
Comp 411

Principles of Programming Languages

Lecture 8

Meta-interpreters II

Corky Cartwright

January 25, 2023

Representation Tricks

• We described closures (the meaning of lambda-

abstractions) as <code, env> pairs.
 Are other representations possible/defensible? Yes,

particularly in a functional language.

 Closures can be represented as (Scheme/Racket) functions
Idea: wrap (lambda (v) ...) around code ... that applies

the pair closure in our meta-interpreter to v.

.

• What about environment representations?

 A functional representation mapping symbols to values is

elegant but not good software engineering.

Alternate CBV Meta-interpreter
;; V = Const | V → V
;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = (list-of Binding)
;; Closure = V → V ; Note: an opaque rep
;; eval: R Env → V ; Note: an opaque rep
(define eval … <unchanged> …) ; Assumes API for closure

;; apply: Closure V → V ; assumes that Closure rep is V → V
(define apply (lambda (cl v) (cl v)))

;; make-closure: Proc Env → Closure
(define (make-closure M env)
(lambda (v)

(eval (proc-body M)
(cons (make-binding (proc-param M) v) env))))

This code does not encapsulate the representation of closures. We explicitly use

a closure as a function and we use make-closure as a function name (which is

legal but a bad idea in real code). How would the code this change if we

encapsulated it? Think OO.

Closures as Functions

• Mathematically elegant

• Disadvantageous from software engineering perspective. Why? Functions are

opaque Their internal form generically cannot be examined. (Why?) Closures

as structures, in contrast, are open to inspection.

• Not literally possible in languages like Java 5+ that support inner classes rather

than closures. But there is a Java 5+ equivalent: return a class implementing an

interface Lambda<V,V> with an explicit apply method, leveraging the

strategy/command design pattern. The addition of “lambda-expressions” to

Java 8, provides functional notation for this idiom. This hack can be used even

in assembly/machine language, but it is so messy that it is impractical.

• The Java formulation has essentially the same advantages and disadvantages as

the Scheme formulation. Note: Comp 310 formerly relied on a course library

with interfaces Ilambda<In,Out>. In Java 8+, closures can be used in source

code but they are implemented as anonymous inner classes!

.

CBV Meta-interpreter with Environments as Functions

;; V = Const | V → V
;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = Sym → V
;; Closure = V → V

;; eval: R Env → V
(define eval … <unchanged> …)

;; apply: Closure V → V
(define apply (lambda (cl v) (cl v)))

;; make-closure: Proc Env → Closure
(define (make-closure M env) ;; name make-closure is sneaky
(lambda (v)
(eval (proc-body M) (extend (proc-param M) v env))))

(define lookup (lambda (s env) (env s)))
(define extend (lambda (s1 v env)
(lambda (s2) (if (equal? s1 s2) v (env s2))))

Environments as Functions

• Mathematically elegant

• Questionable from software engineering perspective. Why?

• Functions are generally not finite and cannot be treated as tables.

• Environments, in contrast, are finite functions. One consequence

of the fact that functions are infinite objects in the general case:

functions are opaque in output while concrete closures (data

structures representing finite tables) are not.

• Not literally possible in languages like Java 8-13 that support

inner classes rather than closures. But there is a Java equivalent:

a singleton class implementing an interface Lambda<Sym,V> the

strategy (or command) design pattern. Java formulation has

essentially the same advantages and disadvantages as the Scheme

formulation.
•

Exercise: revise our previous correct meta-interpreters to use

extend instead of cons. Explicitly define lookup and extend.

.

Important Variations on Our CBV Meta-interpreter

• Call-by-name (CBN) beta-reduction. Recall that in our

syntactic intepreter for LC that we chose to restrict

beta-reduction to values. In practice, this restriction is

very important in languages with mutable data. But LC

does not (yet) support mutation. In CBN, beta-

reduction is unrestricted.

• Call-by-need evaluation of arguments. There is no

syntactic equivalent since this evaluation policy is a

meta-interpreter based optimization of Call-by-name.

In the presence of mutation (or equality comparison on

“functions” [comparing addresses of function

representations!]), call-by-need is not equivalent to call-

by-name.

Call-by-name Discussion

• In Call-by-name syntactic interpretation, no argument is

evaluated until its value is demanded by a primitive operation

(only + in LC). If a parameter is never evaluated in the body of

function, the corresponding argument is never evaluated.

• Efficiency disadvantage: if a parameter is evaluated multiple

times, so is the corresponding argument!

• Thought exercise: how can we defer the evaluation of an

argument expression? Hint: think about the closure

representation of 0-ary functions.

• What about call-by-need? How do we evaluate a closure at

most once. Think OO; we need to add a field to our closure

representation. That field is initialized when the argument

closure is first evaluated.

