
Exp:

Term Binop Term

Conditional

Let

Map

Exp ::= (Term Binop)* (Term | Conditional | Let | Map)

referenced by:

Conditional
Def
ExpList
Factor
Let
Map

Conditional:

if Exp then Exp else Exp

Conditional
 ::= if Exp then Exp else Exp

referenced by:

Exp

Let:

let Def in Exp

Let ::= let Def+ in Exp

referenced by:

Exp

Map:

map IdList to Exp

Map ::= map IdList to Exp

referenced by:

Exp

Term:

Unop

Factor

(ExpList)

Null

Int

Bool

Term ::= Unop* (Factor ('(' ExpList ')')? | Null | Int | Bool)

referenced by:

Exp

Factor:

(Exp)

Prim

Id

Factor ::= '(' Exp ')'
 | Prim
 | Id

referenced by:

Term

ExpList:

Exp

,

ExpList ::= (Exp (',' Exp)*)?

referenced by:

Term

IdList:

Id

,

IdList ::= (Id (',' Id)*)?

referenced by:

Map

Def:

Id := Exp ;

Def ::= Id ':=' Exp ';'

referenced by:

Let

Null:

null

Null ::= null

referenced by:

Term

Bool:

true

false

Bool ::= true
 | false

referenced by:

Term

Unop:

Sign

~

Unop ::= Sign
 | '~'

referenced by:

Term

Sign:

+

-

Sign ::= '+'
 | '-'

referenced by:

Binop
Unop

Binop:

Sign

*

/

=

!=

<

>

<=

>=

&

|

Binop ::= Sign
 | '*'
 | '/'
 | '='
 | '!='
 | '<'
 | '>'
 | '<='
 | '>='
 | '&'
 | '|'

referenced by:

Exp

Prim:

number?

function?

list?

null?

cons?

cons

first

rest

arity

Prim ::= 'number?'
 | 'function?'
 | 'list?'
 | 'null?'
 | 'cons?'
 | 'cons'
 | 'first'
 | 'rest'
 | 'arity'

referenced by:

Factor

 ... generated by Railroad Diagram Generator R R

http://www.bottlecaps.de/rr/ui
http://www.bottlecaps.de/rr/ui

