
Comp 411
Principles of Programming Languages

Lecture 27
Storage Management

Corky Cartwright

April 6, 2022



Heap Management

In all of our interpreter designs (including those written in 
machine code or C), we have presumed the existence of a 
heap supporting dynamic allocation (new operations in C++ 
or Java).  

For efficient space utilization, the heap must reclaim 
storage that is no longer in use by the program.  In C and 
C++, the programmer is responsible for explicitly 
reclaiming storage (the free and delete operations in C 
and C++, respectively). In a well-written C/C++ program, 
all dynamically allocated storage is freed just before it 
becomes inaccessible (no object becomes inaccessible prior 
to being freed; once freed, an object is never referenced 
again).

In practice, manual storage management is clumsy 
(interfaces become much more complex) and error-prone.



Automatic Heap Management
• Two fundamental approaches to automatic heap 

management:

• Reference counting: every object includes a field that 
counts the number of objects (every data structure 
containing a heap pointer including an ordinary variable 
is called an object) pointing to it.  Some schemes defer 
updating reference counts, but an object with a deferred 
count cannot be freed.

• Garbage collection: periodically (usually when no free 
space is left) the heap management system determines 
which objects in the heap have become inaccessible.

• The term garbage collection is not used consistently in 
the literature.  In some cases, it means any approach to 
automatic heap management.  In others it refers to 
schemes that rely on pointer tracing rather than reference 
counting.  I will use the latter convention.



Reference Counting
• Every object includes an additional field that counts the number of objects 

pointing to it;  this field must be large enough so that it cannot overflow 
(e.g., machine word [address] size).

• When an object is created, its reference count is set to 1 (and a pointer to it 
must be created within some other object, perhaps a variable).

• When a pointer field in an object is mutated, the reference count for the old 
object is decremented and the reference count for the new object is 
incremented.   This combined operation must be atomic with respect to the 
checking for 0 reference counts.  

• When a reference count for an object becomes 0, the object is freed
(returned to free storage).

• There are many possible optimizations; reference counting for local storage 
is expensive and can be greatly reduced by static analysis and the use (by 
the programmer) of weak pointers that are ignored in reference counting.  A 
weak pointer is a redundant pointer to an object; in a language that supports 
weak pointers, the storage management system recognizes precisely when a 
weak pointer is no longer valid (points to an object that has been 
deallocated) and sets its value to null (or None in frameworks with 
“option” types).  Some compilers implementing languages that mandate the 
use of reference counting in storage management (like Objective C and 
Swift) aggressively optimize generated code. 




