
Comp 411

Principles of Programming Languages

Lecture 11

The Semantics of Recursion II

Corky Cartwright

February 3, 2023

Recursive Definitions
Given a Scott-domain D, we can write equations of the

form:

f = Ef [Note: f(x1,...,xn) = Mf ⇔ f = λ x1,...,xn . Mf]

where Ef is an expression constructed from constants in

D, operations (continuous functions) on D, and variables.

Example: let D be the domain of Jam values. Then

fact = map n to if n = 0 then 1 else n * fact(n - 1)

is such an equation.

Equations of this form are called recursive definitions.

.

Solutions to Recursion Equations
• Given a recursion equation:

f = Ef
what is a solution? All of the constants and operations in Ef are

known except f and all variables other than f are explicit

parameters that have values (or potential values in the case of call-

by-name provided as inputs). All functions in Ef are continuous.

• A solution to this equation is any continuous function f such that

f = Ef, or alternatively is a fixed point of the function(al) λf.Ef.

• But there may be more than one solution. We want to select the

best solution f*. Note that f* is an element of whatever domain

D* corresponds to the type of Ef. In the most common case, it is

D → D, but it can be D, D → D, . . . , Dk → D, The best

solution f* (which always exists and is unique and computable for

a any domain in D*) is the least solution under the approximation

ordering in D*.

Constructing the Least Solution

How do we know that any solution exists to the equation f = Ef? We will
construct the least solution and prove it is a solution!

Since the domain D* for f is a Scott-Domain, this domain has a least element

⊥D* that approximates every solution to the equation.

Now form the function F: D* D* defined by F(f) = Ef, or equivalently,

F = λf.Ef where λf.Ef is monotonic and continuous (by a lemma we
skipped). Note that for a recursive definition of a function, F is a functional.

Consider the sequence S: ⊥D*, F(⊥D*), F(F(⊥D*)), ..., Fk(⊥D*), ...

Claim: S is an ascending chain (chain for short) in D* D*.

Proof. ⊥D ≤ F(⊥D*) by the definition of ⊥D. If M ≤ N then F(M) ≤ F(N)

by monotonicity. Hence, Fk(⊥D)≤ F(Fk(⊥D)) by induction on k. Q.E.D.

Claim: S has a least upper bound f*.

Proof. Trivial. S is a chain in D* and hence must have a least upper bound

because D* is a Scott-Domain. If D* is a function domain, then f* is continuous

by definition.

,

Proving f* is a fixed point of F

Must show: F(f*) = f* where F = λf.Ef

Claim: By definition f* = ⊔ F
k
(⊥D*) Since F is continuous

F(f*) = F(⊔ F
k
(⊥D*)) = ⊔ F

k+1
(⊥D*) = ⊔ F

k
(⊥D*)

= f* .

Note: The second step above relies on the continuity of F and the

third depends on the fact that F0(⊥D*) = ⊥D* ≤ F(⊥D*).

Q.E.D.

.

Example

Look at factorial in detail by running the DrRacket

stepper or conceptualizing strict continuous

functions mapping N into N where is the domain

natural numbers including ⊥, which can be

represented as graphs (sets of pairs) over N-{⊥}.

The same observation applies to the domain of Jam

values which includes N as a subdomain.

How Can We Compute f* Given F?

• Need to construct F∞(⊥) from F. Can we write code for a

function Y such that Y(F) = f* = F∞(⊥).

• Idea: use syntactic trick well known in the λ-calculus to build a

potentially infinite stack of Fs, based on an understanding of how

evaluation of  = (λx.(x x)) (λx.(x x)) works.

• Preliminary attempt: Y(F) = (λx. F(x x)) (λx. F(x x))

• Reduces to (in one step) to: F((λx. F(x x)) (λx. F(x x)))

• Reduces to (in k steps) to: Fk((λx. F(x x)) (λx. F(x x)))

How does the Code for Y Work?
In Haskell (or other language with call-by-name)

Y = λF. (λx. F(x x)) (λx. F(x x))

Hence, Y(FACT)

= (λx.FACT(x x))(λx.FACT(x x))
= FACT((λx.FACT(x x))(λx.FACT(x x)))
= λn. if n=0 then 1 ; only valid in Call-By-Name!

else n*((λx.FACT(x x))(λx.FACT(x x)))(n-1)
implying Y(FACT) reduces to a value!

Does this work for Scheme (or Java with an appropriate encoding of

functions as anonymous inner classes)? No! Why not? What about

divergence? Y(FACT)

= (λx.FACT(x x))(λx.FACT(x x))
= FACT((λx.FACT(x x))(λx.FACT(x x)))
= FACT(FACT(...)) diverging like ) but growing with each reduction

Why Does Call-by-name Y Work?

By assumption the functional G corresponding to a recursive function

definition must have the form λf. λn. M. Hence,

(λF.((λx.F(x x)) (λx.F(x x)))) G

= G ((λx.G(x x)) (λx.G(x x)))

= (λf.λn.M) ((λx. G(x x)) (λx.G(x x)))

= λn.M[f ← (λx. G(x x)) (λx.G(x x))]

which is a value. If the evaluation of M does not require evaluating an

occurrence of f, then (λx. G(x x)) (λx.G(x x)) is not evaluated.

Otherwise, the binding of x is unwound only as many times as required

to get to the base case in the definition f = λn.M.

Exercise: How can we workaround this problem to create a version of

the Y operator that works for call-by-value Scheme and Jam?

Why Does Call-by-name Y Work?
By assumption the functional G corresponding to a recursive

function definition must have the form λf. λn. M. Hence,

(λF.((λx.F(x x)) (λx.F(x x)))) G

= G ((λx.G(x x)) (λx.G(x x)))

= (λf.λn.M) ((λx.G(x x)) (λx.G(x x)))

= λn.M[f ← (λx.G(x x)) (λx.G(x x))]

which is a value. If the evaluation of M does not require

evaluating an occurrence of f, then (λx.G(x x)) (λx.G(x x))

is not evaluated. Otherwise, the binding of x is unwound only as

many times as required to get to the base case in the definition f
= λn.M. But each unwinding requires a few reduction steps, so

this definition is a poor way to implement recursion!

Exercise: how can we workaround this problem to create a version

of the Y operator that works for call-by-value Scheme and Jam?

See the next lecture.

