
Comp 411
Principles of Programming Languages

Lecture 14
Eliminating Lambda Using Combinators

Corky Cartwright

February 13, 2023

How to Eliminate lambda (map in Jam)

Goal: devise a few combinators (functions expressed as λ-

abstractions with no free variables) that enable us to express all λ-

expressions without explicitly using λ.

Core Idea: let λ*x.M denote an occurrence of λx.M that will be

converted to an equivalent syntactic form eliminating λ*. Then

λ*x.x → I (where I = λx.x)

λ*x.y → Ky (where K = λy.λx.y)

λ*x.(M N) → S(λ*x.M)(λ*x.N)
(where S = λx.λy.λz.((x z)(y z)))

Note that the second and third rules are sound if we add constants

to the language and treat constants and free variables uniformly.

In the second rule y can be a constant and in the third rule, M and N
can contain constants. Of course, in the first rule, the body x
must exactly match the abstracting variable x.

How to Eliminate lambda (map in Jam) cont.

Question: Where did S come from?

• Intuition: it falls out when we formulate the

translation to combinatory form using structural

recursion on the abstract syntax of λ-expressions.

• The first two cases on the preceding slide do not

involve recursion.

• In the third case, the form of the “magic” S
combinator is determined by structural

recursion! It is simply the pure λ-abstraction that

works when plugged in for λ*.

How Can We Systematically Eliminate All λs?

Strategy:

• Since the three rewrite rules on the preceding slide generalize to lambda-

expressions with free variables and constants, we can eliminate any λ-

abstraction that does not contain λ in its body.

• Algorithm: eliminate λ-abstractions from inside-out, one-at-a-time. This

process terminates because it strictly reduces a recursively defined weighted λ-

depth measure, which is the sum of the weights of all embedded λ-abstractions.

The details of this definition are delicate (but not very interesting). (Since this

algorithm use general recursion, we must provide a termination argument.)

• Warning: this transformation can (and usually does) cause exponential blow-up

in the expanded (replacing S, K, and I by their definitions as λ-abstractions

because the third rule replaces a λ-abstraction by a λ-abstraction (in S) with

two references to its parameter (z). Note that the depth* function grows

exponentially with tree depth because the definition of depth* adds the depth*s

of both subtrees of an application. In essence, depth* grows as the number of

nodes in the tree grows which is exponentially larger than the depth of the

original tree.

Final Observations

• Checking the App case

S (λx.M) (λx.N)

= (λx.λy.λz.(x z)(y z)) (λx.M) (λx.N)

= (λy.λz.((λx.M) z)(y z)) (λx.N)

= (λz.((λx.M) z)((λx.N) z))

= (λz.(Mx←z) ((λx.N) z))

= (λz.(Mx←z) (Nx←z)) = λx.(M N) (by α-conversion)

Note: the variable names x y z are fresh and arbitrary, distinct

from any free names in λx.M λx.N

