
Comp 411
Principles of Programming Languages

Lecture 18
Run-time Environment Representations II

Corky Cartwright

February 24, 2023

Review

• In Algol-like languages, the collection of environments that exist

at any point during a computation is embedded in the machine

control stack supporting (recursive) procedure calls. When the

frames of the control stack are used in this way, they are called

activation records.

• In each activation record, a pointer called the static link points to

the environment parent of the record. Similarly, a pointer called

the dynamic link points to the preceding stack frame (activation

record) to which control will return when the current

computation (conducted using the current activation record)

completes. The static link is used for looking up non-local

bindings (variables bound in the surrounding lexical context)

• The dynamic link is used to return control from the current

“procedure” to its caller (whose local variables may not be

accessible from the current frame).

Example I
Consider the following Scheme program to reverse a list:

(define rev (lambda (l)
(letrec
[(revhelp ; :=

(lambda (tl acc)
(if (empty? tl) acc

(revhelp (rest tl) (cons (first tl) acc)))))]
(revhelp l empty))))

The Pidgin Algol equivalent (extended to include functional lists as a built-in type:

function List rev(l: List) = {

{ function List revhelp(tl: List, acc: List) = {

if empty?(tl) then acc else revhelp(rest(tl), cons(first(tl), acc)) };

revhelp(l, empty)

}}

What happens when (rev '(0 1)) is called?

• The top level call on rev allocates activation record (AR) #1 with null static and dynamic

links and a slot for l (the alphabetic letter) initialized to '(0 1).

• The body of rev (executing in AR #1) allocates AR #2 for the letrec with static and

dynamic links pointing to preceding activation record and a slot for revhelp initialized to

the closure for its definition.

• The body of revhelp allocates AR #3 record for the recursive call on revhelp with static

link taken from closure binding of revhelp (in AR #2) and dynamic link pointing to

preceding activation record.

Example I cont.

• Since l is not empty, body of revhelp allocates AR #4 for the recursive call

on revhelp with static link taken from closure binding of revhelp, dynamic link …,

and slots for tl and acc initialized to '(1) and '(0), respectively.

• Since l is not empty, body of revhelp allocates AR #5 record for recursive call

on revhelp with static link taken from closure binding of revhelp, dynamic link …,

and slots for tl and acc initialized to '() and '(1 0), respectively.

• Since l is empty, body of revhelp in context of AR #5 returns the value '(1 0), popping AR

#5 off the stack.

• The pending evaluation in AR #4 returns the value '(1 0), popping AR #4.

• The pending evaluation in AR #3 returns the value '(1 0), popping AR #3.

• The pending evaluation in AR #2 returns the value '(1 0), popping AR #2.

• The pending evaluation in AR #1 returns the value '(1 0), popping AR #1.

Notes:

1. The last four steps are trivial because they are returns from tail calls.

2. The dynamic link is always set to point to the preceding AR.

3. Algol 60 was designed so that the ARs could be stack allocated (and deallocated). Function

values are not “first-class”.

4. Guy Steele’s heap allocation “hack” relies on a heap with automatic storage management to

extend the Algol stack allocation runtime to support first-class functions/procedures.

5. In Java, inner classes enable the nesting of scopes as in Algol; the static chain is formed by

embedding hidden parent instance pointers in the inner class objects. In addition all non-local

variables accessed in an inner class must be final so that they can be copied into the inner class

instances. Note that non-local variables that are lexically “in scope” are only accessible if they

are final (a restriction that added as a modification to John Rose’s original inner class design).

Example II
Consider the following Scheme program to lookup a binding value in a list of pairs:
(define lookup (lambda (sym env)
(letrec

[(lookup-help
(lambda (env)
(cond [(empty? env) null]

[(eq? sym (pair-var (first env))
(pair-val (first env))]

[else (lookup-help (rest env) tl)]))]
(lookup-help env))))

Let’s trace the evaluation of (lookup 'a (cons (make-pair 'a 5) null))

• The top-level call on lookup allocates AR #1 with null static link and slots

for sym and env initialized to 'a and '(['a 5])).

• The body of lookup (executing in AR #1) allocates AR #2 for the block with the

static link pointing to AR #1 and a slot for lookup-help initialized to the closure

for its definition. Can AR #1 be replaced by AR #2? What about sym and env?

• The body lookup executing in AR #2 allocates AR #3 for the call on lookup-help

with the static link extracted from the closure bound to lookup-help and a slot for

env initialized to '(['a 5])) (the value of env in the environment determined by

the static link of AR #2). Can AR #2 be replaced by AR #3?

• The body of lookup-help executing in AR #3 looks at env and finds a match for

sym (found in the static chain in AR #1) in the first pair, namely ['a 5] and

returns that pair, popping AR #3, which bubbles up through tail calls to point of

Exceptions
Exceptions were not included in Algol 60 or most of its successors (Pascal,

Algol W, C). But the Algol 60 run-time stack can easily handle the modern

Java try/catch construct. This construct evolved in the context of Lisp

(which started with a crude version of essentially the same construct as

err/errset) and appeared in a form very similar to the Java/C# formulation in

ML. Most modern languages (Java, C#, Swift) support exceptions, although

they may include less costly constructs than full exceptions and recommend

these for most applications (where the exceptional condition does not

correspond to a catastrophic local failure (like a ParseException [in a program

that is presumed syntactically correct] or EvalException.

How does exception handling work? Activation records must include a catch

table for the thrown exception listing the caught exception classes (types) and

their handlers (the bodies of the catch clauses). (A catch is active if control

is within the corresponding try block.) When an exception is thrown the

executing code (interpreter or compiled code) searches back through the

dynamic chain⸺popping exited frames off the stack⸺to find the first matching

catch clause. Obviously, if the control stack is very deep, throwing an

exception can be an expensive operation. Exceptions should not be used for

normal program control.

.

