
Comp 411

Principles of Programming Languages

Lecture 15

Church and State: Supporting Assignment

Corky Cartwright

February 13, 2023

What Is Assignment?
• Assignment is rebinding (changing the value of) a variable in the

current environment. This process is also called mutation since

the environment is destructively changed.

• Nearly all practical programming languages include operations for

mutating the values of program variables and data structures.

Only plausible exception is Haskell, but is it really practical?

• To incorporate this feature in LC, we add an assignment

operation to the language with syntax (taken from Scheme/Racket)

(set! x M)

and the abstract representation
(define-struct (setter lhs rhs))

where x is any lambda-bound identifier.

• Assignment (set!) enables us to model changing events in the real

world.

How Do We Define the Semantics of

Assignment Using a Meta-Interpreter?

Two common approaches:
1. Use mutation in the meta-language

2. Add another parameter to the eval function representing a store that maps locations

to values. The environment maps assignable(mutable) variables [symbols] to

locations. What is a location? An element of a specified denumerable set, typically

the natural numbers (akin to machine addresses!). Such an interpreter is called

store-passing. It has additional (a constant multiplicative factor) overhead
3.

Implications:
• Trade-offs: the second approach is pure but ugly and inefficient (if used in an

actual implementation). It makes interpreters look like compilers where symbol

lookup is performed on every access; identifiers stand for addresses.

• Conclusion: assignment is inherently ugly from a semantic perspective. Store-

passing is used in denotational semantics for imperative (mutation supporting)

languages but it gives no insight on how to build an efficient implementation or

how to reason about programs written in such languages. Meta-interpreters that

rely on mutation are much closer to efficient language implementations because all

modern computers support mutation (updating the value at an address in memory!)

Two Different Formulations of Assignment

1. Assignable Variables

• Mutate (change) bindings in environment.

• The semantics of assignment critically depend on the fact that all

extensions of an environment share that environment.

• Racket Scheme/C++/Java/C#/Scala/Swift use this formulation.

2. Mutable Cells

• Cells (boxes) are values. In essence, the data domain is augmented

by a new unary constructor called box or ref. The only mutable

data cells are these cells.

• ML/Haskell uses this formulation.

Note: OO Characterization of Assignment

• Assignable variables are objects with two methods: a getter and a

setter. In functional languages, immutable variables are objects only

equipped only with getters.

• Mutable cells are value objects belonging to a class named Box/Ref;

this form of value includes a setter. No other value does. Neither do

variables.

Comparing the Two Different Formulations

Pros and Cons of Assignable Variables

• Simpler notation for common usage but the cells/boxes holding the

values of variables typically are not conventional data values/objects

which forces extra machinery (typically a prefix operator like & in C or

a parameter attribute like var) in parameter passing (such as call-by-

reference) and a distinction between left-hand and right-hand

evaluation.

• If cells are data objects (e.g., pointers as in C) the internals of the

language implementation are exposed (as in C). This convention

inhibits modular reasoning about program behavior.

Pros and Cons of Mutable Cells

• Mutable cells are simply a special form of data.

• The design of the language is unaffected otherwise.

• Simulating call-by-reference is trivial. The implementation of other

parameter passing methods such as call-by-name and call-by-need are

not directly affected by the addition of mutation.

Using Mutation to Define Mutation

Key intuition: implementing mutation in a language supporting

mutation is easy, provided that environment sharing-relationships are

modeled correctly. A nested environment shares its parent environment

representation!

Observation: in the absence of a complex store-passing semantics, there

is no straightforward way to support assignment if environments are

represented as functions. Why? Assignment must update shared

bindings but functions do not directly support sharing relationships.

Linked lists (and other concrete mutable data structures) foster sharing!

To change the value associated with a variable x, we must bind a

different value to the variable x. We can accomplish this by including a

clause in the eval case-split of the form:

((setter? M) <change the environment>)

But how do we do this?

Using Mutation to Define Mutation cont.

• To make variables assignable, we need support modifying the values they stand

for.

• Mutable variables cannot be directly associated with values; rather, they must

be associated with an object which can be modified to hold a different value.

• What kind of object can we use?

• In Scheme, a particularly apt choice is to use a box (a built-in struct with a

single field to hold the value of each variable. Then we can use mutation on

Scheme boxes to change the value of the field. Note that we can also use

closures and mutate local variables in these closures, which is an important

trick featured in SICP (Structure and Interpretation of Progams).

• In a Java meta-interpreter, the value field in a Binding object simply has to be

mutable.

• Moral: variables should stand for boxes (mutable cells).

• Comment: assignment languages like Java implicitly use boxes almost

everywhere, but these boxes are not objects. They cannot be passed as values.

They are not visible data values except via the Java reflection facility which is

ugly and often breaks portability and backward compatibility.

Revising Our Meta-Interpreter

We must revise the clause that binds new variables (which in LC are

only introduced in λ-expressions):

((app? M)
(apply
(eval (app-rator M) env) ;; head of the application
(box (eval (app-rand M) env)))) ;; box is a constructor

Since variables are now bound to boxes containing values, we must

change the code that for evaluating variables:

((var? M)
(unbox (lookup (var-name M) env))) M)

We are finally ready to add the clause for assignment:

((setter? M)
(set-box! (lookup (setter-lhs M) env)

(eval (setter-rhs M) env)))

Can Boxes Be Values?
• Yes. Many languages support some formulation of this concept. But the details can be delicate

because we must know from context whether a variable x means either its value or the

enclosing box. In ML, it is trivial.

• Traditional context-based approach: support references by distinguishing left-hand and right-

hand contexts and using a different definition of evaluation in these two situations. In a meta-

interpreter for such a language, left-hand evaluation is primary and has a simple recursive

definition. In such an interpreter, right-hand evaluation has a trivial definition; it simply

extracts the contents of a cell when left-hand evaluation yields a cell; otherwise it is the

identity. In practice, right-hand-evaluation is far more common because the set of left-hand

evaluation sites is sparse. (The canonical example is simple assignment, e.g., in x = x + 1
the first occurrence of x is left-hand evaluated and the second is right-hand evaluated. In

function/procedure/method declarations, attaching a reference or var attribute to a parameter

stipulates that the corresponding argument expression is left-hand evaluated. Examples: var
parameters in Pascal, reference (tagged with &) parameters in C++. Arguments passed by

reference are interpreted differently using left-hand evaluation rather than right-hand

evaluation. Ordinary values typically cannot be cells/boxes (check out Algol 68 for insight).

• Cleaner comprehensive approach: treat boxes as ordinary values (as in ML) or, in lower-level

languages, pointers as ordinary values (as in C). But there is a conceptual cost: these

boxes/pointers must be explicitly dereferenced to get the associated values. In C, the data

model is ultimately machine memory and explicit use of pointers is perilous; tiny mistakes can

cause catastrophic behavior (screen of blue death [SOBD]) In contrast, the ML convention is

much simpler than the traditional context-based approach, but it requires explicit dereferencing

(using the unary prefix operator !) to designate the value of a mutable variable. Type-checking

detects nearly all dereferencing failures, but code involving mutation looks messy.

