
Comp 411
Principles of Programming Languages

Lecture 23
Unification

Corky Cartwright

March 29, 2022



An Important Technical Omission
There is a fundamental difference between the simplification of arithmetic 
expressions taught in grammar school and syntactic semantics taught in this course, 
which has been glossed over up to this point in the course.

Higher-order vs First-order Expressions (Functional notation)

Expressions are constructed from constants, variables, and operators (which can be 
converted to constants at the cost of eliminating infix notation). 

Conventional arithmetic expressions are first-order: functions and operators must be 
constants (not variables or expressions!).  In most functional programming languages 
(but not mainstream languages including Java!), expressions are higher-order: 
variables can stand for functions (and in some cases operators).  Note that the 
distinction between first-order and higher-order notation is independent of 
(orthogonal to) functional vs imperative meaning.  In conventional expression 
notation, higher-order applications can be hard to read because the function at the 
head of application can be an expression as in (S(K))(K).  Functional languages 
typically use a different syntax in which functions are generally curried and 
application parentheses are omitted, enabling us to write SKK instead of (S(K))(K). 

Computer hardware is first-order: the functions (machine instructions) are constants. 
To encode higher-order expressions, we must use indirection (addresses of function 
representations, e.g., closures or subroutines) to represent functions (operations) that 
are not constants.



Functional Languages Can Be First-Order

First-order functional languages are uncommon because this prevents functions from being 

treated as conventional data values; a function cannot be bound to a conventional variable.  

Algol-like languages support procedure parameters that are functions but these parameters are 

not conventional variables. They can only be passed as arguments to other functions; they 

cannot be used as conventional values, e.g., returned as results of computations.

Syntactic semantics (explicit substitution) can be restricted to first-order languages in which 

functions are not conventional (sometimes called first-class) values.  In such a first-order 

language, we still need a notion of let-binding, but it is not an abbreviation for the application of 

a λ-expression to argument expressions.  In such languages, let is simply a mechanism for 

defining scoped (local) constants.  In a syntactic semantics, this local constant corresponds to 

rewrite rule that expands invocations of a locally defined function into instantiations of the body 

(a restricted form of β–reduction).  This form of syntactic semantics does not replace function 

symbols by their corresponding bindings (λ-abstractions) as in Jam.  In Jam, the mistake in hand 

evaluation of forgetting to replace a non-constant function name (which is a variable) by its 

binding and immediately performing the next step (reducing an argument or performing a β–

reduction) corresponds to a first-order view of let.  For this reason, this mistake is very 

common.

My early research on first-order programming logic, where recursively-defined functions are 

interpreted as definitions extending a first-order logical theory of the data domain is based on 

this perspective.  See https://www.cs.rice.edu/~javaplt/411/19-spring/Readings/RecPrograms.pdf.

https://www.cs.rice.edu/~
http://www.msn.com/?cobrand=dell17win10.msn.com&ocid=DELLDHP17&pc=DCTE


First-Order Is Important!
Logicians have deeply investigated the distinction between first-order and higher-order notation.  

Higher-order logic is not “better” than first-order logic.  In fact, there are good reasons to prefer 

first-order logic (which is “complete”) over higher-order logics (which are inherently 

“incomplete”) in many contexts.  For an explanation of this distinction, you should take a 

rigorous course in mathematical logic.  At Rice, only Comp 409 qualifies, but most mathematics 

departments at major universities offer such a course. On this subject, I highly recommend the 

book “A Mathematical Introduction to Logic” by Herbert Enderton.

Encoding Higher-Order Expressions as First-Order Expressions

In the abstract syntax for Jam, all Jam expressions have first-order representations even though 

Jam expressions are higher-order.  This encoding relies on a very simple trick:  higher order 

expressions can be encoded as first-order expressions where the application of  computed (non-

constant) functions is expressed using an explicit apply operation that takes the computed 

function as a value (called the rator or head of the application).  In higher order expressions, 

variables can be bound to functions and function applications can return functions.  Functions 

are values like numbers or lists.  If we introduce an explicit operation to apply functions, then 

the apply operation is a constant and functions are data values that behave like functions when 

they are applied.  Our abstract syntax for Jam includes several different apply operations (to 

reduce the number of constant functions) but only one of them involves applying function 

values (closures).  Lower-level languages including Java, C and machine language are 

inherently first-order.



Unification
The unification problem is very easy to state.  Given two expressions M and N, a unifier of M

and N is a substitution ρ (an environment binding variables to expressions exactly as in the n-

ary generalization of β–reduction) such that ρ M = ρ N. M, N, and ρ are restricted to 

expressions constructed from a given finite set of function symbols of specified arity.  Note 

that unification is essence solves the symbolic equation M = N ignoring the semantics of the 

constant symbols appearing in M and N.

Unification is much cleaner (and in my view more elegant) when the expression language is 

first-order, implying that function symbols must be constants.  This restricted version of 

unification is the standard case in mathematical logic and the only one that we will consider.  

When the expressions are first-order, there is always most general unifier if any unifier exists.  

A unifier ρ is most general if any other unifier is a substitution instance of ρ.

It is straightforward to devise a recursive matching algorithm that is exponential.  The 

computationally complex case arises when unifying two applications of an n-ary function 

symbol f.   (Applications of two different function symbols are not unifiable!) The 

substitutions derived by matching preceding arguments must be applied to subsequent 

arguments.  It is easy to write such code in a functional language like Scheme but it is very 

slow.  Linear algorithms exist although the most practical algorithms are slightly worse than 

linear (like Union-Find with path compression).   See the references on unification (overviews 

in Wikipedia and Computing Surveys) for more (and in some cases excessive) details.



Type Reconstruction

The handout on type inference for Polymorphic Jam introduces two 

different type inference systems for Jam.  The simpler one, which we call 

Typed Jam performs type reconstruction using a type system based on 

the simply typed λ-calculus.  The better one, which we call Polymorphic 

Jam performs type reconstruction using a type system based on Milner’s 

implicit polymorphism with the polymorphic let rule instead of the 

simply typed let rule.  Note that both rules support recursive let which 

is almost always the right choice in practice.

To perform type reconstruction for a Typed/Polymorphic Jam program, 

construct the inference tree corresponding to the program where each 

binding occurrence of a variable is labeled with a distinct (fresh) type 

variable.  Only one such tree exists because there is one typing rule for 

each Jam construct, but each rule in the tree imposes constraints on the 

type variables.  To reconstruct the types, we solve this set of equations 

using first-order unification.


