
Comp 411

Principles of Programming Languages

Lecture 9

Meta-interpreters III

Corky Cartwright

January 27, 2023



Minor Challenge
• LC does not include a recursive binding operation 

(like Scheme letrec or local or Java method 

definition).  How would we define eval for such a 

construct? 

• Key problem: the closure structure for a recursive 

lambda must include an environment that refers to itself! 

• In imperative Java, how would we construct such an 

environment.  Hint: how do we build “circular” data 

structures in general in Java?  Imperativity is brute 

force.  But it works.  We could use the Y operator 

construction instead, but it adds unacceptable 

overhead.  So we will use environment mutation in 

Project 3 and thereafter.



Minor Challenge

• How could we define an environment that refers to

itself in functional Scheme (or Ocaml)?

• Key problem: observe that in both let and lambda, the 

expression defining the value of a variable cannot

refer to itself because the corresponding variable is out 

of scope.  In other words, it is not yet bound.

• Solution: does functional Scheme (or Ocaml) contain a

recursive binding construct? (Yes for function 

definitions [define in Scheme].)

• What environment representation must we use?



Advantages of Representing

Environments as Functions

Languages that support functions as values (or an OO equivalent like anonymous inner 

classes [Java] or anonymous delegates [C#]) support the dynamic definition of recursive 

functions.   So we can write a purely functional interpreter that assigns a meaning to a 

recursive binding by constructing a new environment (a function) that recurs on itself 

(refers to itself).  In Scheme/Racket, given a function e that represents the current 

environment, we can extend e with a new binding of symbol f to an AST rhs (right-hand-

side) that is evaluated in the extended environment by constructing the environment
(define new-e (lambda (sym) (if (=? sym 'f) (eval rhs new-e) (e sym))))

where eval is the meta-interpreter.  Scheme/Racket also includes a local recursive binding  

construct called letrec.

Scheme/Racket letrec is akin to let except that it performs recursive binding instead of 

conventional binding, i.e., that the new environment created by letrec is used to evaluate 

all subexpressions on the right-hand-side (rhs) of the symbol definition added by letrec

(see the syntax for let in the previous lecture).  Note that the binding of the new symbol 

is unavailable (sometimes represented by the error value *void*) until the evaluation of 

the rhs is complete.  This trick works for letrec constructs that introduce new function 

definitions but not for other kinds of data unless the constructors for that form of data are 

“lazy” (delaying the evaluation of their arguments until demanded by an accessor 

operation).



A Bigger Challenge

• Assume that we want to write LC in a purely 

functional language without a recursive binding 

construct (say functional Scheme without letrec

and letrec).

• Key problem: must expand letrec into lambda.  

• There is no simple solution to this problem. We 

need to invoke syntactic magic or (equivalently) 

develop some sophisticated mathematical 

machinery (which motivates the syntactic magic).  

The syntactic magic (for call-by-name) is the Y

operator from the pure lambda calculus.



Weakly Motivated Y
Two syntactic ideas

• Most interesting simple lambda-expression in LC:
((lambda x (x x)) (lambda x (x x)))

This expression is typically called Ω; it diverges because it reduces via beta-reduction to 

itself (an identical expression).
• In both call-by-value LC and call-by-name LC,

((lambda x (x x)) (lambda x (x x))) →  ((lambda x (x x)) (lambda x (x x)))

• Can we use a self-application pattern like Ω to build an expanding tower of applications of a 

free variable g bound to a function?  How about

((lambda x (g(x x))) (lambda x (g(x x))))?

which reduces to:
(g ((lambda x (g(x x))) (lambda x (g(x x)))))

which reduces without terminating, generating progressively larger expressions of  the form

(g (g ... ((lambda x (g(x x))) (lambda x (g(x x)))) ... ))

• Recursion can be expressed as an infinite lambda-abstraction.  Assume f = Ef where all free 

occurrences of  f inside the lambda-abstraction Ef are assumed equivalent to Ef.  Then we deduce

(f x) = (Ef x) = (EEf x) = ... = (EE...
x) 

f = (lambda x (Ef x)) = (lambda x (EEf x)) = ... = (lambda x (EE...
x))

• Since infinite lambda expressions are not legal programs, we have to construct this potentially 

infinite tree incrementally on demand so we produce an expansion just large enough to compute f
for a given input x.  No terminating application of f can use more than a finite “prefix” of the 

infinite expansion.  Hence, for a given x, if (f x) terminates, only requires a finite expansion of 

the tree for f is required to compute the value of (f x).  How can we adaptively build the 

requiesite approximation?.



What is Y?
• Let F = (lambda f Ef).  Ef is an expression defining f in terms of itself.  The recursive 

definition of factorial is a good example of such an expresion.  If we augment LC with boolean

constants true and false , the boolean function zero? that tests for 0, the non-strict 

function if-then-else mapping boolean  int  int  int,  the binary 

multiplication function *, and the unary function sub1 that subtracts 1 from its argument, then 

we can define 

FACT = (lambda fact (lambda n (if (zero? n) 1 (* n (fact (sub1 n)))). 

In this example, Efact = (lambda n (if (zero? n) 1 (* n (fact (sub1 n))))).  

• Note that the reduction rules for if only evaluate the consequent or alternative argument but 

not both.  Hence the sub-expression with the recursive call may not be evaluated in some 

cases. The function (lambda f Ef) maps any function f which serves as “dummy” seed into 

Ef which encloses calls on f in a wrapper expression Ef (typically a conditional expression) 

that includes control branches that terminate without applying f.  If we construct a potentially 

infinite tower T of applications of a variable g, we only need to apply T to (lambda f Ef)
(often called the functional corresponding to the recursive definition of f) to get the (least) 

solution to the definition f = Ef.

• We can easily define the infinite tower T by abstracting the tower-building expression from the 

previous slide with respect to the intended input variable g,

(lambda g (g ((lambda x (g(x x))) (lambda x (g(x x))))))

This is the standard Y operator.  We will subsequently perform a similar derivation using more 
rigorous semantic tools.



Example: Factorial
•

• The body of a recursive definition of factorial (using define or letrec in Racket without 

parentheses around the abstracted variable n) is:
(lambda n [if (zero? n) 1 (* n (fact (sub1 1)))])

and the corresponding functional is:
(lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 1)))]))

• In call-by-name LC,
(Y (lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))]))) → (skipping a step)

((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))]))
((lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x))

(lambda x ((lambda fact (lambda n (if (zero? n) 1 (* n (fact (sub1 n)))))) (x x)))))) →

(lambda n [if (zero? n) 1 
(* n (((lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x))

(lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x)))))
(sub1 n)))])

which is a value.

• Let’s apply this expression to the value: 1:
((lambda n [if (zero? n) 1 

(* n (((lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x))
(lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x)))))

(sub1 n)))])

1)  →

[if (zero? 2) 1 (* 1 (((lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x))
(lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x)))))

(- 1 1)))] → (skipping a step)

(* 1 (((lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x))
(lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x)))))

(sub1 1))) →



Example: Factorial cont.
•

(* 1 
((lambda n [if (zero? n) 1 

(* n (((lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x))
(lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x)))))

(sub1 n)))])

(sub1 1))) →

(* 1 
[if (zero? (sub1 1)) 1

(* (sub1 1) (((lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x))
(lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x)))))

(sub1 (sub1 1)))]) →  (skipping two steps)

(* 1 1) →
1

• Let FACT abbreviate 

(lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))]))

• Then (Y FACT) [in Scheme notation] equals (in one reduction step)
((lambda x ((lambda fact (lambda n (if (zero? n) 1 (* n (fact (sub1 n)))))) (x x))

(lambda x ((lambda fact (lambda n (if (zero? n) 1 (* n (fact (sub1 n)))))) (x x)))))

which reduces to the value
(lambda n [if (zero? n) 1 

(* n (((lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x))

(lambda x ((lambda fact (lambda n [if (zero? n) 1 (* n (fact (sub1 n)))])) (x x)))))

(sub1 n)))])

which is a “pure” lambda-abstraction denoting the least fixed-point of FACT.

• Hence, in principle, we don’t need recursive binding constructs like letrec but software 

development would excruciatingly painful without them.  Even the purest Haskelite takes 

such constructs for granted.



A Deeper Dive Into Functions as Data
• Computation is incremental—not monolithic.

• Slogan: general computation is successive approximation (typically 

in response to successive demands for more information) to 

produce a potentially infinite result.

• Familiar example: a program mapping a potentially infinite input 

stream of characters to a potentially infinite output stream of 

characters.

• Generalization: infinite trees mapped to infinite trees.  This 

generalization is very powerful.  In the framework of sequential 

computation with aborting error elements (like the result of 

division by zero), every function can be canonically represented by 

a computable, potentially infinite tree.  This is  a deep technical 

result that is largely unknown (even by most theoretical computer 

scientists).   See the paper Observable Sequentiality and Full 

Abstraction for more details.

https://www.researchgate.net/publication/2399339_Observable_Sequentiality_and_Full_Abstraction


Mathematical Foundations
A partially ordered set (po) is a set S together with a binary relation ≤  (a subset of S×S) 

such that:

• ≤ is reflexive: Ɐx x ≤ x.

• ≤ is anti-symmetric: Ɐx,y x ≤ y and y ≤ x implies that x = y.

• ≤ is transitive: Ɐx,y,z x ≤ y and y ≤ z implies that x ≤ z.

A (Scott) domain of computation D (such as streams, trees, partial functions as graphs) is a 

partially ordered set (po) with the following properties:

• D has a countable subset B (set of finite approximations), called the finitary basis, which 

is a po (under the same relation as D) that is finitely consistent, i.e., closed under least 

upper bounds (LUBs) on finite bounded subsets (implying the existence of a least

element ⊥, which is the LUB of the empty set).  We will restrict our attention to finitary 

bases B where no element b in B is the LUB of an infinite subset of B.  All such elements 

are called finitely-founded.  Since B is a basis, every element d in D is the LUB of the 

finite elements that approximate it.

• D is chain-complete: every chain b
0

≤ b
1

≤ … ≤ b
k

≤ ... (a countable ascending sequence) 

in B has a LUB in D.

Building intuition regarding Scott domains: draw or visualize the Hasse diagrams of the 

finite elements of the domains in question.  There are many good online references.  See, for 

example, this page.

https://en.wikipedia.org/wiki/Hasse_diagram


Mathematical Foundations cont.
• A po with that is chain-complete is called a cpo (complete partial order).  So every Scott 

Domain is a countably-based cpo.  We are only interested in finitely founded Scott 

domains, where every finite element has only finitely many elements below it.  Every such 

domain can be represented as a set of lazy trees (in the sense that nodes can have undefined 

[⊥] children).

• Every computational domain can be formalized as a Scott-domain. 

• In the reference monograph (derived from a monograph by Dana Scott), directed sets are 

used instead of chains.  When the finitary basis is countable, it is straightforward to show 

that chain-complete and directed-complete are equivalent.  So for computer scientists (who 

presumably are interested only in countably-based domains), the choice between using 

chains and directed sets is immaterial.

• A domain is flat iff all elements of the domain except ⊥ are maximal.  In such a domain, all 

elements are finite.

• The binary relation ≤ intuitively corresponds to approximation in the sense that a ≤ b iff a

is a tree prefix of b. The binary relation symbol is often written as 2291. 

Examples of (Scott) domains:

• flat domains: integers, booleans, finite trees with no undefined (⊥) leaves, finite arrays, 

finite tables, finite graphs, all data values in the C language.

• lazy tree domains: potentially infinite trees with a finite set of node types and potentially 

undefined (⊥) leaves.  Each node type has a fixed arity.  Any node constructor 

accommodating ⊥ as a leaf in some argument position is said to be lazy.



Key Mathematical Concepts

Computable functions on domains:

• monotonic with respect to approximation ordering ≤ 

• continuous (functions preserve the limits of chains)

• Typically but not necessarily strict (diverge if any 

argument diverges)

For a brief, intuitive overview, see the topic notes for lecture 11 

https://www.cs.rice.edu/~javaplt/411/19-spring/Notes/11/06.html

For an in-depth treatment of (Scott) domains, see the monograph

linked under references for lecture 10. 

https://www.cs.rice.edu/~javaplt/411/19-spring/Notes/11/06.html
https://www.cs.rice.edu/~javaplt/411/19-spring/Readings/domains.pdf


More Examples

Domains

• flat domains: all data types   except functions and lazy 

algebraic constructions

• strict function spaces on flat domains (call-by-value)

• lazy trees of booleans

• continuous functions A → B where A and B are 

domains (the fully general case is very expensive to 

implement; call-by-name is not enough; the sequential 

subset of all production languages only supports 

observably sequential functions).

The notion of continuity here is very important; it enables 

interchanging function application and the LUB operation 

on chains.


