Comp 411
 Principles of Programming Languages Lecture 12

The Semantics of Recursion III \& Loose Ends

Corky Cartwright
February 6, 2023

Call-by-name vs. Call-by-value Fixed-Points

Given a recursive definition $\mathbf{f} \underline{\underline{\underline{m}}} \mathrm{E}_{\boldsymbol{f}}$ in a call-by-value language where E_{f} is an expression constructed from constants in the base language and f . What does it mean?
Example: let \mathbf{D} be the domain of Scheme values. Then the base operations are continuous call-by-value functions on \mathbf{D} and

$$
\text { fact }:=\text { map } n \text { to if } n=0 \text { then } 1 \text { else } n * \text { fact }(n-1)
$$

is a recursive definition of a function on D.
In a call-by-name language map n to ... is interpreted using call-by-name β-reduction, the meaning of fact is

```
Y(map fact to }\mp@subsup{\textrm{E}}{\mathrm{ fact }}{}\mathrm{ )
```

What if map (λ-abstraction) has call-by-value semantics? Y does not quite work because evaluations of form Y (map f to E_{f}) diverge with call-by-value β-reduction.

Defining Y in a Call-by-value Language

We want to define Y_{v}, a call-by-value variant of Y .
Key trick: use $\boldsymbol{\eta}($ eta)-conversion to delay the evaluation of $\mathbf{F}(\mathbf{x} \mathbf{x})$ inside of the expression defining Y. In the mathematical literature on the $\boldsymbol{\lambda}$-calculus, $\boldsymbol{\eta}$-conversion is often assumed as an axiom. In models of the pure $\boldsymbol{\lambda}$-calculus, it typically holds.
Definition: $\boldsymbol{\eta}$-conversion is the following equation:

$$
M=\lambda x . M x
$$

where \mathbf{x} is not free in M. If the $\boldsymbol{\lambda}$-abstraction used in the definition of \mathbf{Y} has call-by-value semantics, then given the functional F corresponding to recursive function definition, the computation YF diverges. We can prevent this from happening by $\boldsymbol{\eta}$-converting both occurrences of $\mathrm{F}(\mathbf{x} \mathbf{x})$ within Y .

What Is the Code for Y_{v} ? $Y_{v}=\lambda F \cdot(\lambda x .(\lambda y \cdot(F(x \quad x)) y))(\lambda x \cdot(\lambda y \cdot(F(x x)) y))$

Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes) where λ-binding has call-by-value semantics? Yes!

Let \mathbf{G} be some functional $\lambda \mathrm{f} . \lambda \mathrm{n}$.M, like FACT, for a unary recursive function definition. G and $\lambda \mathrm{n} . \mathrm{M}$ are values (λ-abstractions). Then

$$
\begin{aligned}
Y_{v} G & =(\lambda x \cdot(\lambda y \cdot(G(x x)) y))(\lambda x \cdot(\lambda y \cdot(G(x x)) y)) \\
& =\lambda y \cdot[G((\lambda x \cdot(\lambda y \cdot(G(x x)) y))(\lambda x \cdot(\lambda y \cdot(G(x x)) y))) y] \\
& =G((\lambda x \cdot(\lambda y \cdot(G(x x)) y))(\lambda x \cdot(\lambda y \cdot(G(x x)) y)))
\end{aligned}
$$

is a value. In call-by-value, $\boldsymbol{Y} G$ is not a value but $\mathbf{Y}_{\mathrm{v}} G$ is.
But $G\left(Y_{v} G\right)=(\lambda f . \lambda n . M)\left(Y_{v}(\lambda f . \lambda n . M)\right)=\lambda n . M\left[f:=Y_{v}(\lambda f . \lambda n . M)\right]$, which is a value.

As shown above (using call-by-value β-conversion) $Y_{V} G=G\left(Y_{V} G\right)$ where G is any closed functional $\lambda \mathrm{f} . \mathrm{\lambda n}$.M.
Disadvantage of Y_{v} vs. $Y: Y_{v}$ is arity-specific for recursive function definitions in languages like Jam that support multiple arguments in $\boldsymbol{\lambda}$-abstractions. (Note: unary Y_{v} works for all curried function definitions since every $\boldsymbol{\lambda}$-abstraction is unary.) b

Alternate Definitions of Y_{v}

The following defintion of the call-by-value version Y also works:
$Y_{v}=\lambda F \cdot(\lambda x \cdot F(\lambda y \cdot(x \quad x) y))(\lambda x \cdot F(\lambda y \cdot(x x) y))$
In this case, we η-convert ($\mathbf{x} \mathbf{x}$) instead of $F(x \quad x)$.
Let G be some functional $\lambda \mathrm{f} . \lambda \mathrm{n} . \mathrm{M}$, like FACT, for a unary recursive function definition. G and $\lambda n . M$ are values (λ-abstractions). Since G has the form $\lambda f . \lambda n . M$

$$
\begin{aligned}
Y_{v} G & =(\lambda x \cdot G(\lambda y \cdot(x x) y))(\lambda x \cdot G(\lambda y \cdot(x x) y))) \\
& =G(\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot(x x) y))(\lambda x \cdot G(\lambda y \cdot(x x) y))) \\
& =\lambda n \cdot M[f:=\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot(x \times) y))(\lambda x \cdot G(\lambda y \cdot(x x) y))
\end{aligned}
$$

which is a value in both call-by-value and call-by-name.
In call-by-value, $\mathbf{Y} G$ is not a value but $Y_{v} G$ is.
But $G\left(Y_{v} G\right)=(\lambda f . \lambda n . M)\left(Y_{v}(\lambda f . \lambda n . M)\right)=\lambda n . M\left[f:=Y_{v}(\lambda f . \lambda n . M)\right]$, which is a value.

As shown above (using call-by-value β-conversion) $Y_{v} G=G\left(Y_{v} G\right)$ where G is any closed functional $\lambda \mathrm{f} . \mathrm{\lambda n}$.M.
Disadvantage of \mathbf{Y}_{v} vs. $\mathrm{Y}: \mathrm{Y}_{\mathrm{v}}$ is arity-specific for recursive function definitions in languages like Jam that support multiple arguments in $\boldsymbol{\lambda}$-abstractions. (Note: unary Y_{v} works for all curried function definitions since every $\boldsymbol{\lambda}$-abstraction is unary.)

Loose Ends

Meta-errors

- Read the notes!
letrec (in notes)

Lazy JamVal: a Concrete Example

Consider Jam with call-by-value $\boldsymbol{\lambda}$ and lazy cons. What is the domain JamVal of data values? It consists of the flat domain of integers \mathbf{Z}_{\perp} augmented by JamList, the domain of lazy lists over JamVals, and the function domain JamVal ${ }^{\mathrm{k}} \rightarrow \mathrm{JamVal}$ of call-by-value functions of arity \mathbf{k} for $\mathbf{k} \in \mathbb{N}$ (natural numbers).

JamVal $=Z_{\perp}+$ JamList + U $_{\text {K }}$ JamVal $^{k} \rightarrow$ JamVal JamList = JamEmpty + cons(JamVal, JamList)
where cons is lazy (non-strict) in both arguments. Does call-by-value Y_{v} let us recursively define infinite trees? Yes!

Call-by-value \mathbf{Y} with Lazy Lists

Assume we want to define the infinite lazy tree with no leaves:
consMax = cons(consMax, consMax)

How do we express this in Jam? We need letrec (let with recursive binding):
letrec consMax := cons(consMax,consMax); in consMax
What is the denotational meaning of recursive definition? The least call-by-value fixed-point (using Y_{v}) of the corresponding function \mathbf{C} which is λc.cons (c, c). Since cons is lazy, the standard least fixed point construction yields the desired infinite tree. Try evaluating $Y_{v} \mathbf{C}$ in the Assignment 3 reference interpreter (using value-need mode).

