
Comp 411

Principles of Programming Languages

Lecture 3

Parsing

Corky Cartwright

January 13, 2023

Top Down Parsing
• What is a context-free grammar (CFG)?

• A recursive definition of a set of strings; it is identical in format to

recursive data definitions of algebraic types (as in Ocaml or Haskell) except

for the fact that it defines sets of strings using concatenation rather than

sets of trees (objects/structs) using tree construction. The root symbol of a

grammar generates the language of the grammar. In other words, it

designates the string syntax of complete programs.

• Example. The language of expressions generated by <expr>

<expr> ::= <term> | <term> + <expr>

<term> ::= <number> | <variable> | (<expr>)

• Some sample strings generated by this CFG

5 5+10 5+10+7 (5+10)+7

• What is the fundamental difference between generating strings and
generating trees?
• The construction of a generated tree is manifest in the structure of the tree.

• The construction of a generated string is not manifest in the structure of the string; it

must be reconstructed by the parsing process. This reconstruction may be ambiguous

and it may be costly in the general case (O(n3)). Fortunately, parsing the language for

deterministic (LL(k), LR(k)) grammars is linear.

Top Down Parsing cont.
• We restrict our attention to LL(k) grammars because they can be parsed

deterministically using a top-down approach. Every LL(k) grammar is LR(k).

LR(k) grammars are those that can be parsed deterministically bottom-up using k-

symbol lookahead. For every LL(k) grammar, there is an equivalent LR(1)

grammar. LR(k) is more general than LL(k) parsing but less friendly in practice.

The dominant parser generators for Java, ANTLR and JavaCC are based on LL(k)

grammars. (Conjecture: the name ANTLR is a contraction of anti-LR.) For more

information, take Comp 412.

• Data definition of abstract syntax corresponding to preceding sample grammar

Expr ::= Expr + Expr | Number | Variable

• Note that the syntax of the preceding production is nearly identical to what we

use for CFGs but we interpret infix terminal symbols like + as the name of

binary tree node constructor. For tree node constructors that are not binary we

typically use prefix notation. Only one terminal can appear within a variant on

the right-hand-side (RHS) of a production in a tree grammar.

• Why is the data definition simpler than the corresponding CFG? Because the

nesting structure of program phrases is built-in to the definition of abstract

syntax (trees) but must be explicitly encoded using parentheses or multiple

productions (encoding the precedence hierarchy) in CFGs which generate

strings.

Top Down Parsing cont.
• We restrict our attention to LL(k) grammars because they can be parsed deterministically

using a top-down approach. Every LL(k) grammar is LR(k). LR(k) grammars are those

that can be parsed deterministically bottom-up using k-symbol look-ahead. For every

LL(k) grammar, there is an equivalent LR(1) grammar. LR(k) is more general than

LL(k) parsing but less friendly in practice. The dominant parser generators for Java,

ANTLR and JavaCC are based on LL(k) grammars. (Conjecture: the name ANTLR is a

contraction of anti-LR.) For more information, take Comp 412.

• Data definition of abstract syntax corresponding to preceding sample grammar

Expr ::= Expr + Expr | Number | Variable

o Note that the syntax of the preceding tree production is nearly identical to what we

use for CFGs but we interpret infix terminal symbols like + as the name of binary

tree node constructor. For tree node constructors that are not binary we typically use

prefix notation. Only one terminal can appear within a variant on the right-hand-side

(RHS) of a production.

o Why is the data definition simpler than the corresponding CFG? Because the nesting

structure of program phrases is built-in to the definition of abstract syntax. In CFGs

the same information must be explicitly encoded using parentheses or multiple

productions. “Lisp-like” languages dispense with CFG syntax by stipulating that

programs are abstract syntax trees represented as lists (eliminating the need to

introduce new constructors when new constructs are added to the language).

Top Down Parsing cont.
• The parser returns the abstract syntax tree (AST) for the input program. In the

literature on parsing, parsers often return parse trees (containing irrelevant non-

terminal nodes used to avoid ambiguity in the CFG) which must be converted

to ASTs.

• Consider the following example: 5-10+7

• What is the corresponding abstract syntax tree? It depends on the implicit

associativity of + and - : (5-10)+7 or 5-(10+7)

• In a Lisp-like language, we must write

(+ (- 5 10) 7) or (- 5 (+ 10 7))

• Are strings (unless they are written in Lisp-like syntax) a credible data

representation for programs? Is a Lisp-like string as good an internal

representation as a tree? The answer to both questions is “No”.

• Why do we use external string representations for source programs?

Humans find such representations more intelligible perhaps because we write

natural language this way. Mathematics heavily relies on using strings to

represent expressions.

Parsing algorithms
• Top-down (predictive) parsing: use k token look-ahead to determine next

syntactic category.
• Simplest description uses syntax diagrams which actually support a slightly

more general framework than LL(k) parsing because they support iterative
loops which correspond to both left-associative and right-associative operators;
the parser developer can decide for each such iterative loop whether to use left-
association or right-association. The former is typically chosen. In addition,
the longest possible match is chosen when parsing using syntax diagrams
which can eliminate ambiguity in the corresponding CFG. For more about
LL(k) grammars and syntax diagrams, see http://www.bottlecaps.de/rr/ui

expr:

term:

+ term

number

variable

(expr)

term

http://www.bottlecaps.de/rr/ui

Key Idea in Top Down Parsing

• Use k token look-ahead to determine which direction to
go at a branch point in the current syntax diagram.

• Example: parsing 5+10 as an expr
• Following the definition of expr, invoke term

• In term, read the first token 5, which is a number, and return it

to expr

• In expr, form the tree for 5, read the next token +, remember

it, and invoke term

• In term, read the next token 10, which is a number, and return

it to expr

• In expr, form the tree for 5+10, read next token EOF, and return

the tree for 5+10

• Parsing is fundamentally recursive because syntactic

rules are recursive.

Structure of Recursive Descent Parsers

• The parser includes a method/procedure for each non-trivial non-

terminal symbol in the grammar.

• For trivial non-terminals (like number) that correspond to individual

tokens, the token (or the corresponding object in the AST definition)

is the AST so we can directly construct the AST making a separate

procedure unnecessary.

• The procedure corresponding to a non-terminal may take the first

token of the text corresponding to a non-terminal as an argument; this

choice is natural if that token has already been read. It is cleaner

coding style to omit this argument if the token has not already been

read.

• Most lexers support a peek operation that reveals the next token

without actually reading it (consuming it from the input stream). In

some cases, this operation can be used to cleanly avoid reading a

token beyond the syntactic category being recognized. The class

solution does not always follow this strategy; perhaps it should.

Designing Grammars and Syntax Diagrams for

Top-Down Parsing

• Many different grammars and syntax diagrams generate the
same language (set of strings of symbols):

• Requirement for any efficient parsing technique: determinism of
(non-ambiguity) of the grammar or syntax diagrams defining
the language. In addition, the precedence of operations must be
correctly represented in parse trees (or the abstract syntax
implied by syntax diagrams). This information is not captured
in the concept of “language equivalence” in the realm of
parsing.

• For deterministic top-down parsing using a grammar or syntax
diagram, we must design the grammar or syntax diagram so that
we can always tell what rule to use next starting from the bottom
(leaves) of the parse tree by looking ahead some small number
(k) of tokens [formalized as LL(k) parsing for grammars].

Designing Grammars and Syntax Diagrams for

Top-Down Parsing (cont.)

To create such a grammar or syntax diagram:

• Eliminate left recursion; use right recursion (in LL(k) grammars or
syntax diagrams) or iteration (only in syntax diagrams) instead. Syntax
diagrams are more expressive because they accommodate both iteration
(corresponding to left associativity) and recursion (corresponding to
right associativity).

• Factor out common prefixes (standard practice in syntax diagrams)

• In extreme cases, hack the lexer to split token categories based on local
context.

• Example: in DrJava, we introduced >> and >>> as extra tokens when Java
5 was introduced because >> can either be an infix right shift operator or
consecutive closing pointy brackets in a generic type. With this change to
the lexer, it was easy to revise an LL(k) top-down Java 4 (1.4) parser to
create a Java 5 parser. Without this change to the lexer, top-down parsing
of Java 5 looked really ugly, possibly requiring unbounded look-ahead,
which our parser generator (JavaCC) did not support.

Other Parsing Methods
 When we parse a sentence using a CFG, we effectively build a (parse) tree showing how to

construct the sentence using the grammar. The root (start) symbol is the root of the tree and

the tokens in the input stream are the leaves.

 Top-down (predictive) parsing using an LL(k) grammar or a syntax diagram is simple and

intuitive, but it is not as powerful (in terms of the set of languages [strings] it

accommodates) as bottom-up deterministic parsing which is much more tedious. Bottom

up deterministic parsing is formalized as LR(k) parsing. Every LL(k) grammar is LR(k)

and has an equivalent LR(1) grammar but many LR(1) grammars do not have equivalent

LL(k) grammars for any k.

 No sane person manually writes a bottom-up parser. In other words, there is no credible

bottom-up alternative to recursive descent parsing. Bottom-up parsers are generated using

parser-generator tools based on LR(k) parsing (or some bottom-up restriction of LR(k) such

as SLR(k) or LALR(k)). Some more recent parser generators like JavaCC and ANTLR are

based on LL(k) parsing, which facilitates generating good error diagnostics. In DrJava, we

have several different parsers including both recursive descent parsers and automatically

generated parsers produced by JavaCC.

 Why is top-down parsing making inroads among parser generators? Top-down parsing is

much easier to understand and more amenable to generating intelligible syntax diagnostics.

Why is recursive descent still used in production compilers? Because it is straightforward

(if a bit tedious) to code, supports sensible error diagnostics, and accommodates ad hoc

hacks (e.g., use of state) to get around the LL(k) restriction.

 If you want to learn about the details and mechanics of parsing, take Comp 412.

