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Recursive Definitions
Given a Scott-domain D, we can write equations of the 

form:

f = Ef [Note: f(x1,...,xn) = Mf ⇔ f = λ x1,...,xn . Mf]

where Ef is an expression constructed from constants in 

D, operations (continuous functions) on D, and variables.

Example: let D be the domain of Jam values. Then

fact = map n to if n = 0 then 1 else n * fact(n - 1)

is such an equation.

Equations of this form are called recursive definitions.

.



Solutions to Recursion Equations
• Given a recursion equation:

f = Ef
what is a solution?  All of the constants and operations in Ef are 

known except f and all variables other than f are explicit 

parameters that have values (or potential values in the case of call-

by-name provided as inputs).  All functions in Ef are continuous.

• A solution to this equation is any continuous function f such that 

f = Ef, or alternatively is a fixed point of the function(al) λf.Ef.

• But there may be more than one solution.  We want to select the 

best solution f*.   Note that f* is an element of whatever domain  

D* corresponds to the type of  Ef.   In the most common case, it is 

D → D, but it can be D, D → D, . . . , Dk → D, . . . .  The best 

solution f* (which always exists and is unique and computable for 

a any domain in D*) is the least solution under the approximation 

ordering in D*.   



Constructing the Least Solution

How do we know that any solution exists to the equation f = Ef? We will 
construct the least solution and prove it is a solution!

Since the domain  D* for  f is a Scott-Domain, this domain has a least element

⊥D* that approximates every solution to the equation.

Now form the function  F: D* D* defined by F(f) = Ef, or equivalently,

F = λf.Ef where λf.Ef is monotonic and continuous (by a lemma we 
skipped).  Note that for a recursive definition of a function, F is a functional.

Consider the sequence S: ⊥D*, F(⊥D*), F(F(⊥D*)), ..., Fk(⊥D*), ...

Claim: S is an ascending chain (chain for short) in D* D*.

Proof.  ⊥D ≤ F(⊥D*) by the definition of ⊥D.  If  M ≤ N then  F(M) ≤ F(N) 

by monotonicity.  Hence, Fk(⊥D)≤ F(Fk(⊥D)) by induction on k.   Q.E.D.

Claim: S has a least upper bound f*.

Proof.  Trivial. S is a chain in D* and hence must have a least upper bound

because D* is a Scott-Domain.  If D* is a function domain, then f* is continuous

by definition.

,



Proving f* is a fixed point of F

Must show:  F(f*) = f*  where  F = λf.Ef

Claim:  By definition  f* = ⊔ F
k
(⊥D*) Since F is continuous

F(f*) = F(⊔ F
k
(⊥D*)) = ⊔ F

k+1
(⊥D*) = ⊔ F

k
(⊥D*)

= f* .

Note:  The second step above relies on the continuity of  F and the 

third depends on the fact that F0(⊥D*) = ⊥D* ≤  F( ⊥D*).

Q.E.D.

.    



Example

Look at factorial in detail by running the DrRacket

stepper or conceptualizing strict continuous 

functions mapping N into N where is the domain 

natural numbers including ⊥, which can be 

represented as graphs (sets of pairs) over N-{⊥}.

The same observation applies to the domain of Jam

values which includes N as a subdomain.



How Can We Compute f* Given F?

• Need to construct F∞(⊥) from F. Can we write code for a 

function Y such that Y(F) = f* = F∞(⊥).

• Idea: use syntactic trick well known in the λ-calculus to build a 

potentially infinite stack of Fs,  based on an understanding of how 

evaluation of   = (λx.(x x)) (λx.(x x)) works.

• Preliminary attempt: Y(F) = (λx. F(x x)) (λx. F(x x))

• Reduces to (in one step) to:  F((λx. F(x x)) (λx. F(x x)))

• Reduces to (in k steps) to:  Fk((λx. F(x x)) (λx. F(x x)))



How does the Code for Y Work?
In Haskell (or other language with call-by-name)

Y = λF. (λx. F(x x)) (λx. F(x x))

Hence,  Y(FACT) 

= (λx.FACT(x x))(λx.FACT(x x))
= FACT((λx.FACT(x x))(λx.FACT(x x)))
= λn. if n=0 then 1     ; only valid in Call-By-Name!

else n*((λx.FACT(x x))(λx.FACT(x x)))(n-1)
implying Y(FACT) reduces to a value!

Does this work for Scheme (or Java with an appropriate encoding of 

functions as anonymous inner classes)?   No!  Why not?  What about 

divergence?  Y(FACT)

= (λx.FACT(x x))(λx.FACT(x x))
= FACT((λx.FACT(x x))(λx.FACT(x x)))
= FACT(FACT(...)) diverging like ) but growing with each reduction



Why Does Call-by-name Y Work?

By assumption the functional G corresponding to a recursive function 

definition must have the form λf. λn. M.  Hence,

(λF.((λx.F(x x)) (λx.F(x x)))) G

= G ((λx.G(x x)) (λx.G(x x)))

= (λf.λn.M) ((λx. G(x x)) (λx.G(x x)))

= λn.M[f ← (λx. G(x x)) (λx.G(x x))]

which is a value.  If the evaluation of  M does not require evaluating an 

occurrence of f, then (λx. G(x x)) (λx.G(x x)) is not evaluated.  

Otherwise, the binding of x is unwound only as many times as required 

to get to the base case in the definition f = λn.M.

Exercise: How can we workaround this problem to create a version of 

the Y operator that works for call-by-value Scheme and Jam?  



Why Does Call-by-name Y Work?
By assumption the functional G corresponding to a recursive 

function definition must have the form λf. λn. M.  Hence,

(λF.((λx.F(x x)) (λx.F(x x)))) G

= G ((λx.G(x x)) (λx.G(x x)))

= (λf.λn.M) ((λx.G(x x)) (λx.G(x x)))

= λn.M[f ← (λx.G(x x)) (λx.G(x x))]

which is a value.  If the evaluation of  M does not require 

evaluating an occurrence of f, then (λx.G(x x)) (λx.G(x x))

is not evaluated.  Otherwise, the binding of x is unwound only as 

many times as required to get to the base case in the definition f 
= λn.M. But each unwinding requires a few reduction steps, so 

this definition is a poor way to implement recursion!

Exercise: how can we workaround this problem to create a version 

of the Y operator that works for call-by-value Scheme and Jam?  

See the next lecture.


