Comp 411

Principles of Programming Languages
Lecture 11
The Semantics of Recursion ||

Corky Cartwright
February 3, 2023

Recursive Definitions

Gliven a Scott-domain D, we can write equations of the
form:

f = E; [Note: F(XyyenurX,) = Me & F = A XppenusX, - M

where E. IS an expression constructed from constants in
D, operations (continuous functions) on D, and variables.

Example: let D be the domain of Jam values. Then

fact = map n to if n = @ then 1 else n * fact(n - 1)
IS such an equation.

Equations of this form are called recursive definitions.

Solutions to Recursion Equations

« Gilven a recursion equation:
f = E;
what is a solution? All of the constants and operations in E. are
known except £ and all variables other than f are explicit

parameters that have values (or potential values in the case of call-
by-name provided as inputs). All functions in E, are continuous.

« A solution to this equation is any continuous function f such that
f = E,, or alternatively is a fixed point of the function(al) Af.E..

 But there may be more than one solution. We want to select the
best solution £*. Note that £* is an element of whatever domain
D* corresponds to the type of E.. Inthe most common case, it Is
D—D,butitcanbeD,D—D,...,D"—D,.... The best
solution £* (which always exists and Is unique and computable for
a any domain in D¥*) is the least solution under the approximation
ordering in D*.

Constructing the Least Solution

How do we know that any solution exists to the equation ¥ = E.? We will
construct the least solution and prove it is a solution!

Since the domain D* for f Is a Scott-Domain, this domain has a least element
L« that approximates every solution to the equation.

Now form the function F: D* — D* defined by F(f) = E., or equivalently,

F = Af.E; where Af.E, is monotonic and continuous (by a lemma we
skipped). Note that for a recursive definition of a function, F is a functional.

Consider the sequence S: Ly«, F(Lp«), F(F(Lps)), ..., FX(Lps),
Claim: S is an ascending chain (chain for short) in D* — D*,

Proof. L, < F(Ll,.) by the definitionof L1,. If M < N then F(M) < F(N)
by monotonicity. Hence, F¥(L1,)< F(Fk(Ll,)) by inductionon k. Q.E.D.

Claim: s has a least upper bound f*.
Proof. Trivial. s is a chain in b* and hence must have a least upper bound

because D* iIs a Scott-Domain. If D* is a function domain, then £* is continuous
by definition.

Proving £* Is a fixed point of F°

Must show: F(f*) = f* where F = Af.E;

Claim: By definition f* = U F<(L,,) Since F is continuous
F(F*) = F(UF*(L,.)) = uFi(Ll,,) = uF(L)
= f*.
Note: The second step above relies on the continuity of F and the
third depends on the fact that FO(L,,) = Ll,. < F(L..).

Q.E.D.

Example

ook at factorial in detail by running the DrRacket
stepper or conceptualizing strict continuous
functions mapping IN into N where Is the domain
natural numbers including L, which can be
represented as graphs (sets of pairs) over N-{1}.
The same observation applies to the domain of Jam
values which includes N as a subdomain.

How Can We Compute f* Given F?

Need to construct F*(L) from F. Can we write code for a
function Y suchthat Y(F) = £* = F~*(l).

ldea: use syntactic trick well known in the A-calculus to build a
potentially infinite stack of Fs, based on an understanding of how

evaluation of Q= (Ax.(x x)) (Ax.(x x)) works.
Preliminary attempt: Y(F) = (Ax. F(x x)) (Ax. F(x x))
Reduces to (in one step) to: F((Ax. F(x x)) (Ax. F(x x)))
Reduces to (in k steps) to: F*((Ax. F(x x)) (Ax. F(x x)))

How does the Code for Y Work?

In Haskell (or other language with call-by-name)
Y = AF. (Ax. F(x x)) (Ax. F(x x))

Hence, Y(FACT)

= (AX.FACT(x x))(AX.FACT(x x))

= FACT((AX.FACT(x x))(AX.FACT(x x)))

= An. if n=0 then 1 , only valid in Call-By-Name!
else n*((Ax.FACT(x x))(Ax.FACT(x x)))(n-1)

implying Y(FACT) reduces to a value!

Does this work for Scheme (or Java with an appropriate encoding of
functions as anonymous inner classes)? No! Why not? What about
divergence? Y(FACT)

= (AX.FACT(x x))(Ax.FACT(x x))
= FACT((AX.FACT(x x))(AX.FACT(x x)))
= FACT(FACT(...)) diverging like Q) but growing with each reduction

Why Does Call-by-name Y Work?

By assumption the functional G corresponding to a recursive function
definition must have the form Af. An. M. Hence,

(AF.((Ax.F(x x)) (Ax.F(x x)))) G
=G ((AX.G(x x)) (Ax.G(x x)))
= (Af.An.M) ((Ax. G(x x)) (Ax.G(x x)))

= An.Mie © . 6ix X)) (Ax.6(x X))]

which is a value. If the evaluation of M does not require evaluating an
occurrence of £, then (Ax. G(x x)) (Ax.G(x x)) Is not evaluated.
Otherwise, the binding of x Is unwound only as many times as required
to get to the base case in the definition f = An.M.

Exercise: How can we workaround this problem to create a version of
the v operator that works for call-by-value Scheme and Jam?

Why Does Call-by-name Y Work?

By assumption the functional G corresponding to a recursive
function definition must have the form Af. An. M. Hence,

(AF. ((Ax.F(x x)) (Ax.F(x x))))G
= G ((AX.G(x x)) (Ax.G(x x)))
= (AMf.An.M) ((Ax.G(x x)) (Ax.G(x x)))

=)\n'M[‘F <« (Ax.G(x x)) (Ax.G(x x))]
which is a value. If the evaluation of M does not require
evaluating an occurrence of f, then (Ax.G(x x)) (Ax.G(x x))

IS not evaluated. Otherwise, the binding of x is unwound only as
many times as required to get to the base case in the definition f

= An.M. But each unwinding requires a few reduction steps, so

this definition is a poor way to implement recursion!

Exercise: how can we workaround this problem to create a version
of the Y operator that works for call-by-value Scheme and Jam?

@ YUY N P B [TR

