
Comp 411
Principles of Programming Languages

Lecture 23
Unification

Corky Cartwright

March 29, 2022

An Important Technical Omission
There is a fundamental difference between the simplification of arithmetic
expressions taught in grammar school and syntactic semantics taught in this course,
which has been glossed over up to this point in the course.

Higher-order vs First-order Expressions (Functional notation)

Expressions are constructed from constants, variables, and operators (which can be
converted to constants at the cost of eliminating infix notation).

Conventional arithmetic expressions are first-order: functions and operators must be
constants (not variables or expressions!). In most functional programming languages
(but not mainstream languages including Java!), expressions are higher-order:
variables can stand for functions (and in some cases operators). Note that the
distinction between first-order and higher-order notation is independent of
(orthogonal to) functional vs imperative meaning. In conventional expression
notation, higher-order applications can be hard to read because the function at the
head of application can be an expression as in (S(K))(K). Functional languages
typically use a different syntax in which functions are generally curried and
application parentheses are omitted, enabling us to write SKK instead of (S(K))(K).

Computer hardware is first-order: the functions (machine instructions) are constants.
To encode higher-order expressions, we must use indirection (addresses of function
representations, e.g., closures or subroutines) to represent functions (operations) that
are not constants.

Functional Languages Can Be First-Order

First-order functional languages are uncommon because this prevents functions from being

treated as conventional data values; a function cannot be bound to a conventional variable.

Algol-like languages support procedure parameters that are functions but these parameters are

not conventional variables. They can only be passed as arguments to other functions; they

cannot be used as conventional values, e.g., returned as results of computations.

Syntactic semantics (explicit substitution) can be restricted to first-order languages in which

functions are not conventional (sometimes called first-class) values. In such a first-order

language, we still need a notion of let-binding, but it is not an abbreviation for the application of

a λ-expression to argument expressions. In such languages, let is simply a mechanism for

defining scoped (local) constants. In a syntactic semantics, this local constant corresponds to

rewrite rule that expands invocations of a locally defined function into instantiations of the body

(a restricted form of β–reduction). This form of syntactic semantics does not replace function

symbols by their corresponding bindings (λ-abstractions) as in Jam. In Jam, the mistake in hand

evaluation of forgetting to replace a non-constant function name (which is a variable) by its

binding and immediately performing the next step (reducing an argument or performing a β–

reduction) corresponds to a first-order view of let. For this reason, this mistake is very

common.

My early research on first-order programming logic, where recursively-defined functions are

interpreted as definitions extending a first-order logical theory of the data domain is based on

this perspective. See https://www.cs.rice.edu/~javaplt/411/19-spring/Readings/RecPrograms.pdf.

https://www.cs.rice.edu/~
http://www.msn.com/?cobrand=dell17win10.msn.com&ocid=DELLDHP17&pc=DCTE

First-Order Is Important!
Logicians have deeply investigated the distinction between first-order and higher-order notation.

Higher-order logic is not “better” than first-order logic. In fact, there are good reasons to prefer

first-order logic (which is “complete”) over higher-order logics (which are inherently

“incomplete”) in many contexts. For an explanation of this distinction, you should take a

rigorous course in mathematical logic. At Rice, only Comp 409 qualifies, but most mathematics

departments at major universities offer such a course. On this subject, I highly recommend the

book “A Mathematical Introduction to Logic” by Herbert Enderton.

Encoding Higher-Order Expressions as First-Order Expressions

In the abstract syntax for Jam, all Jam expressions have first-order representations even though

Jam expressions are higher-order. This encoding relies on a very simple trick: higher order

expressions can be encoded as first-order expressions where the application of computed (non-

constant) functions is expressed using an explicit apply operation that takes the computed

function as a value (called the rator or head of the application). In higher order expressions,

variables can be bound to functions and function applications can return functions. Functions

are values like numbers or lists. If we introduce an explicit operation to apply functions, then

the apply operation is a constant and functions are data values that behave like functions when

they are applied. Our abstract syntax for Jam includes several different apply operations (to

reduce the number of constant functions) but only one of them involves applying function

values (closures). Lower-level languages including Java, C and machine language are

inherently first-order.

Unification
The unification problem is very easy to state. Given two expressions M and N, a unifier of M

and N is a substitution ρ (an environment binding variables to expressions exactly as in the n-

ary generalization of β–reduction) such that ρ M = ρ N. M, N, and ρ are restricted to

expressions constructed from a given finite set of function symbols of specified arity. Note

that unification is essence solves the symbolic equation M = N ignoring the semantics of the

constant symbols appearing in M and N.

Unification is much cleaner (and in my view more elegant) when the expression language is

first-order, implying that function symbols must be constants. This restricted version of

unification is the standard case in mathematical logic and the only one that we will consider.

When the expressions are first-order, there is always most general unifier if any unifier exists.

A unifier ρ is most general if any other unifier is a substitution instance of ρ.

It is straightforward to devise a recursive matching algorithm that is exponential. The

computationally complex case arises when unifying two applications of an n-ary function

symbol f. (Applications of two different function symbols are not unifiable!) The

substitutions derived by matching preceding arguments must be applied to subsequent

arguments. It is easy to write such code in a functional language like Scheme but it is very

slow. Linear algorithms exist although the most practical algorithms are slightly worse than

linear (like Union-Find with path compression). See the references on unification (overviews

in Wikipedia and Computing Surveys) for more (and in some cases excessive) details.

Type Reconstruction

The handout on type inference for Polymorphic Jam introduces two

different type inference systems for Jam. The simpler one, which we call

Typed Jam performs type reconstruction using a type system based on

the simply typed λ-calculus. The better one, which we call Polymorphic

Jam performs type reconstruction using a type system based on Milner’s

implicit polymorphism with the polymorphic let rule instead of the

simply typed let rule. Note that both rules support recursive let which

is almost always the right choice in practice.

To perform type reconstruction for a Typed/Polymorphic Jam program,

construct the inference tree corresponding to the program where each

binding occurrence of a variable is labeled with a distinct (fresh) type

variable. Only one such tree exists because there is one typing rule for

each Jam construct, but each rule in the tree imposes constraints on the

type variables. To reconstruct the types, we solve this set of equations

using first-order unification.

