
Comp 411

Principles of Programming Languages

Lecture 5

Syntactic Interpreters

Corky Cartwright

January 20, 2023

A Syntactic Interpreter for LC
• Recall our definition of the LC language:

M :== x | n | (lambda x M) | (M M) | (+ M M)

where x is any variable in Var and n is a number (integer) in Num. An LC
program is an LC expression M that is closed, i.e., contains no free
variables.

• The preceding is a conventional CFG definition but it can be interpreted
as an inductive definition of abstract syntax trees because all constructed
(non atomic) expressions are enclosed in parentheses, showing the
precise structure of the corresponding AST.

• The set R of abstract representations is defined by the equation:
R = (make-var Var) | (make-const Num) | (make-proc Var R) |

(make-app R R) | (make-add R R)

where we have defined the following Scheme data types

(define-struct var (name)) var and const are constructors with one field

(define-struct const (number))

(define-struct proc (param body)) proc, app, add are constructors with two fields

(define-struct app (rator rand))
(define-struct add (left right))

Syntactic Interpretation

• What does syntactic interpretation do? Reduce ASTs to

values.

• Syntactic interpretation reduces the AST for a program to a

value. We arrange our evaluation rules so that every

expression in the chain of expressions produced by the

reduction process is a program. Our semantics simply

rewrites entire programs until the result is a value. Note that

every value is a program.

• What is a value? An AST representing a data constant. In

LC (effectively a subset of Scheme), a value V is either a

number or a procedure:

V :== n | (lambda x M)

• What are the Racket/Scheme evaluation rules (from Comp

311) that are relevant to LC?

A Syntactic Interpreter for LC cont.
Basic Rules of Evaluation for call-by-value (universal in mainstream languages)

• Rule 1: For applications of the binary operator + to two arguments that are
numbers, replace the application by the sum of the two arguments (a number).

• Rule 2: For applications of a lambda-expression to a value (defined earlier),
substitute the argument for the parameter in the body, i.e.,

((lambda x M) V) ---> M[x := V]

where M[x := V] means M with all free occurrences of x replaced by V.

• Observation: the definition of value has a major impact on evaluation. For
example, we conceivably could define

V :== n | v | (lambda x V) (v is a (free) variable)

• The preceding definition of value in a technical context later in this course but
ambda-calculus essentially do this, but it is not a reasonable way to defin
relevant to defining the semantics of real programming languages. Why?

• What if we allow arguments in procedure application reductions that aren’t

values?

Example:

((lambda y 5) ((lambda x (x x)) (lambda x (x x))))

• This is a sensible choice in functional languages that prohibit side effects (the
values of bound variables and fields never change). Haskell does this.

Syntactic Interpreter for LC cont.

Combining evaluation rules:

• Given an LC expression, we evaluate it by repeatedly
applying the preceding rules until we get an answer.

• What happens when we encounter an expression to which

more than one rules applies? In our framework, the

leftmost rule always takes priority.

• Other strategies are possible. Some “syntactic” (rewrite-

rule-based) semantics for complex languages define

formal syntactic rules (called evaluation contexts) to

determine which reduction is done first. For our purposes,

simply mandating the leftmost reduction is sufficient.

Gotcha's in Syntactic Semantics
In Rule 2 (called “beta-reduction” in the program semantics literature), we confined
substitution in the definition of M[x := V] to the free occurrences of x in M. If
we had not confined substitution to free occurrences, the rule would have produced
strange results, destroying the meaning of bound variables in M. If we use Rule 2
to transform programs (replacing “equals by equals”), we must be much more
careful in how we perform the substitution of V for x in M. In particular, free
variables in V can be “captured in replaced occurrences of x in M. Consider the
following example:

((lambda x (lambda y x)) y)

If we perform naïve beta-reduction replacing all free occurrences of x in

(lambda x (lambda y x))

by y, we get

(lambda y x)) [x := y] → (lambda y y)

which is wrong! The occurrence of y in [x := y] is free. Presumably, it is
bound somewhere in the context surrounding

((lambda x (lambda y x)) y)

When we substitute y for the free occurrence of x in (lambda (y) x), it
becomes bound by a local definition of y. The solution is to rename the variable
introduced in the local definition of y as a fresh variable name, say z. Hence,

(lambda y x)) [x := y] → (lambda z y)

Safe Substitution
• This revised substitution process (renaming local variables that would

otherwise capture free occurrences in the expression being

substituted) is called safe substitution. The results produced by safe

substitution are non-deterministic in a trivial sense because the

choices for the new names of renamed local variables are arbitrary

(as long as they are fresh, i.e., distinct from existing variables in the

program text involved in the substitution).

• Question to Ponder: Assume that we use deBruijn notation (static

distance coordinates in LC instead of named variables. How would

we define substitution, i.e., what happens to the deBruijn indices

during the substitution process? (… the cost of deBruijn notation)

• Further Reading: The safe substitution process hardly qualifies as a

simple local modification of the program being reduced. In the

literature on reduction in the lambda calculus, there are some

interesting papers that explicate the details of the safe substitution

operation breaking it down into smaller steps that truly are simple

local modifications. See https://dl.acm.org/citation.cfm?id=96712

https://dl.acm.org/citation.cfm?id=96712

• In essentially all functional languages for software
development, there is alternate special notation for
((lambda x M) N)

namely
(let [(x N)] M) Scheme/Racket

or in similar conventional syntax
let x := N; in M Jam

• This alternate notation is literally an abbreviation for the
explicit lambda form, but it is far more readable and intuitive

• The notation obviously generalizes to multiple lambda
variables

• For this alternate notation, the beta-reduction rule has the form
(let [(x V)] M) ⇒ M[x := V] Call-by-value (common)
(let [(x N)] M) ⇒ M[x := N] Call-by-name (only Haskell)

Supporting Recursion
• Our LC dialect does not directly support recursion. A lambda abstraction cannot

refer to itself. Later in the course, we will show that lambda-notation is so powerful
that we can express recursion implicitly using a subtle closed lambda-abstraction that
called the Y operator. Alonzo Church and his students discovered this operation in
the 1930’s when they created the lambda-calculus. Some of the unit tests that we
provide for Assignment 2 (which only includes let as a syntactic abbreviation for an
applications of a lambda-abstraction [map]) include a definition of Y.

• Later in the course, we will introduce a recursive form of let, which is used in the
hand evaluation exercises appearing in the course calendar. For clarity the let
operations in these exercises should be written as letrec.

• A recursive let construction
letrec x1 := E1;

...
xn := En;

in E

is syntactically evaluated by reducing the right-hand-sides E1, .., En to values V1, .., Vn
which can be referenced in E using the corresponding left-hand-side identifiers x1, ...,
xn. If an identifier xi appears in E , it evaluates to the value of Vi (assuming it is not
shadowed by an inner let also binding xi). The key difference between let and
letrec is the scope of the local variables x1, ..., xn introduced in the construct. The
scope of variables introduced in a let is simply the body E of the let. In a letrec,

the scope is the entire letrec.

