
Comp 411

Principles of Programming Languages

Lecture 7

Meta-interpreters

Corky Cartwright

January 23, 2023

Denotational Semantics

• The primary alternative to syntactic semantics is denotational

semantics. A denotational semantics maps abstract syntax trees

into a set of denotations (mathematical values like numbers,

lists, and functions).

• The denotations of simple data values like numbers and lists are

essentially the same mathematical objects as syntactic values:

they have simple inductive definitions with exactly the same

structure as the corresponding abstract syntax trees.

• But denotations can also be complex mathematical objects like

functions or sets. For example, the denotation for a lambda-

abstraction in “pure” (functional) Scheme is a function mapping

denotations to denotations--not some syntax tree as in a

syntactic semantics.

Meta-interpreters
• Denotational semantics is rooted in mathematical logic: the semantics of terms

(expressions) in the predicate calculus is defined denotationally by recursion on

the syntactic structure of terms. The meaning of each term is a value in a

mathematical structure or algebra.

In the realm of programming languages, a purely functional interpreter (defined

by recursion on the structure of ASTs) implicitly constitutes a denotational

definition of the language.
• Syntactic interpreters do not have this property. The defect is that the output of a

syntactic interpreter is restricted to values that can be characterized syntactically.

(How do you output a function?)

• On the other hand, efficient interpreters implicitly introduce a simple form of

functional abstraction. An efficient recursive interpreter accepts an extra input: an

environment mapping free variables to values, thus defining the meaning of a program

expression as a function from environments to values.

• Syntactic interpreters are not denotational because they transform ASTs to ASTs that

are values rather than mapping them to abstract mathematical meanings. A

denotational interpreter uses pure structural recursion. To handle the bindings to

variables, it cannot perform substitutions; it must maintain an environment of

bindings instead. We can concretely define denotational meaning using purely

functional meta-interpreters.

•

Meta-interpreters cont.
• Interpreters written in a denotational style are often called meta-interpreters

because they are defined in a meta-mathematical framework where programming

language expressions and denotations are objects in the framework. The

definition of the interpreter is a level above definitions of functions in the

language being defined..

• In mathematical logic, meta-level definitions are expressed informally as

definitions of mathematical functions..

• In program semantics, informal meta-level definitions are expressed in a

convenient functional framework with a semantics that is easily defined and

understood using informal mathematics. Formal denotational definitions are

written in a mathematical meta-language corresponding to some formulation of a

Universal Domain (a mathematical domain in which all relevant programming

language domains can be simply embedded, most elegantly as projections). This

material is covered in graduate level courses on domain theory.

• A functional interpreter for language L written in a functional subset of L is called

a meta-circular interpreter. It really isn't circular because it reduces the meaning of

all programs to a single purely functional program which can be understood

independently using simple mathematical machinery (inductive definitions over

familiar mathematical domains).

Denotational Building Blocks

• A program is an inductively defined AST. We have thoroughly

discussed this topic. In most functional languages, a program is

simply a closed expression, where an expression has a simple

inductive definition as an AST.

• What about denotations? Our meta-interpreter will return

ordinary values like numbers, lists, tuples, etc., but each such

value depends on the environment, so the meaning of a sub-

expression is really a function from environments to values.

• How do we formalize the set of environments? Mathematicians

like to use functions. An environment is a function from

variables (syntax) to denotations. But environment functions are

special because they are finite. Software engineers prefer to

represent them as lists of pairs, binding variables to denotations.

How do we represent them? For now we will use (partial)

functions from environments to values (since they require no

further specification).

Critique of Deferred Substitution

Interpreter from Lecture 6
• How did we represent the denotations of lambda-abstractions

(functions) in environments? By their ASTs. Is this

implementation correct? No!

• Counterexample:

(let ([twice (lambda (f) (lambda (x) (f (f x))))])
(let ([x 5])

((twice (lambda (y) (+ x y))) 0)))

Evaluate (syntactically)
(let [(twice (lambda (f) (lambda (x) (f (f x)))))]

(let [(x 5)]
((twice (lambda (y) (+ x y))) 0)))

⇒ (let [(x 5)]
(((lambda (f) (lambda (x) (f (f x))))

(lambda (y) (+ x y)))
0))

⇒ (((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ 5 y)))
0)

⇒ ((lambda (x) ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) x))))
0)

⇒ ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) 0))
⇒ ((lambda (y) (+ 5 y)) (+ 5 0))
⇒ ((lambda (y) (+ 5 y)) 5) ⇒ (+ 5 5) ⇒ 10

Evaluate (using our bad interpreter)
{}
(let [(twice (lambda (f) (lambda (x) (f (f x)))))]
(let (x 5)]
(twice (lambda (y) (+ x y))) 0)) ⇒

{twice = (lambda (f) (lambda (x) (f (f x))))}
(let [(x 5)] ((twice (lambda (y) (+ x y))) 0)) ⇒

{x = 5, twice = (lambda (f) (lambda (x) (f (f x))))}
((twice (lambda (y) (+ x y))) 0) ⇒

{x = 5, ... }
(((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ x y))) 0) ⇒

{f = (lambda (y) (+ x y)), x = 5, ... } ((lambda (x) (f (f x))) 0) ⇒
{x = 0, f = (lambda (y) (+ x y)), ... } (f (f x)) ⇒
{x = 0, f = (lambda (y) (+ x y)), ... } ((lambda (y) (+ x y)) (f x)) ⇒
{x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) x)) ⇒
{x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) 0)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ x y)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 y)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 0)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) 0) ⇒
{y = 0, y = 0, x = 0, ... } (+ x y) ⇒ { y = 0, ... } (+ 0 y) ⇒
{ ... } (+ 0 0) ⇒ 0

Closures Are Essential!
• Exercise: evaluate the same expression using our broken interpreter.

The computed “answer” is 0. The trace appears on the preceding

slide!

• The interpreter uses the wrong binding for the free variable x in

(lambda (y) (+ x y))

• The environment records deferred substitutions. When we pass a

function as an argument, we need to pass a “package” including the

deferred substitutions. Why? The function will be applied in a

different environment which may associate the wrong bindings it free

variables. In the PL (programming languages) literature, these

packages (code representation + environment) are called closures.

• Note the similarity between this mistake and the “capture of bound

variables”. Unfortunately, this mistake has been labeled as a feature

rather than a bug in much of the PL literature. It is called “dynamic

scoping” rather than a horrendous mistake. Watch out whenever you

must program in a language with “dynamic scoping”.

Corrected Semantic Interpreter
(define-struct (closure proc env)) ; closure is name of type
;; V = Const | Closure ; revises our former definition of V
;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = (listOf Binding) ; Lists are built-in to Scheme
;; Closure = (make-closure Proc Env)
;; Type contract: R Env → V
(define eval

(lambda (M env)
(cond

((var? M) (lookup (var-name M) env))
((const? M) M)
((proc? M)) (make-closure M env))
((add? M) ; M has form (+ l r)

(const-add (eval (add-left M) env) (eval (add-right M) env)))
(else ; M has form (N1 N2)

(apply (eval (app-rator M) env) (eval (app-rand M) env))))))

;; Closure representing V → V assumed to be <code,environment> pair
(define apply

(lambda (cl v) ; assume cl is a closure
(eval (proc-body (closure-proc cl)) ; closure-proc may blow-up

(cons (make-binding (proc-param (closure-proc cl)) v)
(closure-env cl)))

A Meta-Interpreter for CBN
• Recall the syntactic semantics for the CBN version of LC. What is

different from our standard CBV (call-by-value) syntactic semantics?

What is our rule in CBV for reducing applications of program-defined

functions (lambda-abstractions) (lambda x M)? Are there any

restrictions on β-reduction?

• How do we implement CBN (unrestricted) β-reduction in a meta-

interpreter. Recall that we must defer substitutions for parameters in

the lambda-abstractions. How can we get the right answer even when

we defer evaluation? What did we do in our CBV interpreter when we

passed functions (lambda-abstractions) as argument values?

• What problem do closures eliminate? Finding the correct values for

free variables in the bundled lambda-abstraction. In CBN we need to

bind variables to unevaluated expressions. How can we avoid getting

incorrect values for free variables in such expressions, just like we did

for lambda-abstractions as values? You must answer this question to

do Project 2. Hint: free variables in CBN and free variables in

function definitions can be addressed in essentially the same way.

