Comp 411
 Principles of Programming Languages Lecture 11
 The Semantics of Recursion II

Corky Cartwright
February 3, 2023

Recursive Definitions

Given a Scott-domain D, we can write equations of the form:
$f=E_{f} \quad\left[\right.$ Note: $\left.f\left(x_{1}, \ldots, x_{n}\right)=M_{f} \Leftrightarrow f=\lambda x_{1}, \ldots, x_{n} . M_{f}\right]$ where E_{f} is an expression constructed from constants in \mathbf{D}, operations (continuous functions) on \mathbf{D}, and variables.
Example: let \mathbf{D} be the domain of Jam values. Then

$$
\text { fact }=\operatorname{map} n \text { to if } n=0 \text { then } 1 \text { else } n * \text { fact }(n-1)
$$ is such an equation.

Equations of this form are called recursive definitions.

Solutions to Recursion Equations

- Given a recursion equation:

$$
f=E_{f}
$$

what is a solution? All of the constants and operations in E_{f} are known except \mathbf{f} and all variables other than \mathbf{f} are explicit parameters that have values (or potential values in the case of call-by-name provided as inputs). All functions in E_{f} are continuous.

- A solution to this equation is any continuous function \mathbf{f} such that $\mathbf{f}=\mathrm{E}_{\mathrm{f}}$, or alternatively is a fixed point of the function(al) $\boldsymbol{\lambda} \mathbf{f} . \mathrm{E}_{\mathrm{f}}$.
- But there may be more than one solution. We want to select the best solution f^{*}. Note that f^{*} is an element of whatever domain D* corresponds to the type of E_{f}. In the most common case, it is $\mathbf{D} \rightarrow \mathbf{D}$, but it can be $\mathbf{D}, \mathbf{D} \rightarrow \mathbf{D}, \ldots, \mathbf{D}^{\mathbf{k}} \rightarrow \mathbf{D}, \ldots$ The best solution \mathbf{f}^{*} (which always exists and is unique and computable for a any domain in D^{*}) is the least solution under the approximation ordering in D^{*}.

Constructing the Least Solution

How do we know that any solution exists to the equation $\mathbf{f}=\mathrm{E}_{\mathrm{f}}$? We will construct the least solution and prove it is a solution!
Since the domain D^{*} for \mathbf{f} is a Scott-Domain, this domain has a least element $\perp_{D^{*}}$ that approximates every solution to the equation.
Now form the function $F: D^{*} \rightarrow D^{*}$ defined by $F(f)=E_{f}$, or equivalently, $\mathrm{F}=\lambda \mathrm{f} . \mathrm{E}_{\mathrm{f}}$ where $\lambda \mathrm{f} . \mathrm{E}_{\mathrm{f}}$ is monotonic and continuous (by a lemma we skipped). Note that for a recursive definition of a function, F is a functional.
Consider the sequence $\mathrm{S}: \mathrm{L}_{\mathrm{D}^{*}}, \mathrm{~F}\left(\mathrm{~L}_{\mathrm{D}^{*}}\right), \mathrm{F}\left(\mathrm{F}\left(\mathrm{L}_{\mathrm{D}^{*}}\right)\right)$, $\ldots, \mathrm{F}^{\mathrm{k}}\left(\mathrm{L}_{\mathrm{D}^{*}}\right), \ldots$
Claim: S is an ascending chain (chain for short) in $D^{*} \rightarrow D^{*}$.
Proof. $\perp_{D} \leq F\left(\perp_{D *}\right)$ by the definition of \perp_{D}. If $M \leq N$ then $F(M) \leq F(N)$ by monotonicity. Hence, $\mathrm{F}^{\mathrm{k}}\left(\perp_{\mathrm{D}}\right) \leq \mathrm{F}\left(\mathrm{F}^{\mathrm{k}}\left(\perp_{\mathrm{D}}\right)\right)$ by induction on \mathbf{k}. Q.E.D.
Claim: \boldsymbol{S} has a least upper bound \mathbf{f} *.
Proof. Trivial. S is a chain in D* and hence must have a least upper bound because D^{*} is a Scott-Domain. If D^{*} is a function domain, then $f *$ is continuous by definition.

Proving $f *$ is a fixed point of F

Must show: $F\left(f^{*}\right)=f^{*}$ where $F=\lambda f . E_{f}$
Claim: By definition $f^{*}=\sqcup F^{k}\left(\perp_{D^{*}}\right)$ Since F is continuous

$$
\begin{aligned}
F\left(f^{*}\right) & =F\left(\sqcup F^{k}\left(\perp_{D^{*}}\right)\right)=\sqcup F^{k+1}\left(\perp_{D^{*}}\right)=\sqcup F^{k}\left(\perp_{D^{*}}\right) \\
& =f^{*} .
\end{aligned}
$$

Note: The second step above relies on the continuity of \mathbf{F} and the third depends on the fact that $\mathrm{F}^{0}\left(\perp_{D^{*}}\right)=\perp_{D^{*}} \leq \mathrm{F}\left(\perp_{D^{*}}\right)$.
Q.E.D.

Example

Look at factorial in detail by running the DrRacket stepper or conceptualizing strict continuous functions mapping N into N where is the domain natural numbers including \perp, which can be represented as graphs (sets of pairs) over $\mathrm{N}-\{\perp\}$. The same observation applies to the domain of Jam values which includes N as a subdomain.

How Can We Compute f* Given F?

- Need to construct $F^{\infty}(\perp)$ from F. Can we write code for a function Y such that $Y(F)=f^{*}=F^{\infty}(\perp)$.
- Idea: use syntactic trick well known in the $\boldsymbol{\lambda}$-calculus to build a potentially infinite stack of Fs, based on an understanding of how evaluation of $\Omega=(\boldsymbol{\lambda} \mathbf{x} \cdot(\mathbf{x} \mathbf{x})$) ($\boldsymbol{\lambda x} \cdot(\mathbf{x} \mathbf{x})$) works.
- Preliminary attempt: $\mathrm{Y}(\mathrm{F})=(\lambda \mathrm{x} . \mathrm{F}(\mathrm{x} x))(\lambda \mathrm{x} . \mathrm{F}(\mathrm{x} x))$
- Reduces to (in one step) to: $F((\boldsymbol{\lambda} \cdot \mathrm{~F}(\mathrm{x} \mathbf{x}))(\boldsymbol{\lambda} \mathbf{x} \cdot \mathrm{F}(\mathrm{x} \mathbf{x})))$
- Reduces to (in k steps) to: $\mathrm{F}^{\mathrm{k}}((\boldsymbol{\lambda} \cdot \mathrm{F}(\mathrm{x} x))(\boldsymbol{\lambda} \cdot \mathrm{F}(\mathrm{x} x)))$

How does the Code for \boldsymbol{Y} Work?

In Haskell (or other language with call-by-name)

$$
Y=\lambda F \cdot(\lambda x \cdot F(x \quad x))(\lambda x \cdot F(x x))
$$

Hence, $Y(F A C T)$
$=(\lambda x \cdot \operatorname{FACT}(x \quad x))(\lambda x \cdot \operatorname{FACT}(x \quad x))$
$=\operatorname{FACT}((\lambda x \cdot \operatorname{FACT}(x \quad x))(\lambda x \cdot \operatorname{FACT}(x \quad x)))$
$=\lambda n$. if $n=0$ then 1 ; only valid in Call-By-Name! else $n^{*}((\lambda x . \operatorname{FACT}(x \quad x))(\lambda x . F A C T(x \quad x)))(n-1)$
implying $\mathrm{Y}(\mathrm{FACT})$ reduces to a value!
Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No! Why not? What about divergence? $\mathrm{Y}(\mathrm{FACT})$
$=(\lambda x \cdot \operatorname{FACT}(x \quad x))(\lambda x \cdot \operatorname{FACT}(x \quad x))$
$=\operatorname{FACT}((\lambda x \cdot \operatorname{FACT}(x \quad x))(\lambda x \cdot \operatorname{FACT}(x \quad x)))$
$=\operatorname{FACT}(\operatorname{FACT}(\ldots))$ diverging like Ω) but growing with each reduction

Why Does Call-by-name Y Work?

By assumption the functional G corresponding to a recursive function definition must have the form λf. $\lambda \mathrm{n}$. M. Hence,
($\lambda \mathrm{F} .((\lambda x . F(\mathrm{x} x))(\lambda \mathrm{x} . \mathrm{F}(\mathrm{x} x)))) \mathrm{G}$
$=G((\lambda x . G(x \quad x))(\lambda x . G(x \quad x)))$
$=(\lambda f . \lambda n . M)((\lambda x . G(x \quad x))(\lambda x . G(x \quad x)))$
$\left.=\lambda n \cdot M_{[f} \leqslant(\lambda x . G(x x))(\lambda x . G(x x))\right]$
which is a value. If the evaluation of M does not require evaluating an occurrence of f, then ($\lambda x, G(x x))(\lambda x \cdot G(x x))$ is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition $f=\lambda n . M$.

Exercise: How can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam?

Why Does Call-by-name Y Work?

By assumption the functional \mathbf{G} corresponding to a recursive function definition must have the form $\lambda f . \lambda n$. M. Hence,
($\lambda \mathrm{F} .((\lambda x . F(x \times))(\lambda x . F(x \quad x)))) G$
$=G((\lambda x . G(x \quad x))(\lambda x . G(x \quad x)))$
$=(\lambda f . \lambda n . M)((\lambda x . G(x \quad x))(\lambda x . G(x \quad x)))$
$\left.=\lambda n \cdot M_{[f} \leqslant(\lambda x . G(x x))(\lambda x . G(x x))\right]$
which is a value. If the evaluation of M does not require evaluating an occurrence of f, then ($\lambda x \cdot G(x \times))(\lambda x \cdot G(x \times))$
is not evaluated. Otherwise, the binding of \mathbf{x} is unwound only as many times as required to get to the base case in the definition \mathbf{f} $=\lambda n . M$. But each unwinding requires a few reduction steps, so this definition is a poor way to implement recursion!

Exercise: how can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam?

