
Comp 411
Principles of Programming Languages

Lecture 24
Types for Imperative Languages

Corky Cartwright

March 31, 2023

Does Hindley-Milner Polymorphism Work in
Imperative Languages?

The naïve extension of Hindley-Milner Polymorphism to imperative
languages fails!

Assume that we add ref objects and operations to our language. This
is purely an extension of the data model, which only involves the
definition of types (by adding new type constructors) and the set of
primitive operations in our base type environment.

New unary type constructor: ref

New primitive operations:

ref: ∀α (α → ref α)
!: ∀α (ref α → α)
←: ∀α (ref α α →)

Breaking the Resulting Type System

Counterexample to sound typing:
let x := ref null
in {x <- cons(4,null);

~first(!x)}

The empty list null has type ∀α(list α). What is the type of x?

ref ∀α(list α). Then x has type ref list int in the first expression

of the block and type ref list bool in the second. Yet ~first(!x)

will generate a run-time type error because first(!x) is an int .

What is going wrong? Recall our interpretation of let-polymorphism as

a syntactic abbreviation for an appropriate family of non-polymorphic

definitions. In this case, the expanded program

let x1:(ref list int) := ref null;
x2:(ref list bool) := ref null;
. . .

is well-typed! What went wrong in the translation? It changed the

meaning of the program because it changed the sharing of ref cells.

What Is Fundamentally Different About
Imperative Values?

Their semantics involves the concept of sharing, which makes

reasoning about mathematical expression very messy. Why?

Changing the contents of one occurrence of ref may change the

contents of another because they are shared!

The semantics of function equality in Jam is not purely functional

because it relies on testing sharing relationships. A truly functional

semantics does not include any notion of sharing between values.

Can We Patch Hindley-Milner Typing So That
It Works for Imperative Languages

Yes! It can be done in a variety of ways by imposing additional

restrictions on the inference of polymorphic types for program

variables (more restrictions on what bindings qualify as polymorphic.

The original “solution” in Standard ML relied on “weak type

variables” and was/is generally regarded as incomprehensible. (Look

it up on the web if you are interested.) Moreover, many formulations

(including the early implementations) of weak type variables are not

sound! Soundness proofs for a few variants of this system eventually

appeared in the mid-90's (ML dates from 1978) including one by our

own John Greiner.

The winning restriction on H-M typing for imperative languages was

developed by my late student Andrew Wright (in joint work with

Mathias Felleisen).

The Wright-Felleisen Value Test for
Polymorphic Generalization

Define a syntactic value as either a program variable or a data

value (value in the operational semantics). Rationale:

splitting let bindings must preserve semantics of the let body.

Then the type of a variable introduced in a let construction

can be generalized (the close operation in our let-poly rule) if

and only if the right hand side of the definition is a value.

Why does this work? It is based on the idea that

polymorphism only works when the value of a variable can

be transparently copied (which is not true in our

counterexample) in the replicated bindings. Expressions that

mean exactly the same data values can be copied. But

computations (which generally produce new results) cannot.

