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Overview I
• In OO languages, OO data values (except for designated value [non-OO] types), are 

special records [structures in Scheme] (finite mappings from names to values).  In 

OO parlance, the components of record are called members.  In C/C++, they are 

called fields, which is confusing because field has a different meaning in OO 

languages.

• Some members of an object may be functions/procedures called methods.  Methods 

are procedures take this (the object in question) as an implicit parameter.  Some OO 

languages like Java also support static methods that do not depend on this; these 

methods have no implicit parameters.  Static methods literally are procedures!  In 

efficient OO language implementations, method members are shared since they are 

the same for all instances of a class, but this sharing is an optimization in statically 

typed OO languages since the collection of methods in a class is immutable during 

program evaluation (computation).  The object members that are not methods are 

called fields.  They are (typically mutable) cells.

• A true method (instance method in Java) can only be invoked on an object (the 

receiver, an implicit parameter).  Additional parameters are optional, depending on 

whether the method expects them.  This invocation process is called dynamic 

dispatch because the executed code is literally extracted from the object: the code 

invoked at a call site depends on the value of the receiver, which can change with 

each execution of the call.



Overview II
• A language with objects is OO if it supports dynamic dispatch (discussed in more detail in 

Overview II & III) and inheritance, an explicit taxonomy for classifying objects based on 

their members and class names where superclass/parent methods are inherited unless 

overridden.

• In single inheritance, this taxonomy forms a tree.  In multiple inheritance, it forms a 

rooted DAG (directed acyclic graph) where the root class is the universal class (Object
in Java).  

• Inheritance also provides a simple mechanism for defining some objects as extensions of 

others.

• Most OO languages are class-based (my preference because it supports a simple static 

type system).  In class-based OO languages, every object is an instance of a class (an 

object template) and includes a tag field identifying the class to which the object belongs.  

The class of an object completely determines its structure, namely the members of the 

object and their types (which we will discuss in depth in a few weeks). 

• Other OO languages are prototype-based where objects are cloned (copied) to create new 

objects; the bindings of method names can be updated (which is disallowed in nearly all 

class-based OO languages) and members can be dynamically added to objects during 

program execution (also disallowed in nearly all class-based OO languages.)  Inheritance 

occurs because of cloning.  These two mechanisms, object cloning and method adding 

make the static typing of such languages problematic; nearly all prototype languages (like 

Javascript) are dynamically typed.



Overview III

• In single inheritance class-based languages, every class must declare a unique immediate 

superclass.  In multiple inheritance class-based languages, every class must declare one or 

more immediate superclasses.  Each superclass is either another declared class or a built-in 

universal (least common denominator) class [Object in Java].

• Every class definition inherits all members of its immediate superclass(es); it also has the 

option of overriding (replacing) the definitions of inherited methods.

• Java does not allow true multiple inheritance but it supports a cleaner alternative (multiple 

interface inheritance) using special classes called interfaces (which in Java 8+ can contain 

concrete methods; such generalized interfaces are often called traits).

• The superclass relation is the transitive closure of the immediate superclass relation.

• A class cannot shadow a method defined in the parent class(es); it can only override it 

(replace its definition in the current class).  The overriding method appears in class 

instances (objects) in place of the overridden one.

• A class can only shadow a field defined in the parent class; it cannot override it. 

Shadowing is simply the hiding of the parent field by the new fields exactly as in lexical 

scoping.  The shadowed field still exists, but it can only be accessed via super (an ugly 

variant of this) or by upcasting the type of the receiver (in a typed OO language).

• The method lookup process in OO languages is called dynamic dispatch.  The meaning of 

a method call depends on the method code in this.  In contrast, the meaning of a field 

reference is fixed for all subclasses of the class where the field is introduced.  The field 

can only be shadowed but that does not affect the meaning of code that cannot see a 

shadowing definition.



Overview IV
• Implications of overriding vs. shadowing: a method invocation always refers to the specified method in 

the receiver object (this) even when the method has a definition in the class where the invocation 

appears.  This mechanism is called dynamic dispatch; it is sometimes (misleadingly!) called dynamic 

binding.  Dynamic dispatch combined with inheritance to share common code among variants is the 

essence of OO.

• In contrast, field references refer to the field determined by lexical scoping rules (the corresponding 

binding occurrence of the field).  Hence, direct field references should only be local in well-written OO 

code.  In addition, fields introduced in subclasses should never match the field names of superclasses.

• A static type system can be used to restrict (discipline) class definitions and guarantee for all method 

lookups (assuming the receiver is not null) that a match will be found.  Even the issue of 

NullPointerExceptions can be addressed by supporting types that exclude null.

• OO languages that are not class-based are prototype-based.  Any object can be a prototype (factory) for 

creating cloned objects.  In such languages, inheritance is pervasive but it is hidden in the code as 

prototype cloning and augmentation.

• In prototype-based OO languages, objects literally contain methods.  A lookup failure within a given 

object triggers a search in the ancestor object (creator) instead of the superclass.  This is very ugly from 

the perspective of program design and program  implementation.  I have never seen a programming 

logic for a prototype-based OO language.  Prototype-based OO languages make program verification 

nearly impossible because the validity of method dispatch depends on the execution history of the 

program (which dynamically builds the inheritance hierarchy).  Ugh!

• A prototype-based OO program can be written in a disciplined fashion (where a few factory objects 

function as class surrogates) so they have essentially the same structure as a class-based program but 

type-checking is still problematic and the clarity of the code is highly dependent on the author.

• Complex static analysis is possible but it is not transparent and not very helpful (IMO) in locating and 

identifying program bugs.  The experimental research language Cecil did this.  



Overview V
Thumbnail History of the Evolution of OO Languages:

Simula (1967)
• Allows entire Algol blocks to be autonomous data values with independent lifetimes foreshadowing 

objects. 

• Classes can be formulated as special procedures that return blocks. 

• Allows autonomous blocks to be defined as extensions of other blocks; inheritance  = lexical scoping + 

copying!  Inheritance is single because it is block extension.

• No conventional overriding but inner calling mechanism (similar to super in Java) resembles the 

inverse of overriding.

• Incorporates some important software engineering insights but there is no clear design methodology 

underlying the language, nor is there a credible programming logic.

Smalltalk (1972) 
• Dynamically typed

• Supports reflective access to the runtime (essentially the same mechanism as reflection in Java and 

other newer languages).

• Single inheritance.

• Dynamic extension of objects.

• If dynamic features are exploited, software engineering is compromised.  Clean language after patching 

the semantics of “blocks” (closures) provided dyanamic changes to objects is shunned.

Self  (1987)
• Dynamically typed

• Prototype based

• Activation records are objects (the same identification as in Simula but it is posited in reverse).

• Dynamic scoping except for explicit closures (Ugh!).

• Introduced generational GC.



Overview VI
Impact on Contemporary Languages and Software Technology

• Static typing and dynamic scoping is a toxic combination.  Challenge:  devise a statically 

typed dynamically scoped language.  Essentially impossible without emasculating 

dynamic scope.

• Pragmatic OO extensions of C: C++ and Objective C.  Truly OO except storage 

management is manual, which is a crippling software engineering defect IMO.  Nominal, 

unsound type system is principal innovation.  (Right idea; imperfect execution.) 

Subsequently made sound in Java and Swift.

• Important distinction: structural subtyping (ML and other pedagogic extensions) vs. 

nominal (C++, Java, Scala, Swift, etc.)

• Pedagogic OO Extensions of ML culminating in OCaml; not truly OO because type 

system interferes with OO design.  The OCaml type system tries to formulate inheritance-

based subtyping as polymorphism, which often breaks in practice.

• OO features of ML with objects (Ocaml) are usually ignored by MLers ; structural typing 

and OO do not mix well.

• Eiffel (statically-typed forerunner of Java)/Dylan (Scheme with classes and inheritance)

• Modern OO descendants: Java/C#/Scala/Swift

• Important distinction: structural subtyping (ML and extensions) vs. nominal (C++, Java, 

Scala, Swift, etc.).  Semantics of nominal types is surprisingly different than semantics of 

structural types.

• OO features of ML with objects (Ocaml) are usually ignored by MLers ; structural typing 

and OO do not mix well



Java as a Real OO language

• Java is most important practical OO language.

• Two views

 C++ augmented by GC

 Dylan (Scheme + objects) with a C-like syntax and static 

type checking.  Scheme (Racket) now has a gradual static 

type system.

• I strongly support the latter view.  Why?  The semantic 

definitions of C++ and Java are completely different while the 

semantics of Dylan and Java are very similar.  It is easy to 

transliterate Scheme (sans call/cc) into Java.  It is essentially 

impossible to transliterate C++ into Java (unless the C++ code is 

written with this form of translation in mind).



Java Implementation I
Why talk about implementation?  In real world languages, implementation

impacts program design.  There are performance and design tradeoffs!

Part I: Data representation

• Java objects include a header specifying the object class and hash code (lazily generated on 

demand using the object address). The remaining record components [slots, fields in C 

parlance] are simply the members of the object.  The “identifying code” for a class is a pointer 

to an object (belonging to class Class) describing the class.  How can super be supported?  

(For fields, it is trivial.  For methods, use the Class object.)

• Method lookup: simply extract the method from the receiver object using its known offset 

within the Class object.  Method offsets are consistent across subclasses because all new 

members added in subclasses are added at the “end” of the inherited object format.  In the 

absence of the method table optimization, inherited methods are simply components [slots] of 

the object record.  But space optimization is important.  Full multiple inheritance (as in C++) 

requires some magic (embedded objects) to support this implementation.

• Space optimization: move (pointers to) member methods to a separate method table for each 

class which can be shared by all instances of the class. This table is part of the Class object 

for the class where the method definition appears.  Note that the method table can contain an 

entry for every method of the class including inherited methods.  If inherited methods are not 

included, method lookup is now much more complex because only “local” methods (those 

explicitly defined in the object's class) are defined in the local method table.  



Java Implementation II
• Linking (resolving symbolic references) is done dynamically during execution!  In most 

mainstream languages supporting separate compilation (like C++), it is done statically by a 

linker prior to program execution.

• Interfaces can be supported in a variety of ways.  Perhaps the simplest is to create a 

separate interface method table for each class implementing the interface.  These tables are 

linked from the class method table.  How can you find the link?  Internally support hidden 

getInterfaceXXX methods (dynamic dispatch) in a class method table for all interfaces 

implemented by the class.

• Observation: interface method dispatch is slightly slower than class method dispatch

because it requires two dynamic dispatches.

• Fast instanceof: naïve implementation requires search (which can be messy if subject 

type is an interface).  Constant time implementations are possible.  One simple approach: 

assign consecutive indices starting at 0 to types (classes/interfaces).  Maintain a bit string 

for each class specifying which types it belongs to.  Then instanceof simply indexes this 

bitstring in the Class object.  

• Multiple inheritance in C++ is supported by partitioning an object into sub-objects 

corresponding to each superclass and referring to objects using “internal” pointers so that a 

subclass object literally looks like the relevant superclass object.  The bookkeeping 

(pointer adjustment) can get messy because object pointers do not necessarily point to the 

base of the object!  How can the executing code find the base of an object (required by a 

cast to a different type!)?  By embedding a hidden head pointer in each sub-object 

representation.  GC marking obviously becomes more complex.



Java Implementation III

Part II: Runtime

• The central (control) stack holds activation records for methods starting with the 

main method for the root class.  There is no static link because Java only supports 

local variables. Lexical nesting only occurs via inner class declarations; a link to 

the enclosing object is embedded in each instance of an inner class.  These links 

form a static chain!

• All objects are stored in the heap.  All fields are slots in heap objects.

• Object values are represented by pointers (to records representing the objects).

• Objects in the heap can only be reached (transitively) through local variables on 

the stack, static fields, object fields in the heap and computed pointers (such as the 

result returned by a new operation).   In compiled code, computed values are often 

cached in registers.  “Live heap memory” is the set of objects at locations 

generated by the transitive closure of the “refers-to heap location relation” starting 

with the “root” references in the stack, registers, and static memory areas.

• Instances of (dynamic) inner classes include a pointer to an enclosing parent 

object (static link!) so that inner class code can access fields in the enclosing 

object.



Java Implementation IV

• Classes are loaded dynamically by the class loader; it maps a byte stream in a 

file to a class object including code for all of the methods.  The class loader 

performs byte code verification to ensure the loaded classes are well-formed and 

type-correct.  In Java systems using “exact” GC, the class loader must build 

stack maps (indicating which words in the current activation record are pointers) 

for a sufficient set of program “safe points” also called “consistent regions”.  

There is not a single stack map for each method because local variable usage can 

vary during method execution!  (Allowing this variance was a bad design 

decision in my opinion!)  Newer JVMs embed stack maps in class files for faster 

class loading.  Suggested revision to the JVM:  do not share activation record 

slots across disjoint variables so the stack map information for an object is static!

Actually, only need to prevent sharing between variables of value type and 

reference type.

• The Java libraries are simply an archive (typically in zip file format) containing a 

file tree of class files (byte streams).

• Java allows programs to use custom class loaders.  Our NextGen compiler which 

supported first-class generics critically depended on this fact.  So does DrJava

(for different reasons).  Custom class loaders can potentially support macros.

• Header optimization: use the pointer to the method table as the class “identifier”; 

method table must contain pointer to the Class object.

• The method table also includes a pointer to the superclass method table.



Java Criticisms

• Not fully OO:

• Values of primitive types are not objects (should be hidden)

• Static fields and methods (useful in practice just like mutation in 

functional languages) but ugly. Scala handles this issue much better by 

introducing a singleton object for every class (distinct from the 

conventional hidden class object).

• Interfaces were generalized to “traits” which may contain concrete methods bu

the syntax for such methods is ugly (with the misleading modifier default) 

and discourages proper usage.  The “trait” idea was pioneered in a rewriting of 

the SmallTalk libraries.  The complexity of multiple inheritance is due to the 

fact that the same field can be inherited in multiple ways (the “diamond” 

relationship).  This pathology cannot occur in multiple trait inheritance.

• Type system is too both baroque and too restrictive. Generic (parameterized) 

nominal type systems are still not fully understood.  When Java was invented, 

nominal typing was still a radical idea, used in Eiffel, C++, and Objective C 

which were not type safe. Eiffel subsequently added an ugly runtime check to 

technically salvage type safety.  Scala sets the standard in this arena.



Java Criticisms cont.
• Excessive generalization of some constructs and mechanisms leads to a baroque language 

specification (which creates lots of buzz for language “lawyers” who know the details of the 

language specification but perhaps nothing about good OO design).  Some examples:

• receiver.new type(...) when type is shadowed or has the receiver type as the 

enclosing class 

• newInnerClassType(...) outside of the enclosing class (which require an extra 

argument!)

• excessively general local type inference for polymorphic methods

• unrestricted wildcard types (wildcards as bounds!)

• Erasure-based implementation of generic types.  A huge (!) mistake IMO.

• The run-time type check in array element updating is awkward.

• The designers wanted co-variant subtyping for arrays (u <= v implies u[] <= v[]) which is 

important in the absence of generic types.  Covariant subtyping is difficult to support in an OO 

language (because method input types behave contravariantly in subtyping relationships!).  Java 

5+ uses wildcard types to support co-variance but did not get the details right.  C# initially 

shunned co-variance but eventually followed Scala’s lead and adopted explicit co- and contra-

variance in class declarations.  Scala is the standard IMO. Swift generics are a mess.

• The reliance on a virtual machine and JIT compilation makes Java applications unnecessarily 

heavy (slow to start and not particularly fast in common usage).  In contrast, Swift is a mess; I 

don’t think the designers understand the concepts of co-variance and contra-variance of type 

parameters; nor do they understand upper and lower parameter bounds.



Directions for Further Study
• Custom class loaders.  Do a web search on Java class loading.  The articles at 

onjava.com are particularly good.

• Nominal Type Systems.  I emphatically disagree with the prevailing view among PL 
theorists (almost none of whom understands real world OO design) who claim
inheritance is not subtyping.  It is easy to erroneously define subclasses that break 
inherited contracts.  But it does not justify elevating this design error to a feature!  
(Sound familiar?).  If you hear the terms “binary methods” (methods in a class C
with an argument of type C) or “implementation inheritance” (the sanitized name 
used for methods that break contracts), you are listening to a language theorist who 
does not understand how to reason about OO programs or recognize that it is 
important.  They typically are condescending functional programming advocates.  (I 
used to be one of them until I had to learn Java to teach it.  The view that 
“inheritance is not subtyping” is now part of the folklore of PL research. 

• Other languages that generate code for the JVM: Scala, Groovy, Kotlin, ...

• The essence of the Java platform is the JVM.  It will probably outlive me and 
perhaps you.  It can certainly be improved. Moreover, I am growing disenchanted 
with the JVM.  Why?  It has such a long startup time, defers important program 
optimization to runtime, and wastes so much energy.

• Can we support a programming ecosystem as rich as what Java provides without a 
virtual machine?  Swift may be such a framework but the departure of Chris Lattner
from Apple (IMO) has crippled the evolution of the language.


