Comp 411 Principles of Programming Languages Lecture 12 The Semantics of Recursion III & Loose Ends

> Corky Cartwright February 6, 2023

Call-by-name vs. Call-by-value Fixed-Points

Given a recursive definition $\mathbf{f} \cong \mathbf{E}_{\mathbf{f}}$ in a call-by-value language where $\mathbf{E}_{\mathbf{f}}$ is an expression constructed from constants in the base language and \mathbf{f} . What does it mean?

Example: let **D** be the domain of Scheme values. Then the base operations are continuous call-by-value functions on **D** and

fact := map n to if n = 0 then 1 else n * fact(n-1)

is a recursive definition of a function on **D**.

In a *call-by-name* language map n to ... is interpreted using callby-name β -reduction, the meaning of fact is

Y(map fact to E_{fact})

What if map (λ -abstraction) has *call-by-value* semantics? Y does not quite work because evaluations of form Y(map f to E_f) diverge with call-by-value β -reduction.

Defining Y in a Call-by-value Language

We want to define Y_v , a call-by-value variant of Y.

Key trick: use η (eta)-conversion to delay the evaluation of $F(x \ x)$ inside of the expression defining Y. In the mathematical literature on the λ -calculus, η -conversion is often assumed as an axiom. In models of the pure λ -calculus, it typically holds.

Definition: **η**-conversion is the following equation:

 $M = \lambda x \cdot Mx$

where x is not free in M. If the λ -abstraction used in the definition of Y has call-by-value semantics, then given the functional F corresponding to recursive function definition, the computation YF diverges. We can prevent this from happening by **n**-converting both occurrences of F(x x) within Y.

What Is the Code for Y_v ?

- $Y_v = \lambda F. (\lambda x. (\lambda y. (F(x x))y)) (\lambda x. (\lambda y. (F(x x))y))$
- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes) where λ -binding has call-by-value semantics? Yes!
- Let **G** be some functional $\lambda f. \lambda n. M$, like FACT, for a *unary* recursive *function definition*. **G** and $\lambda n. M$ are values (λ -abstractions). Then

 $Y_v G = (\lambda x.(\lambda y.(G(x x)) y)) (\lambda x.(\lambda y.(G(x x)) y))$

= $\lambda y.[G((\lambda x.(\lambda y.(G(x x)) y))(\lambda x.(\lambda y.(G(x x)) y))) y]$

 $= G((\lambda x.(\lambda y.(G(x x)) y))(\lambda x.(\lambda y.(G(x x)) y)))$

is a *value*. In call-by-value, $\mathbf{Y} \mathbf{G}$ is *not* a value but $\mathbf{Y}_{\mathbf{v}} \mathbf{G}$ is.

- But $G(Y_v G) = (\lambda f.\lambda n.M)(Y_v (\lambda f.\lambda n.M)) = \lambda n.M[f:=Y_v(\lambda f.\lambda n.M)]$, which is a *value*.
- As shown above (using call-by-value β -conversion) $Y_vG = G(Y_vG)$ where G is any closed functional $\lambda f. \lambda n. M$.
- Disadvantage of Y_v vs. Y: Y_v is arity-specific for recursive function definitions in languages like Jam that support multiple arguments in λ-abstractions. (Note: unary Y_v works for all curried function definitions since every λ-abstraction is unary.) b

Alternate Definitions of Y_v

- The following definiton of the call-by-value version Y also works: $Y_v = \lambda F. (\lambda x. F(\lambda y.(x x)y)) (\lambda x. F(\lambda y.(x x)y))$
- In this case, we η -convert (x x) instead of F(x x).
- Let G be some functional λf.λn.M, like FACT, for a *unary* recursive *function definition*. G and λn.M are values (λ-abstractions). Since G has the form λf.λn.M
 Y_y G = (λx. G(λy.(x x)y)) (λx. G(λy.(x x)y)))
 - = $G(\lambda y. (\lambda x. G(\lambda y. (x x)y)) (\lambda x. G(\lambda y. (x x)y)))$
 - = $\lambda n.M[f := \lambda y. (\lambda x. G(\lambda y.(x x)y)) (\lambda x. G(\lambda y.(x x)y))$

which is a value in both call-by-value and call-by-name.

In call-by-value, $\mathbf{Y} \mathbf{G}$ is *not* a value but $\mathbf{Y}_{\mathbf{v}} \mathbf{G}$ is.

- But $G(Y_vG) = (\lambda f.\lambda n.M)(Y_v (\lambda f.\lambda n.M)) = \lambda n.M[f:=Y_v(\lambda f.\lambda n.M)]$, which is a *value*.
- As shown above (using call-by-value β -conversion) $Y_vG = G(Y_vG)$ where G is any closed functional $\lambda f.\lambda n.M$.
- Disadvantage of Y_v vs. Y: Y_v is arity-specific for recursive function definitions in languages like Jam that support multiple arguments in λ-abstractions. (Note: unary Y_v works for all curried function definitions since every λ-abstraction is unary.)

Loose Ends

- Meta-errors
- Read the notes!
- **letrec** (in notes)

Lazy JamVal: a Concrete Example

Consider Jam with call-by-value λ and lazy cons. What is the domain JamVal of data values? It consists of the flat domain of integers Z_{\perp} augmented by JamList, the domain of lazy lists over JamVals, and the function domain JamVal^k \rightarrow JamVal of call-by-value functions of arity k for $k \in \mathbb{N}$ (natural numbers).

JamVal = Z_{\perp} + JamList + U_k JamVal^k \rightarrow JamVal JamList = JamEmpty + cons(JamVal, JamList) where cons is lazy (non-strict) in both arguments. Does call-by-value Y_v let us recursively define infinite trees? Yes!

Call-by-value Y with Lazy Lists

Assume we want to define the infinite lazy tree with no leaves:

consMax = cons(consMax, consMax)

How do we express this in Jam? We need **letrec** (**let** with recursive binding):

letrec consMax := cons(consMax,consMax); in consMax

What is the denotational meaning of recursive definition? The least call-by-value fixed-point (using Y_v) of the corresponding function **C** which is $\lambda c.cons(c,c)$. Since **cons** is lazy, the standard least fixed point construction yields the desired infinite tree. Try evaluating Y_v **C** in the Assignment 3 reference interpreter (using *value-need* mode).