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Denotational Semantics

• The primary alternative to syntactic semantics is denotational 

semantics.  A denotational semantics maps abstract syntax trees 

into a set of denotations (mathematical values like numbers, 

lists, and functions).

• The denotations of simple data values like numbers and lists are 

essentially the same mathematical objects as syntactic values: 

they have simple inductive definitions with exactly the same 

structure as the corresponding abstract syntax trees.

• But denotations can also be complex mathematical objects like 

functions or sets.  For example, the denotation for a lambda-

abstraction in “pure” (functional) Scheme is a function mapping 

denotations to denotations--not some syntax tree as in a 

syntactic semantics.



Meta-interpreters
• Denotational semantics is rooted in mathematical logic: the semantics of terms 

(expressions) in the predicate calculus is defined denotationally by recursion on 

the syntactic structure of terms.  The meaning of each term is a value in a 

mathematical structure or algebra.

In the realm of programming languages, a purely functional interpreter (defined 

by recursion on the structure of ASTs) implicitly constitutes a denotational 

definition of the language.
• Syntactic interpreters do not have this property. The defect is that the output of a 

syntactic interpreter is restricted to values that can be characterized syntactically.  

(How do you output a function?)

• On the other hand, efficient interpreters implicitly introduce a simple form of  

functional abstraction.  An efficient recursive interpreter accepts an extra input: an 

environment mapping free variables to values, thus defining the meaning of a program 

expression as a function from environments to values.

• Syntactic interpreters are not denotational because they transform ASTs to ASTs that 

are values rather than mapping them to abstract mathematical meanings.  A 

denotational interpreter uses pure structural recursion.  To handle the bindings to 

variables, it cannot perform substitutions; it must maintain an environment of 

bindings instead.  We can concretely define denotational meaning using purely 

functional meta-interpreters.

•



Meta-interpreters cont.
• Interpreters written in a denotational style are often called meta-interpreters 

because they are defined in a meta-mathematical framework where programming 

language expressions and denotations are objects in the framework.  The 

definition of the interpreter is a level above definitions of functions in the 

language being defined..

• In mathematical logic, meta-level definitions are expressed informally as 

definitions of mathematical functions..

• In program semantics, informal meta-level definitions are expressed in a 

convenient functional framework with a semantics that is easily defined and 

understood using informal mathematics.  Formal denotational definitions are 

written in a mathematical meta-language corresponding to some formulation of a 

Universal Domain (a mathematical domain in which all relevant programming 

language domains can be simply embedded, most elegantly as projections).  This 

material is covered in graduate level courses on domain theory.

• A functional interpreter for language L written in a functional subset of L is called 

a meta-circular interpreter.  It really isn't circular because it reduces the meaning of 

all programs to a single purely functional program which can be understood 

independently using simple mathematical machinery (inductive definitions over 

familiar mathematical domains).



Denotational Building Blocks

• A program is an inductively defined AST.  We have thoroughly 

discussed this topic.  In most functional languages, a program is 

simply a closed expression, where an expression has a simple 

inductive definition as an AST.

• What about denotations?  Our meta-interpreter will return 

ordinary values like numbers, lists, tuples, etc., but each such 

value depends on the environment, so the meaning of a sub-

expression is really a function from environments to values.

• How do we formalize the set of environments? Mathematicians 

like to use functions.  An environment is a function from 

variables (syntax) to denotations.  But environment functions are 

special because they are finite.  Software engineers prefer to 

represent them as lists of pairs, binding variables to denotations. 

How do we represent them?  For now we will use (partial) 

functions from environments to values (since they require no 

further specification).



Critique of Deferred Substitution

Interpreter from Lecture 6
• How did we represent the denotations of lambda-abstractions 

(functions) in environments?  By their ASTs.  Is this 

implementation correct?  No!

• Counterexample:

(let ([twice (lambda (f) (lambda (x) (f (f x))))]) 
(let ([x 5]) 

((twice (lambda (y) (+ x y))) 0)))



Evaluate (syntactically)
(let [(twice (lambda (f) (lambda (x) (f (f x)))))]

(let [(x 5)]
((twice (lambda (y) (+ x y))) 0)))

⇒ (let [(x 5)]
(((lambda (f) (lambda (x) (f (f x))))

(lambda (y) (+ x y))) 
0))

⇒ (((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ 5 y))) 
0)

⇒ ((lambda (x) ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) x))))
0)

⇒ ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) 0))
⇒ ((lambda (y) (+ 5 y)) (+ 5 0))
⇒ ((lambda (y) (+ 5 y)) 5) ⇒ (+ 5 5) ⇒ 10



Evaluate (using our bad interpreter)
{}
(let [(twice (lambda (f) (lambda (x) (f (f x)))))]
(let (x 5)]
(twice (lambda (y) (+ x y))) 0))  ⇒

{twice = (lambda (f) (lambda (x) (f (f x))))}
(let [(x 5)] ((twice (lambda (y) (+ x y))) 0))  ⇒

{x = 5, twice = (lambda (f) (lambda (x) (f (f x))))}
((twice (lambda (y) (+ x y))) 0)  ⇒

{x = 5, ... }
(((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ x y))) 0) ⇒

{f = (lambda (y) (+ x y)), x = 5, ... } ((lambda (x) (f (f x))) 0) ⇒
{x = 0, f = (lambda (y) (+ x y)), ... } (f (f x)) ⇒
{x = 0, f = (lambda (y) (+ x y)), ... } ((lambda (y) (+ x y)) (f x)) ⇒
{x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) x)) ⇒
{x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) 0)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ x y)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 y)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 0)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) 0) ⇒
{y = 0, y = 0, x = 0, ... } (+ x y) ⇒ { y = 0, ... } (+ 0 y) ⇒
{ ... } (+ 0 0) ⇒ 0



Closures Are Essential!
• Exercise: evaluate the same expression using our broken interpreter.  

The computed “answer” is 0.   The trace appears on the preceding 

slide!

• The interpreter uses the wrong binding for the free variable x in

(lambda (y) (+ x y))

• The environment records deferred substitutions.  When we pass a 

function as an argument, we need to pass a “package” including the 

deferred substitutions.  Why?  The function will be applied in a 

different environment which may associate the wrong bindings it free 

variables. In the PL (programming languages) literature, these 

packages (code representation + environment) are called closures.

• Note the similarity between this mistake and the “capture of bound 

variables”.  Unfortunately, this mistake has been labeled as a feature 

rather than a bug in much of the PL literature.  It is called “dynamic 

scoping” rather than a horrendous mistake.  Watch out whenever you 

must program in a language with “dynamic scoping”.



Corrected Semantic Interpreter
(define-struct (closure proc env))     ; closure is name of type
;; V = Const | Closure  ; revises our former definition of V
;; Binding = (make-Binding Sym V)  ; Note: Sym not Var
;; Env = (listOf Binding)          ; Lists are built-in to Scheme
;; Closure = (make-closure Proc Env)
;; Type contract: R Env → V
(define eval

(lambda (M env)
(cond

((var? M) (lookup (var-name M) env))
((const? M) M)
((proc? M)) (make-closure M env))
((add? M)                        ; M has form (+ l r)

(const-add (eval (add-left M) env) (eval (add-right M) env)))
(else                            ; M has form (N1 N2)

(apply (eval (app-rator M) env) (eval (app-rand M) env))))))

;; Closure representing V → V assumed to be <code,environment> pair
(define apply

(lambda (cl v)                       ; assume cl is a closure
(eval (proc-body (closure-proc cl))  ; closure-proc may blow-up 

(cons (make-binding (proc-param (closure-proc cl)) v)
(closure-env cl)))



A Meta-Interpreter for CBN
• Recall the syntactic semantics for the CBN version of LC.  What is 

different from our standard CBV (call-by-value) syntactic semantics?  

What is our rule in CBV for reducing applications of program-defined 

functions (lambda-abstractions) (lambda x M)?  Are there any 

restrictions on  β-reduction?

• How do we implement CBN (unrestricted) β-reduction in a meta-

interpreter.  Recall that we must defer substitutions for parameters in 

the lambda-abstractions.  How can we get the right answer even when 

we defer evaluation?  What did we do in our CBV interpreter when we 

passed functions (lambda-abstractions) as argument values?

• What problem do closures eliminate?  Finding the correct values for 

free variables in the bundled lambda-abstraction.  In CBN we need to  

bind variables to unevaluated expressions. How can we avoid getting 

incorrect values for free variables in such expressions, just like we did 

for lambda-abstractions as values?  You must answer this question to 

do Project 2.  Hint: free variables in CBN and free variables in 

function definitions can be addressed in essentially the same way.


