preceding statement, the 

set of “practical programming languages” excludes Haskell.



More Mathematical Details
• Excluding function domains, the data domains supported by most programming 

languages are flat: every element d ∈ D except ⊥ is finite and maximal.  Some

examples include integers, booleans, strings, structures, arrays of structures, etc.

• All conventional data values including finite trees, lists, and tables are flat because 

every conventional data constructor is strict; no embedded elements can be ⊥.

• Consider some unary total function g on the natural numbers that is not recursive 

(computable).  In domain theory, there is a simple function corresponding to g

over the flat domain of natural numbers called the natural extension of g where 

g(⊥) = ⊥.  This function is monotonic and continuous but it is not computable. 

• In languages supporting the lazy construction of objects (structures), the data 

domains corresponding to lazy constructions are not flat, because each lazy 

argument (subtree) in a construction can be an element of the domain designated 

for that argument including ⊥.  If the argument can be a tree, then infinite trees can 

be constructed.  Function domains are obviously not flat.

• Lemma: the only non-strict functions mapping flat domain A into flat domain B
are constant. 



More Mathematical Details cont.
• Excluding function domains, the data domains D supported by most 

programming languages are flat: every element d ∈ D except ⊥ is finite and 

maximal.  Some examples include integers, booleans, strings, structures, 

arrays of structures, etc.  All conventional data values including finite trees, 

lists, and tables are flat because every conventional data constructor is strict;

no embedded elements can be ⊥.  If data structures can contain ⊥
(unevaluated elements), then D contains non-trivial chains.

• Non-trivial function domains A → B (where A and B are domains, A > 1 and 

B > 0) obviously are not flat since approximation is defined point-wise on 

functions and functions can diverge or converge on particular inputs.

• Consider some unary total function g on the natural numbers that is not

recursive (computable).  In domain theory, there is a simple function

corresponding to g over the flat domain of natural numbers called the natural

extension g' of g where g'(⊥) = ⊥.  This function is monotonic and continuous

but it is not computable. 

• In languages supporting the lazy construction of objects (structures), the data 

domains with lazy constructors are not flat, because lazy arguments can be ⊥..  

If the lazy argument has recursive type including a lazy constructor, then 

infinite trees can be constructed.  



Lazy Binary Trees: a Domain with Infinite Elements

The domain BTT of lazy binary trees with leaf type T has only binary constructor  that we 

will denote < ·,·> (sometimes called cons) and a set of leaf elements T.  Structurally typed 

languages like the ML family require leaf values to be wrapped in a unary constructor 

[sometimes called leaf] which avoids pathologies in domains like BTBTT.  (Is a subtree a 

leaf or a branch?) For  the sake of simplicity, we will use the Boolean domain B (a flat domain) 

as our leaf type and dispense with the separate leaf constructor.

Like all Scott-domains, the domain of lazy binary trees BTB has a least element ⊥
corresponding to divergence. It also contains all of the elements of B as raw leaves.

The simplest element of BTB that is not a leaf or ⊥ is <⊥, ⊥>, although <⊥,true>, 

<⊥,false>, <true,⊥>, <false,⊥>, <true,true>, <true,false>, <false,true>, and 

<false,false> are contenders for that designation.

The approximation ordering on BTB is defined as follows. 

• ⊥ ⊑ x, for all xBTB.

• <x,y> ⊑ <x′,y′>  iff x ⊑ x′ and y ⊑ y′.

Since ⊥ can be embedded anywhere inside an element of BTB, elements of BTB can be 

infinite trees (LUBs of infinite ascending chains of finite trees).  There are an uncountably

many elements of BTB but only countably many are computable (Why?).  The real numbers 

have exactly the same property.  (The floating point numbers are not the reals.  All conventional 

floating point number systems are finite subsets of the rational numbers!)  The computable real 

numbers are called the constructive reals.



Some Domain Examples
• Flat domains like N, Z, arrays of flat domains.

• Strict function spaces (A⇀ B) on flat domains A and B.  Call-by-value evaluation of 

function arguments forces strictness.  Note: the notation ⇀ is non-standard.  

Unfortunately, no standard notation for the strict function space construction has yet 

developed

• Strict function spaces (A⇀ B) mapping a domain A into domain B.

• Non-strict function spaces (call-by-name!) D→ D and (D→ D)⊥.

The non-strict functions in Jam (if we stipulate call-by-name) do not form the 

simple space D→ D, but rather (D→ D)⊥ which adds a distinct ⊥ element that is not 

a function!  The reduction semantics required to support D→ D is wasteful because 

evaluating such a function must separate those that are not ⊥ somewhere from those 

that are ⊥ everywhere.  The evaluation of the latter obviously never terminates.

• Lazy binary trees of booleans

• Lazy abstract syntax trees (infinite programs!)

• Continuous functions from domain A into domain B, denoted A → B

• What if domain A+ contains A and domain B contains B- ?

• What is relationship between A → B and A+ → B- ? The latter is a subset of the 

former.

• The continuous function domain constructor → is co-variant in its second 

argument (the co-domain) and contra-variant in its first argument (the domain).



A Bigger Challenge

• In an earlier lecture, we posed and solved the minor challenge of how to 

modify our meta-interpreter to support the recursive generalization of 

let, which is particularly interesting if we only consider purely 

functional meta-interpreters.

• Lets reconsider that problem but impose more restrictions on how we are 

allowed to solve it. Assume that we want to write an interpreter for an 

extension of LC (or Jam as in Assignment 2) that includes recursive 

binding (e.g., letrec) that simply expands the input program into an 

equivalent program that eliminates all uses of letrec. We are not 

allowed to modify our interpreter for the original (unextended) language 

to support recursive binding construct (say functional Scheme without 

define and letrec)?  

• Key problem: we must expand code with letrec as a binding construct 

into equivalent code that only has lambda available as a binding 

construct.  

• No simple solution to this problem.   We ultimately must rely on the 

syntactic magic of the Y combinator (invented  by the creators of the -

calculus)  which can be explained by the sophisticated mathematical 

machinery [pioneered by Dana Scott] sketched in this lecture.  This 

theory was developed much later than the  -calculus [1970].


