Comp 411
 Principles of Programming Languages Lecture 14
 Eliminating Lambda Using Combinators

Corky Cartwright
February 13, 2023

How to Eliminate lambda (map in Jam)

Goal: devise a few combinators (functions expressed as λ abstractions with no free variables) that enable us to express all $\boldsymbol{\lambda}$ expressions without explicitly using $\boldsymbol{\lambda}$.
Core Idea: let $\boldsymbol{\lambda}^{*} \mathbf{x} . \mathrm{M}$ denote an occurrence of $\boldsymbol{\lambda x} . \mathrm{M}$ that will be converted to an equivalent syntactic form eliminating $\boldsymbol{\lambda}^{*}$. Then

$$
\begin{aligned}
& \lambda^{*} \mathrm{x} . \mathrm{x} \rightarrow \mathrm{I} \quad(\text { where } \mathrm{I}=\lambda \mathrm{x} . \mathrm{x}) \\
& \left.\lambda^{*} x . y \rightarrow K y \text { (where } K=\lambda y . \lambda x . y\right) \\
& \lambda^{*} x .(M N) \rightarrow S\left(\lambda^{*} x . M\right)\left(\lambda^{*} x . N\right) \\
& \text { (where } S=\lambda x \cdot \lambda y \cdot \lambda z .((x \quad z)(y z)))
\end{aligned}
$$

Note that the second and third rules are sound if we add constants to the language and treat constants and free variables uniformly.
In the second rule \mathbf{y} can be a constant and in the third rule, \mathbf{M} and \mathbf{N} can contain constants. Of course, in the first rule, the body \mathbf{x} must exactly match the abstracting variable \mathbf{x}.

How to Eliminate lambda (map in Jam) cont.

Question: Where did S come from?

- Intuition: it falls out when we formulate the translation to combinatory form using structural recursion on the abstract syntax of $\boldsymbol{\lambda}$-expressions.
- The first two cases on the preceding slide do not involve recursion.
- In the third case, the form of the "magic" S combinator is determined by structural recursion! It is simply the pure λ-abstraction that works when plugged in for λ^{*}.

How Can We Systematically Eliminate All $\boldsymbol{\lambda} s$?

Strategy:

- Since the three rewrite rules on the preceding slide generalize to lambdaexpressions with free variables and constants, we can eliminate any $\boldsymbol{\lambda}$ abstraction that does not contain $\boldsymbol{\lambda}$ in its body.
- Algorithm: eliminate $\boldsymbol{\lambda}$-abstractions from inside-out, one-at-a-time. This process terminates because it strictly reduces a recursively defined weighted $\boldsymbol{\lambda}$ depth measure, which is the sum of the weights of all embedded $\boldsymbol{\lambda}$-abstractions. The details of this definition are delicate (but not very interesting). (Since this algorithm use general recursion, we must provide a termination argument.)
- Warning: this transformation can (and usually does) cause exponential blow-up in the expanded (replacing S, K, and I by their definitions as $\boldsymbol{\lambda}$-abstractions because the third rule replaces a $\boldsymbol{\lambda}$-abstraction by a $\boldsymbol{\lambda}$-abstraction (in \mathbf{S}) with two references to its parameter (\mathbf{z}). Note that the depth* function grows exponentially with tree depth because the definition of depth* adds the depth*s of both subtrees of an application. In essence, depth* grows as the number of nodes in the tree grows which is exponentially larger than the depth of the original tree.

Final Observations

- Checking the App case

$$
\begin{aligned}
& S(\lambda x \cdot M)(\lambda x \cdot N) \\
= & (\lambda x \cdot \lambda y \cdot \lambda z \cdot(x z)(y z))(\lambda x \cdot M)(\lambda x \cdot N) \\
= & (\lambda y \cdot \lambda z \cdot((\lambda x \cdot M) z)(y z))(\lambda x \cdot N) \\
= & (\lambda z \cdot((\lambda x \cdot M) z)((\lambda x \cdot N) z)) \\
= & \left(\lambda z \cdot\left(M_{x-z}\right)((\lambda x \cdot N) z)\right) \\
= & \left(\lambda z \cdot\left(M_{x-z}\right)\left(N_{x-z}\right)\right)=\lambda x \cdot(M N)(\text { by } \alpha-c o n v e r s i o n)
\end{aligned}
$$

Note: the variable names $\mathbf{x} \mathbf{y} \mathbf{z}$ are fresh and arbitrary, distinct from any free names in $\boldsymbol{\lambda} \mathbf{x} . \mathrm{M} \boldsymbol{\lambda} \mathbf{x} \cdot \mathbf{N}$

