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Syntax: The Boring Part of 

Programming Languages
• Programs are represented by sequences of symbols 

(not characters).  

• These symbols are represented as sequences of 
characters that can be typed on a common keyboard 
(ASCII).

• What about Unicode?  (Ignored in this course but 
potentially important in practice.)

• To analyze or execute the programs written in a 
language, we must translate the ASCII/Unicode 
representation for a program to a higher-level tree
representation. This process, called parsing, 
conveniently breaks into two parts:
• lexical analysis (sometimes called lexing or 

tokenization), and

• context-free parsing (often simply called parsing).



Lexical Analysis

• Consider this sequence of characters: begin middle end

• What are the smallest meaningful pieces of syntax in this phrase?

• The process of converting a character stream into a 
corresponding sequence of meaningful symbols (called 
tokens or lexemes) is called tokenizing, lexing or lexical 
analysis. A program that performs this process is called a 
tokenizer or a lexer.

• In Scheme/Racket, we tokenize  
(set! x (+ x 1)) as

(   set!    x    (    +    x    1    )    )

• Similarly, in Java, we tokenize

System.out.println("Hello World!"); as

System  .  out .  println (  "Hello World!"  )  ;



Lexical Analysis, cont.

• Tokenizing is straightforward for most languages 
because it can be performed by a finite automaton 
(equivalent to a regular grammar for those of you 
who have taken 412 or 481) that matches the 
longest possible string of characters as the next 
token. Fortran is an interesting exception!

• The rules governing this process are (a very boring) 
part of the language definition.  They typically can 
be formulized as a regular grammar.

• The details are generally provided as part of a 
language definition but subsequently glossed over 
as uninteresting.

• Parsing a stream of tokens (symbols) into structural 
description of a program (typically a tree) is harder.



Parsing
• Consider the Java statement:   x = x + 1;

where x is an int variable.

• The grammar for Java stipulates (among other things):

• The assignment operator = may be preceded by an identifier (other 

more complex, possibilities exist as well) and must be followed by 

an expression.

• An expression may be two expressions (restricted for ease of 

parsing to special kinds of expressions) separated by a binary 

operator such as +.

• An assignment expression can serve as a statement if it is followed 

by the statement terminator symbol ;. Hence, we can deduce from 

the grammatical rules of Java that the above sequence of 

characters (tokens) is a legal program statement (provided x has 

been declared) that performs an assignment.

• The rules for constructing/recognizing sequences of tokens that are 

“well-formed” programs are typically specified using a Context Free 

Grammar (CFG)  If you are unfamiliar with Context Free Grammars, 

look up the topic on Wikipedia.



Parsing Token Streams into Trees
• Consider the following ways to express an assignment 

operation:

x = x + 1        [Java]

x := x + 1        [Algol]

(set! x (+ x 1)) [Scheme]

• Which of these do you prefer?  It should not matter much.

• To eliminate the irrelevant syntactic details, we can create a 
streamlined data representation that represents program syntax 
using trees. Each language construct and program operation is 
represented by a tree node.  The leaves of the tree are typically 
language constants.  For instance, the abstract syntax for the 
assignment code given above could be (assuming Scheme as the 
implementation language)

(make-assignment <Rep of x> <Rep of x + 1>)

• Or (in Java as the implementation language)

new Assignment(<Rep of x> , <Rep of x + 1>)



A Simple Example

Assume we are given the (extended) context-free grammar CFG with only one production:

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp)

where

Num is the set of numeric constants (given in the lexer specification)

Var is the set of variable names (given in the lexer specification)

To represent this syntax as trees (abstract syntax) in Scheme/Racket

; exp := (make-num number) | (make-var symbol) | (make-app exp exp) |
;        (make-proc symbol exp)
(define-struct (num n)) ;; num is the constructor name, n is a field        
(define-struct (var s))            
(define-struct (app rator rand))   
(define-struct (proc param body))  ;; param is a field name not a var

where an app structure represents a function application and a proc structure represents a 

function definition (typically a lambda-abstraction).  Structures in Scheme correspond to 

structures in C/C++ and data classes in Java.



Top Down (Predictive) Parsing

• Idea: design the grammar so that we can always tell what rules 

can be used next starting from the root of the parse tree by 

looking ahead (in a left-to-right scan) some small number (k) of 

tokens (formally LL(k) parsing in the context of a context-free 

grammar defining the set of legal programs)

• This algorithm an easily be implemented by manual coding using 

a technique called recursive descent.

• Conceptual aid: we use syntax diagrams to express the legal 

sequences of symbols that appear in production rules.  Syntax 

diagrams are (almost) formally equivalent to context free 

grammars but implicitly describe a simple recursive parsing 

strategy (recursive descent) if path branching can be resolved by 

look-ahead.  They are some small but important technical 

differences between syntax diagrams and extended context-free 

grammas which are generally ignored in the literature.  



Top Down (Predictive) Parsing cont.

• The intuition behind syntax diagrams is program recognition

(parsing) while the intuition behind context-free grammars is 

program generation.  A key example where these two formalizations 

disagree is if statements with optional else clauses.  The extended 

CFG formulation is ambiguous (which if does a specific else
match?) while the syntax diagram formulation is not (because of the 

maximal matching restriction in the recognition process).

• Intuition: k-symbol look-ahead is used to determine which branch to 

take at a fork in a syntax diagram.

• We try to design LL(k) grammars (and the corresponding syntax 

diagrams) so that k is ≤ 1.  The precise definition of LL(k) is subtle; 

if a parser can decide which branch (to take at a branching point in a 

syntax diagram using the next symbol in the input is LL(0) not 

LL(1).  Looking at the next symbol to determine which branch to 

take is not classified as looking ahead.

• Reference: see http://www.bottlecaps.de/rr/ui

http://www.bottlecaps.de/rr/ui


Example: Jam Syntax

• Jam is the toy functional language that we will use throughout the 

course.  You may be surprised by the richness of the mathematical 

structure underlying such a simple language.

• Look at the PDF File containing syntax diagrams for Jam: 
b

https://www.cs.rice.edu/~javaplt/411/23-spring/Assignments/1/RevisedSyntaxDiagrams.pdf

or https://github.com/RiceComp411/Assignment-1-Master-2023/blob/main/SyntaxDiagrams.pdf

• Reference: see http://www.bottlecaps.de/rr/ui

https://www.cs.rice.edu/~javaplt/411/23-spring/Assignments/1/RevisedSyntaxDiagrams.pdf
https://github.com/RiceComp411/Assignment-1-Master-2023/blob/main/SyntaxDiagrams.pdf
http://www.bottlecaps.de/rr/ui

