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Call-by-name vs. Call-by-value Fixed-Points

Given a recursive definition f ≞ Ef in a call-by-value language

where Ef is an expression constructed from constants in the base

language and f.  What does it mean?

Example: let D be the domain of Scheme values. Then the base

operations are continuous call-by-value functions on D and

fact := map n to if n = 0 then 1 else n * fact(n-1)

is a recursive definition of a function on D.

In a call-by-name language map n to ... is interpreted using call-

by-name β-reduction, the meaning of fact is

Y(map fact to Efact)

What if map (λ-abstraction) has call-by-value semantics?  Y does

not quite work because evaluations of form Y(map f to Ef)

diverge with call-by-value β-reduction.



Defining Y in a Call-by-value Language

We want to define Yv, a call-by-value variant of  Y.

Key trick: use η(eta)-conversion to delay the evaluation of 

F(x x) inside of the expression defining Y.  In the 

mathematical literature on the λ-calculus, η-conversion is often 

assumed as an axiom.  In models of the pure λ-calculus, it 

typically holds. 

Definition: η-conversion is the following equation:

M = λx . Mx

where x is not free in M.  If the λ-abstraction used in the 

definition of Y has call-by-value semantics, then given the 

functional F corresponding to recursive function definition, the 

computation YF diverges.  We can prevent this from happening 

by η-converting both occurrences of F(x x) within Y.
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What Is the Code for Yv?
• Yv = λF. (λx.(λy.(F(x x))y)) (λx.(λy.(F(x x))y))

• Does this work for Scheme (or Java with an appropriate encoding of functions as 

anonymous inner classes) where λ-binding has call-by-value semantics?  Yes!

• Let G be some functional λf.λn.M, like FACT, for a unary recursive function 

definition. G and λn.M are values (λ-abstractions).  Then

Yv G = (λx.(λy.(G(x x)) y)) (λx.(λy.(G(x x)) y))

= λy.[G((λx.(λy.(G(x x)) y)) (λx.(λy.(G(x x)) y))) y]

= G((λx.(λy.(G(x x)) y)) (λx.(λy.(G(x x)) y)))

is a value.  In call-by-value,  Y G is not a value but Yv G is.

• But G(Yv G) = (λf.λn.M)(Yv (λf.λn.M)) = λn.M[f:=Yv(λf.λn.M)],

which is a value.

• As shown above (using call-by-value β-conversion) YvG = G(YvG) where G is 

any closed functional λf.λn.M.

• Disadvantage of Yv vs. Y: Yv is arity-specific for recursive function definitions in 

languages like Jam that support multiple arguments in λ-abstractions. (Note: unary

Yv works for all curried function definitions since every λ-abstraction is unary.) b



Alternate Definitions of  Yv
• The following defintion of the call-by-value version Y also works:

Yv = λF. (λx. F(λy.(x x)y)) (λx. F(λy.(x x)y)) 

• In this case, we η-convert (x x) instead of  F(x x).

• Let G be some functional λf.λn.M, like FACT, for a unary recursive function 

definition. G and λn.M are values (λ-abstractions). Since G has the form λf.λn.M
Yv G = (λx. G(λy.(x x)y)) (λx. G(λy.(x x)y)))

= G(λy. (λx. G(λy.(x x)y)) (λx. G(λy.(x x)y)))
= λn.M[f := λy. (λx. G(λy.(x x)y)) (λx. G(λy.(x x)y))

which is a value in both call-by-value and call-by-name.

In call-by-value,  Y G is not a value but Yv G is.

• But G(YvG) = (λf.λn.M)(Yv (λf.λn.M)) = λn.M[f:=Yv(λf.λn.M)],

which is a value.

• As shown above (using call-by-value β-conversion) YvG = G(YvG) where G is 

any closed functional λf.λn.M.

• Disadvantage of Yv vs. Y: Yv is arity-specific for recursive function definitions in 

languages like Jam that support multiple arguments in λ-abstractions. (Note: unary

Yv works for all curried function definitions since every λ-abstraction is unary.) 



Loose Ends

• Meta-errors

• Read the notes!

• letrec (in notes)



Lazy JamVal: a Concrete Example

Consider Jam with call-by-value λ and lazy cons.  What 

is the domain JamVal of data values?  It consists of the 

flat domain of integers Z⊥ augmented by JamList, the 

domain of lazy lists over JamVals, and the function 

domain JamValk → JamVal of call-by-value functions of 

arity k for k N (natural numbers).

JamVal = Z⊥+ JamList + Uk JamVal
k → JamVal

JamList = JamEmpty + cons(JamVal, JamList)

where cons is lazy (non-strict) in both arguments.  Does 

call-by-value Yv let us recursively define infinite trees?  

Yes!



Call-by-value Y with Lazy Lists

Assume we want to define the infinite lazy tree with no leaves: 

consMax = cons(consMax, consMax)

How do we express this in Jam? We need letrec (let
with recursive binding):

letrec consMax := cons(consMax,consMax);
in consMax

What is the denotational meaning of recursive definition?  The least 

call-by-value fixed-point (using Yv) of the corresponding function C
which is λc.cons(c,c).  Since cons is lazy, the standard least 

fixed point construction yields the desired infinite tree.  Try 

evaluating Yv C in the Assignment 3 reference interpreter (using 

value-need mode). 


