Term [— Binop f\ Term f————: >«

N— Conditional |

M Let ——

Exp ::= (Term Binop)* (Term | Conditional | Let | Map)

referenced by:

¢ Conditional
o Def

e ExplList

e Factor

e Let

e Map

Conditional:

Pp»— if — Exp |— then |— Exp |— else — Exp |»<«

Conditional
::= if Exp then Exp else Exp

referenced by:

* Exp

Let:

Pr— let i Def : in — Exp >«
Let ::= let Def+ in Exp

referenced by:

* Exp

Map:

PP»— map | IdList — to — Exp >«

Map ::= map IdList to Exp

referenced by:

* Exp

Term:

(=

S Factor <
ExplList
N Null
N Int
“— Bool
Term ::= Unop* (Factor ('(' ExpList ")')? | Null | Int | Bool)

referenced by:

* Exp
Factor:
Prim
Id
Factor = "'"(" Exp ")’
| Prim
| Id

referenced by:

e Term

ExpList:

Exp

ExpList ::= (Exp (',' Exp)*)?

referenced by:

e Term

IdList:

IdList ::= (Id (',' Id)*)?

referenced by:

e Map

Def:

| 1d @ EXp 4@»4
Def t:=Id ':=" Exp ;'

referenced by:

o Let

Null:

»»— null >«

Null ::= null

referenced by:

e Term

Bool:

true

false

Bool ::= true
| false
referenced by:
e Term
Unop:
Sign
Unop ::= Sign

referenced by:

e Term

Sign:

referenced by:

e Binop
e Unop

Binop:

[
~

ELEETREE

PP—<—1 Sign [—><

S T | I
¥ NIl — vV AV Aod—

referenced by:

Prim:

b

B
]

arity

98¢

'number?’
'function?’

Prim

—_—_——
1)
o
>
w
a%

referenced by:

e Factor

... generated by Railroad Diagram Generator

http://www.bottlecaps.de/rr/ui
http://www.bottlecaps.de/rr/ui

