
Comp 411
Principles of Programming Languages

Lecture 16
Boxes as Values and Call-by-Reference

Corky Cartwright

February 17, 2023

Boxes as Values in Languages like ML

This approach is so simple and elegant that not much needs to be said. We only

need to add the type constructor ref<T> including a setter (which is not available

for ordinary functional data types) and a getter (the unary operator ! in Jam) for its

only field.

The only disadvantage to this approach (which can be significant) is that every

occurrence of a mutable variable denoting its contents must be explicitly

dereferenced. In a typed language, this is not a major impediment since the

absence of dereferencing almost always generates a type error. In addition, this

annoyance discourages the use of mutable variables which is good IMO. In a

dynamically typed language like Jam, these errors (failure to dereference boxes)

are not detected until testing, which can be an annoying source of program errors.

The remainder of this lecture focused on the complications involved in the

assignable variables approach used in essentially all mainsteam languages.gggg

Call-by-Value and Call-by-Reference
Consider the following Scheme/Racket program, which contains the mutation operation set!:

(let [(f (lambda (x) (set! x 5)))]
(let [(y 10)]
(let [(_ (f y))] ; mutate y [the value bound to x in f]
y)))

What result is produced by evaluating this program? 10 The program comment is a lie!

When f is applied (called), the value of y, which is 10, is placed in a new box (for local x). Like all local variables,

this new box (variable) and its contents (value) are thrown away after the procedure body for f (including the set!)

has been evaluated. The application of “procedure” f returns the special “dummy” value (void) which is the value

returned by (set! x 5). This special value is bound to the variable _ immediately after f returns. (By convention,

the name _ is used in Scheme/Racket for bindings that are ignored in subsequent program text.) The innermost let
returns the value of y, which is still 10. Since this innermost let is the body of the enclosing (second-level let,

which the body of the outermost, let the program returns the value 10.

This behavior is based on the call-by-value semantics of lambda and let in Scheme/Racket. In the call on f,

Scheme/Racket passes the value of y (not the containing box which is the variable y) rather than the variable y
introduced by the second-level let. Hence, the body of f has no access to the variable y introduced by the second-

level let; it only mutates its parameter (the local variable x created when f is called), leaving y bound to the value 10
after it returns (void), which is bound to the variable _. To pass a variable like y to the “procedure” f, we need a

different parameter passing mechanism than call-by-value. In a language like Scheme/Racket with assignable

variables, call-by-need and call-by-need may suffice in some situations, but their semantics is so ugly (since mutation

is possible) that most attempted uses (like writing swap using call-by-name) fail in some cases. We need a

semantically tractable alternative to call-by-name/call-by-need that binds x to the variable y (a box [cell]) rather than

the deferred left-hand/right-hand evaluation of y. The most common mechanism for this purpose in mainstream

languages with assignable variables like Java is call-by-reference. Note that Java does not support call-by-reference

while C++ and C# both support it. We will discuss this issue later.

Supporting a swap operation

To express a swap operation as a program-defined procedure, a

language must support passing the boxes (cells) corresponding to

variables as values the swap procedure.

We can support this capability with a small change to our LC

interpreter based on the following observation: when the argument

expression in an application is already a variable, it is associated with a

box in the environment. Hence, we can pass this box to the procedure

and don't need to create a new one locally:

((app? M)
(apply (... fp ...)

(if (var? (app-rand M))
(lookup (var-name (app-rand M)) env) ; a box
(...))))

This is ugly! So ugly that I almost cut this slide from the lecture. Why is

it ugly?

Improving Our Ugly Design
We need to introduce a new mode of parameter-passing is called call-by-reference. Our LC

formulation is ugly for two reasons.

• It is a syntactic hack. Any expression other than an explicit variable x that has the same

meaning when evaluated normally (such as (id x) where id denotes the identity

function) has different semantics than x in this particular context, implying the syntax of

LC is not compositional! In Scheme/Racket, set! is a hack because it is not a procedure.

• It does not provide a clean way to pass the value of a variable instead of the variable cell

(box) itself. Passing (id x) “works” because the argument expression (AST) is no

longer a variable. Pascal and old Fortran (66/77) support more reasonable formulations of

this parameter-passing technique. Old Fortran is still deeply flawed; it passes everything

(including constants!) by reference. Mutating a constant in a Fortran subroutine

(procedure) caused havoc – via mutation of shared constants. In many implementations,

the Fortran compiler implementors did not bother to create a new copy for each constant

parameter. So mutating constants passed as parameters mutated the shared cell!

Contemporary languages with assignable variables (such as Pascal, C, C#, Swift) escape the

non-compositional critique by introducing two different forms of evaluation introduced in

Algol 60: the arguments in function calls corresponding to reference parameters must be

evaluated differently (using left-hand evaluation) than other argument expressions which are

evaluated. Mainstream languages that support call-by-reference force procedures (including

explicit lambda-abstractions) to explicit declare reference parameters because they evaluate

the corresponding argument expressions differently!

Left-hand vs. Right-hand Evaluation
Mainstream languages that support assignable variables and make a distinction between left-

hand and right-hand contexts. Left-hand contexts typically include:

• the left-hand sides of assignments; and

• argument expressions passed by reference (when it is supported).
•

The basic form of evaluation is left-hand evaluation; it essentially looks like our LC

interpreter (without our ugly call-by-reference extension) except that boxes (variable cells)

are considered values. Hence, in left-hand evaluation, unbox is not applied to the box

returned by the lookup operation of LC. Right-hand evaluation simply performs left-hand

evaluation followed by coercing boxes to values. In essence, we only need to define one

recursive meaning functions: left-hand-eval because right-hand-eval is a simple coercion

applied to the result produced by left-hand-eval. Although left-hand evaluation is

conceptually the primary form of evaluation, programming languages with assignable

variables (including Java) stipulate that most contexts require right-hand evaluation which

coerces (conditionally converts) values that are boxes to their contents. In such languages,

values that are not boxes are unchanged by right-hand evaluation, which merely strips the

boxes wrapping values. Such languages prevent the direct nesting of boxes inside boxes so

multiple stripping is not required. To understand the concept of left-hand and right-hand

evaluation, consider a trivial assignment statement in C:
x = x+1;

The occurrence of x on the left-hand side of the assignment operator = is left-hand evaluated

because left-hand contexts require a box. In this context, x simply evaluates to the box

corresponding to x, which in compiled code is simply an address. In contrast, the occurrence

of x on the right-hand side of = is right-hand evaluated which returns the contents of the box

corresponding to x.

Assignable Variables without Call-by-reference
Some languages with assignable variables do not explicitly support

call-by-reference because either:

• misguidedly support call-by-name instead (Algol 60, now passé)

• they have a very-low level semantics that eschews type-safety and

use explicit pointers instead (C, C++ [ref was added to language])

• they treat the boxes (cells) corresponding to variables as local

artifacts that cannot be passed as arguments to methods/procedures

like Java, Scala, Kotlin (?).

Low-level languages like C directly provide an operator (unary prefix &
in C) which simply returns the address of its argument (which must

have an intelligible left-hand meaning), so the address corresponding to

any variable (or other assignable expression such as an array element)

can be passed as an argument. The corresponding procedure parameter

must be a pointer type. This perspective is incompatible with defining

a semantics that is more abstract than a generic machine

implementation. It does not make sense for any language that I would

call “high-level” which by definition do not have a semantics based on

the concept of machine addresses. In particular, machine addresses do

not appear in the semantic definitions of Java, C#, Scala, or Kotlin.

Assignable Variables without Call-by-reference cont.

In higher level languages with assignable variables, passing local variables by

reference must be restricted if the corresponding boxes are allocated on the

call stack. Why must the usage of reference parameters be restricted?

Because stack-allocated boxes for variables are deallocated when the

execution of the procedure/method introducing the variable exits (returns). A

passed reference to such a box can potentially become a “dangling pointer” (a

pointer to an object that no longer exists, which can easily happen in C/C++

code).

In Java, there is a simple reason why you cannot pass the box corresponding to

a local variable directly as a method parameter. If you look at architecture of

the JVM, local variables are stored in slots in the activation record (stack

frame) for the method where the variable is introduced. The JVM only

supports direct access to slots in the current activation record, so there is no

way to directly pass the box for a local variable as an argument because it is

not accessible from the called methods (which have their own activation

records). The same restriction by the way exists for object fields; you cannot

pass them directly as parameters (using say their machine addresses). There

are various implementation hacks to work around this limitation, but they have

significant costs. Wait until we discuss language runtimes.

Variable and Data Aliasing
While passing references enables programmers to write procedures like

swap, it also introduces a new phenomenon into the language called variable

aliasing. Variable aliasing occurs when two syntactically distinct variables

refer to the same mutable location in the environment. In Scheme and Java

(where call-by-reference is not supported), such a coincidence is impossible;

in Pascal and Fortran it is common.

The absence of variable aliasing in Scheme and Java does not mean that

Scheme and Java completely escape the aliasing problem. Scheme and Java

only guarantee that distinct variable names do not refer to the same location

(box). Scheme and Java allow data aliasing, where more than one selection

path refers to the same mutable cell. For example, in Scheme (C, Java), two

elements of a vector (array) can be exactly the same object. All interesting

programming languages permit data aliasing; it is the flip side of data sharing.

Both variable and data aliasing can devastating semantic consequences. Two

apparently disjoint references to data may be synonymous. Direct variable

aliasing is particularly insidious because we naturally assume distinct simple

variables are disjoint rather than synonymous.

Imperative Call-by-Name
Algol 60 supports call-by-value and call-by-name, but not call-by-reference.

In imperative languages (languages with mutable state), call-by-name has the

same semantics as it does in functional languages, assuming that we equate

left-hand-evaluation in imperative languages with evaluation in functional

languages and coerce boxes to values in right-hand contexts (everywhere but

the left-hand-sides of assignment and arguments passed by reference).

As a result, call-by-name is a baroque, inefficient, and fragile alternative to call-by-

reference. A call-by-name parameter is typically synonymous with the

corresponding argument expression. In the underlying implementation, each

argument expression passed by name is translated to a suspension (thunk in Algol 60

terminology) that yields a box (location) when it is evaluated. Call-by-name

repeatedly evaluates the actual parameter to produce a box every time the

corresponding formal parameter is referenced. If the suspension produces the same

location each time, then call-by-name is equivalent to call-by-reference. But the

suspension can contain references to variables that change (by executing assignment

operations modifying visible variables used in the suspension) during the execution

of the procedure body. In the special case where an argument expression does not

have box type (e.g., a constant like 10), in most languages supporting call-by-

reference, the calling program generates a dummy box, copies the value into the box,

and passes the box as reference value; the alternative is classify the application of

the procedure/method as a type error.

.

Abusing Call-by-Name: Jensen's Device

Consider the following Algol-like code (written in C syntax)

that uses assignment to change the box denoted by a call-by-

name parameter.

procedure Sum(int x, int y, int n) { // call-by-name
// Jensen’s Device: in the call on Sum, the arguments x and y must
// be a var x′ and an expression M where x′ occurs free in M
// encoding a function f(x′) = M

int sum = 0;
for (x = 0; x < n, x++) sum = sum + y;
return sum;

}

int j, sum = 0;

sum = Sum(j, j*j, 10)); // compute the sum 0*0 + 1*1 + … 9*9

Why Jensen's Device Has Become Obscure

The ugly convention of passing x′ and x′ * x′ by name and using

mutations of the formal parameter x bound to x′ (by name) to determine

different values for the formal parameter y bound to x′ * x′ (by name) is

called Jensen's device. In this idiom, the semantics of parameter passing is

so complex that simple reasoning about variables is no longer possible.

Believe it or not, the popular buzz regarding this particular idiom was

positive when it debuted. (How clever!) But software developers eventually

learned that software written using this device was slow, hard-to-

understand, and fraught with potential bugs. Beware of the opinions of

crowds.

Imperative call-by-name is deservedly dead but perhaps for the wrong

reason (execution cost rather than convoluted semantics?). In the

imperative world, the call-by-need optimization of call-by-name does not

work because re-evaluations of the suspension for a call-by-name parameter

do not necessarily produce the same result! Hence, imperative call-by-

name combines convoluted semantics with horrendous inefficiency when

the argument expression is expensive to evaluate.

More Pathologies of Imperative Call-by-name
In the earlier example illustrating Jensen’s device, both x and y have the same declared

type int. But they actually have different types: x is bound to a thunk (suspension) that

evaluates to a box that is coerced to its contents (of type int) in right-hand contexts while

y is bound to a thunk that returns an int value rather than a box. Using y on the left-hand

side of an assignment must generate an error! There is no box corresponding to the

argument j*j! The thunk bound to y does not evaluate to a box. In the world of

assignable variables, call-by-name is a huge conceptual fail.

As a result of these pathologies, call-by-name is now completely discredited and

misunderstood. As we have already learned, call-by-name in a purely functional (no

mutation) context is a defensible design choice; it is simpler in some respects than call-

by-value. Termination analyses and debugging are more subtle (and hence more

complex) for call-by-name than for call-by-value, but that is the price of greater

expressiveness. Look at the difference between the call-by-name Y operator and call-by-

value Y operator. Which is simpler? Call-by-name wins here because computing fixed-

points is non-trivial and the subtle (but mathematically rigorous) behavior of call-by-

name incremental evaluation can be exploited in this context. Call-by-value can only

clumsily mimic the incremental behavior of call-by-name at the cost of significantly more

complex code that manually inserts η-conversion where evaluation must be suspended.

On the other hand, I don’t know of a simple logic for reasoning about functional call-by-

name programs. The current research buzz in this regard is to use co-induction from the

realm of category theory which I find opaque. I prefer a simple first-order logical system

incorporating the notion of admissibility. That is an interesting topic for research.

Call by Value-Result
Call-by-reference has a clean semantic definition but some programming

methodologists have shunned it because of variable aliasing. In its place,

they have proposed call-by-value-result. In the context of distributed

computing, this mechanism makes sense for efficiency reasons (assuming

the costs of copying data structures can be amortized), but its semantics is

actually quite ugly from the perspective of program reasoning.

When an actual parameter is passed by value-result, the calling procedure

left-hand-evaluates the actual parameter exactly as it would for call-by-

reference. It passes the address of the box to the called procedure which

saves it, creates a new local variable (a box) for the corresponding formal

parameter and copies the contents of the passed box into the local box.

During the execution of the procedure body, the local copy is used whenever

the formal parameter is accessed. On exit from the called procedure, the

called procedure copies the contents of the local box into the corresponding

actual parameter box (which was saved). In essence, call-by-value-result

creates a temporary copy of the actual parameter box and copies the contents

of this copy into the actual parameter box on exit.

Value-result is sometimes called copy-in/copy-out or in/out, particularly in

the context of languages for distributed computing.

Call by Result
• Given the availability of call-by-value-result (copy-in, copy-out) which can be

viewed as an enhancement of call-by-value (copy-in), it makes sense to consider

call-by-result (copy-out) in isolation. This mechanism is actually more useful in

conventional languages than call-by-value-result (which IMO is inferior to call-

by-reference except in context of distributed computing). In many situations, it is

natural to define a function/method that returns multiple values. Scheme and Java

have an explicit syntax (rarely covered in introductory courses) for doing this. In

Scheme, the unusual syntax makes inclusion of such a convention relatively easy

and comparatively natural. In languages with more conventional syntax, a

common way to return multiple results is to return the primary result normally and

the other (auxiliary) results using call-by-result.

• Example: a lookup function on environments that returns the matching binding

Binding lookup(value Env e, value Symbol s, result JamVal v)

and the embedded value in a result parameter if it is available without additional

evaluation.

In Java, the Env argument e would probably be the receiver rather than an explicit

argument. In principle, Java could support call-by-result (and call-by-reference)

but implementations using the JVM might be clumsy.

Call-by-Reference vs. Boxes as Values

• In call-by-reference, boxes are not “first-class” values because they can only

be used in limited (left-hand) contexts.

 Everywhere else they are coerced to their contents (right-hand

evaluation).

 It is typically impossible to store a box inside a box (C pointers are an

exception because of weak typing rules); in fact, boxes generally cannot

be elements of composite data structures in languages where boxes are

not first-class values.

• If boxes are first class, then boxes can be passed by value! In this case, call-

by-reference is a superfluous. The price of “boxes as first-class values” is

that they must be dereferenced to obtain the contents (as in ML). In C, boxes

are first-class (represented by pointers). C also performs implicit

dereferencing depending on context (including type declarations) but pointer

variables are not implicitly dereferenced. C also provides a prefix operators

for forcing the dereferencing of pointers (*) and suppressing the

dereferencing of assignable variables (&). The ugly aspect of these features

in C is the absence of type safety and lack of automatic storage management

(allowing pointers into the heap and stack to become invalid).

