
Unification Theory

Franz Bander
German Research Center for AI (DFKI)

Postfach 2080

W-6750 Kaiserslautern, Germany

e-mail: baader@dfki.uni-kl.de

Abstract

The purpose of this paper is not to give an overview Of the state of art in unification
theory. It is intended to be a short introduction into the area of equational unifi-
cation which should give the reader a feeling for what unification theory might be
about. The basic notions such as complete and minimal complete sets of unifiers,
and unification types of equational theories are introduced and illustrated by ex-
amples. Then we shall desct'ibe the original motivations for considering unification
(in the empty theory) in resolution theorem proving and term rewriting. Starting
with Robinson's first unification algorithm it will be sketched how more efficient
unification algorithms can be derived.

We shall then explain the reasons which lead to the introduction of unification
in non-empty theories into the above mentioned areas theorem proving and term
rewriting. For theory unification it makes a difference whether single equations or
systems of equations are considered. In addition, one has to be careful with regard
to the signature over which the terms of the unification problems can be built. This
leads to the distinction between elementary unification~ unification with constants,
and general unification (where arbitrary free function symbols may occur). Going
from elementary unification to general ~ unification is an instance of the so-called
combination problem for equational theories which can be formulated as follows: Let
E, F be equational theories over disjoint signatures. How can unification algorithms
for E, F be combined to a unification algorithm for the theory E tJ F.

1 W h a t is E - u n i f i c a t i o n ?

E-unification is concerned with solving term equations modulo an equational theory E.
The theory is called "unitary" ("finitary") if the solutions of an equation can always be
represented by one (finitely many) "most general" solutions. Otherwise the theory is of
type "infinitary" or "zero." Equational theories which are of unification type unitary or
finitaxy play an important r61e in automated theorem provers with "built in" theories (see
e.g., [PI72,Ne74,S174,St85]), in generalizations of the Knuth-Bendix algorithm (see e.g.,
[Hu80,PS81,JK86,Bc87]), and in logic programming with equality (see e.g., [JL84]).

152

The first two applications will be considered in subsequent sections. In the present
section we shall introduce the basic notions of unification theory such as complete and
minimal complete sets of unifiers and unification types of equational theories, and illus-
trate them by examples.

Let f~ be a signature, i.e., a set of function symbols with fixed arity, and let V be a
countable set of variables. The set of ft-terms with variables in V is denoted by T(12, V).
A set of identities E C T(ft, V) x T(ft, V) defines an equational theory =E, i.e., the
equality of terms induced by E. The quotient algebra T(12, V) /= E is the E-free algebra
with ge~nerators V, i.e., the free algebra with countably many generators over the class of
all models of E.

Example 1.1 Let 12 be the signature consisting of one binary function symbol f . The
set of identities A := {f(x, f (y , z)) = f (f (x , y), z)} defines the theory of semigroups.
Obviously, the =a-classes may be considered as words over the alphabet V, and the
A-free algebra T(fl, V)/= a is isomorphic to the free semigroup V +.

Informally, we can now say that E-unification is just solving equations in the E-free
algebra T(l~, V) /= E. To be more precise, we have to define what is meant by equation
and by solution of the equation.

For this reason we consider substitutions which are mappings 0: V --~ T(f~, V) such
that {x E V I xO ~ x} is finite. Since T(Ft, V) is the free 12-algebra with generators V,
this mapping can uniquely be extended to a homomorphism O: T(fl, V) --~ T(ft, V). A
unification problem (the equation) is a pair of terms s, t, and an E-unifier of the problem
(the solution of the equation s = t in T(f~, V)/=E) is a substitution 0 such that sO =E tO.
The set of all E-unifiers of s , t will by denoted by UE(s,t).

Example 1.2 Let fl be the signature consisting of a binary function symbol f and a
constant symbol a. We consider the terms s = f(z , a) and t = f(a, y).

E = 0: In this case, the substitution 0 = {z ~ a, y ~ a} is the only 0-unifier of the
terms s, t.

E = C := {f(x , y) = f(y, z)}: Obviously, 0 is also a C-unifier of s, t. But since f is now
commutative, there exists another C-unifier, namely a = {z ~ y}. These two
solutions of our equation s = t are however not independent of each other. In fact,
8 is an instance of ~r because 0 = a o {y ~ a}.

For most applications, one does not need the set of all E-unifiers. A complete set
of E-unifiers, i.e., a set of E-unifiers from which all E-unifiers can be generated by E-
instantiation, is usually sufficient. More precisely, we extend the relation =E to UE(s, t),
and define the quasi-ordering <E on Us(s,t) by'

a =E 0 iff xa =s xO for all variables x occurring in s or t.

a <E 0 iff there exists a substitution A such that O =E a o A.

153

If a _<s 8 then 8 is called an E-instance of a, and a is said to be more general than 8.

A complete set cUs(s, t) of E-unifiers of s, t has to satisfy the conditions

�9 cUs(s, t) C_ Us(s, t), and

�9 for all 8 E Us(s, t) there exists a E cUs(s, t) such that a < s 8.

For reasons of efficiency, such a set should be as small as possible. Thus one is interested
in minimal complete sets #Us(s, t) of E-unifiers of s, t, that is, complete sets satisfying
the additional condition

�9 For all a, 8 E #Us(s, t) , a <~E 8 implies ~ = 8.

E x a m p l e 1.3 As in Example 1.2 we consider the terms s = f (x , a) and t = f (a, y).

E = A := { f (x , f (y , z)) = f (f (x , y) , z) } : The substitutions 8 = {x ~ a,y ~ a} and
r = {x ~ f (a , z) , y ~ f (z ,a)} are A-unifiers of s,t , and it is easy to see that the
set {8, r} is complete. In addition, 8 and T are not comparable with respect to <A,
which shows that {8, r} is a minimal complete set of E-unifiers of s, t.

A minimal complete set of E-unifiers may not always exist, but if it exists it is unique
up to the equivalence defined by a --E 8 iff a _<s 8 and 8 --~E O'. For this reason, the
unification type of an equational theory E can be defined with reference to the cardinality
and existence of minimal complete sets.

Type 1 (unitary): A set #UE(s, t) exists for all s, t and has cardinality < 1.

Type w (finitary): A set #UE(s, t) exists for all s, t and is of finite cardinality.

Type ~ (infinitary): A set #Us(s, t) exists for all s,t , but may be infinite.

Type 0 (zero): There are terms s, t such that a set trUE(s, t) does not exist.

For example, the empty theory O is unitary (see [Ro65]), commutativity C = {f(x, y) =
f (y , x) } is finitary (see e.g., [Si76]), associativity A = { f (X , f (y , z)) = f (f (x , y) , z) } is
infinitary (see [P172]), and the theory B = A t3 {f(x, x) = x} of idempotent semigroups
(bands) is of type zero (see [Ba86,Sc86]).

If a theory E is unitary, then a minimal complete set #Us(s, t) is either empty, if s, t
are not unifiable, or it consists of a single E-unifier of s,t. This unifier is called most
general E-unifier of s,t . It is unique up to =s-equivalence. For the empty theory, this
means that most general unifiers are unique up to variable renaming, but in general the
relation --=s may be more complex.

As already mentioned above, most applications of E-unification presuppose that the
theory E is unitary or finitary. Of course, for these applications it is not enough to just
know that a given theory is of type finitary. One also needs an E-unification algorithm.

154

Such an algorithm should be able to decide whether a given pair s, t of terms is unifiable;
and if the answer is "yes" it should compute a finite complete set of E-unifiers of s, t. This
notion of a "unification algorithm" should be distinguished from the notion "unification
procedure" which is only required to enumerate a (possibly infinite) complete set of E-
unifiers, without necessarily yielding a decision procedure for E-unifiability (see e.g., [P172]
for an example of such a procedure for A-unification).

In order to get efficient applications, the complete set computed by the unification
algorithm should be as small as possible; but for some theories, computing a minimal
complete set as opposed to just computing a finite complete set may cause too much
overhead compared to what is gained by having a smaller set. As an example of a theory
for which this phenomenon occurs one can take commutativity C = { f (x , y) = f (y , x)}.
It is very easy to devise an algorithm computing finite complete sets of C-unifiers, but it
is much harder to get minimal complete sets (see e.g., [Si76,He87]).

2 Unification in the empty theory

The earliest references for unification of terms (which in the framework of the previous
section is called 0-unification) date back to E. Post in the 1920s and J. Herbrand in 1930
(see [Si89] for an account of the early history of unificat!on theory). But its real importance
became clear only when 0-unification was independently rediscoverd in J.A. Robinson's
paper on the resolution principle [Ro65] and in D. Knuth's paper on completion of term
rewriting systems [KBT0]. Both papers were seminal for their respective fields, namely
automated theorem proving and term rewriting.

Robinson and Knuth show that two unifiable terms always have a most general 0-
unifier, i.e., that the empty theory is unitary, and they describe an algorithm which
computes this most general 0-unifier.

2.1 An informal description of Robinson's algorithm

We shall now explain Robinson's algorithm with the help of two examples. A formal
description of a very similar algorithm can be found in the next section.

Example 2.1 Assume that we want to unify s : f (x , g (a , z)) and t = f (g (a , y) , x) ,
where f , g are binary function symbols, a is a constant symbol, and x, y, z are variables.

In the first step, one reads the terms simultaneously from left to right until the first
disagreement occurs. In our example, this disagreement occurs at the variable x in s and
the function symbol g in t. These places of disagreement define the so-called disagreement
terms, which are in our example x and g(a, y). To unify s and t one has to unify these
disagreement terms, and this can obviously be done with the help of the substitution

Now one applies this substitution to s and t, and carries on with reading the obtained
terms--which are sal = f(g(a, y),g(a, z)) and tal = f(g(a, y),g(a, y)) in our example--

155

from left to right until the first disagreement occurs. This process has to be iterated
until the terms are unified. In the example, we get the terms z and y as the next pair
of disagreement terms. After applying the substitution a2 := {y H z} to saz and tal,
we have obtained the unified term sala2 = f(g(a, z),g(a, z)) = tala2. The composition
a := al o a2 is a most general 0-unifier of s, t.

Obviously, we could also have used the substitution {z ~ y} instead of a2 = {y ~ z}.
This explains why most general 0-unifiers are unique only up to variable renaming.

Until now we have only treated the case where the two terms are unifiable. The next
example considers all the possible reasons for non-unifiability of terms.

E x a m p l e 2.2 First, assume that we want to unify the terms s = f(g(a, y), z) and t =
f (f (x , y), z). In this case, the disagreement occurs at the function symbol g in s and
at the second symbol f in t. This means that the disagreement terms--namely g(a, y)
and f(x,y)--have different function symbols as top level symbol. Obviously, this means
that the disagreement terms, and thus also the terms s, t, are not unifiable. This kind of
reason for non-unifiability is called clash failure.

Second, assume that we want to unify the terms s = f(g(a,x), z) and t = f (x ,z) .
Here we obtain disagreement terms g(a, x) and x. These two terms cannot be unified
because the variable x occurs in the term g(a, x). In fact, for any substitution a the size
of the term xa is strictly smaller than the size of g(a, x)a = g(a, xa). This kind of reason
for non-unifiability is called occur-check failure.

2.2 Motivations for using @-unification

In the remainder of this section we shall shortly sketch the reason why unification is
important for resolution-based theorem proving and completion of term rewriting systems.

The aim of resolution-based theorem proving is to refute a given set of clauses. In the
propositional case, the resolution principle can be described roughly as follows. Suppose
that one already has derived clauses A V p and B V -',p where A, B are clauses and p is a
propositional variable. Then one can also deduce A V B.

In the first order case, the r61e of propositional variables is played by atomic formulae.
For example, assume that we have clauses of the form AV P(x, a) and B V-~P(a, y). Before
the resolution rule can be applied one has to instantiate the variables x, y in a suitable
way. The appropriate instantiations can be found via unification (where the predicate
symbols are treated like function symbols). In the example, we can apply the g-unifier
0 := {x ~ a, y ~ a}, which yields the clauses A0 V P(a, a) and B8 V -,P(a, a). After
applying the resolution rule we thus get A8 V B0.

In the present example, there was only one C-unifier of the given pair of atomic formu-
lae, but in general there may exist infinitely many unifiers. However, it can be shown that
one can restrict oneself to most general unifiers without losing refutation completeness.

The aim of a completion procedure for term rewriting systems is to transform a given

156

system into an equivalent complete (i.e., confluent and terminating) system, which then
can be used to decide the word problem for the corresponding equational theory.

If a rewrite system is terminating, then confluence is equivalent to local confluence,
and this property can be decided by considering finitely many critical pairs (see e.g.,
[KBT0,Hu80]). For local confluence, one has to consider triples s, tl,t2 of terms where tl
is obtained from s by applying some rule g ~ d of the system, and t2 is obtained from s
by applying some rule l ~ r. The system is locally confluent iff for all such triples there
exists a common descendant t of tl and t2 (see the picture below). The picture also shows

S

g--*dJ
/

tl t2

\ /
t

Local confluence

f(f(x,e),z)
f(x',e) / f(f(x,y),z)

NNN--* f(x'f(Y'Z))

f(x,z) f(x,f(e,z))

�9 A critical pair

an example for such a triple where the rule for a right neutral element e applied to the
subterm f(x, e) of s = f (f (x , e), z) yields tl = f(x, z), whereas the associativity rule for
f applied to s yields t~ = f(x, f(e, z)). The term s of this example was generated from
the two rules f(x', e) ~ x' and f (f (x , y), z) ~ f(x, f(y, z)) as follows: 1 We have applied
the unifier 0 := {x' ~ x,y ~ e} of the left hand side f(x',e) of the first rule had the
subterm f(x, y) of the other left hand side to this other left hand side. The critical pair
tl,t2 was then obtained from s by applying the two rules at the appropriate positions.
As for resolution it can be shown that it suffices to use most general 0-unifiers in the
computation of critical pairs.

3 Efficient algorithms for 0-unification

The naive unification algorithm described in the previous section is of exponential time
and space complexity. This is demonstrated by the following example.

Example 3.1

S R

where f is a binary function symbol and z0 , . . . ,xn are variables.
@-unifier of s~, t~ computed by the naive algorithm is of the form

a,~={xl ~ f(xo, xo),

1Please note that the variables in the two rules have been made disjoint.

We consider the terms

f(f(xo, x0), f (f (x l , Xl), f(f(x2, x2), f (. . . , f(Xn-1, Xn-X))..-))) and

f (x l , f(x2, f(x3, f (. . . , xn)...)))

The most general

157

X2 H f (f (xo , xo),f(xo, xo)),

x3 ~ f (f (f (x o , x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))),

}.

This means that xia,, contains the variable Xo 2 i times, and hence xo is contained in
n i 2n+1 the unified term ~i=1 2 = - 1 times. Since the size of s. , t . is linear in n, this shows

that we need space---and thus also time--which is exponential in the size of the input
terms.

Until now we have represented terms as strings of symbols. The example shows that
more efficient unification algorithms depend on a better representation of terms. Robinson
himself [ROT1] proposed a more succinct representation of terms by tables which improves
the space complexity, but his algorithm is still exponential with respect to time complexity.
Algorithms having almost linear time complexity were e.g. discovered by Huet [Hu76] and
by Baxter [Bx76]; and finally Paterson and Wegman [PW78], and Martelli and Montanari
[MM77] developed algorithms which are of linear time complexity. Later on, an algorithm
which is of quadratic time complexity, but shows a better behaviour than the linear ones
for most applications, was proposed by Bidoit and Corbin [BC83] (for a more complete
survey of the history of efficient algorithms for 0-unification see e.g. [Kn89,Si89]).

3.1 A recursive version of Robinson's algorithm working on
dags

The algorithms of Paterson and Wegman and of Bidoit and Corbin use directed acyclic
graphs (dags) for the representation of terms. This representation differs from the usual
tree representation in that variables have to be shared and other subterms may be shared.
The following picture shows the terms s3, t3 and the unified term s3cr3 = t3a3 of Example
3.1 in dag-representation. This example shows that the unified term--which in string or

/ \

The terms sa and t3

s.....

x0 The unified term

tree representation would have been exponential in the size of the input terms--can be
represented by a dag which is not larger than the input terms.

158

Now we shall give a recursive version of the naive algorithm which works on dags.
This algorithm will be hnear with respect to space complexity, but still exponential with
respect to time complexity. Then it will be shown how this algorithm can be modified~
first to a quadratic algorithm, and then to an almost linear algorithm.

We assume that dags consist of nodes. Any node in a given dag defines a unique
(sub)dag (consisting of the nodes which can be reached from this node), and thus a
unique (sub)term. There are two different types of nodes, namely variable nodes and
function nodes. Function nodes carry the following information: the name of the function
symbol, the arity n of this symbol, and a list (of length n) of the nodes corresponding
to the arguments of the function, the so-called successor list: Both function and variable
nodes may be equipped with one additional pointer to another node.

The input of the unification procedure (see Figure 1) is a pair of nodes in a dag. The
output is "true" or "false," depending on whether the corresponding terms are unifiable
or not. As a side effect the procedure creates an additional pointer structure which allows
us to read off the unified term and the most general 0-unifier.

These additional pointers are manipulated or used in the following three auxiliary
procedures:

find: This procedure gets a node of the dag as input, and follows the additional pointers
until it reaches a node without such a pointer. This node is the output of/ind.

union: This procedure gets a pair u, v of nodes (which do not have additional pointers)
as input, and it creates an additional pointer from u to v.

occur: This procedure gets a variable node u and another node v (both of which do not
have additional pointers) as input, and it performs the occur check, i.e., it tests
whether the variable is containe&,in the term corresponding to v. This test is
performed on the virtual term expressed by the additional pointer structure, i.e.,
one first applies f/nd to all nodes reached during this test.

The unification algorithm described in Figure 1 requires only linear space since it does
not create new nodes, and it creates at most one additional pointer for each variable
node. However, the time complexity is still exponential. To see this one can consider the
behaviour of the procedure unify/for the input terms f (s , , f (t ' , x,)) and f (t , , f (s ' , y,))

! t where s, , t , are defined as in Example 3.1 and s, , t , are obtained from s,~, t , by replacing
the z~'s by yi's. The procedure needs exponentially many calls of unify1 to finally unify
the node corresponding to x, with the node corresponding to y=. To be more precise,
these nodes are already unified after n calls of unifyl (when x~ and Yl are unified), but
the procedure needs exponentially many additional calls of unilCyl to recognize this fact.

3 . 2 A q u a d r a t i c a l g o r i t h m

As a solution to this problem, Bidoit and Corbin propose to not only replace variable
nodes during the unification process, but also function nodes, provided that one unifies

159

p r o c e d u r e unifyl(kl,k2)

if kl = k2 t h e n r e t u r n true
else %kl and k~ are physically different nodes

if function-node(k2) %if one of the nodes is a
t h e n u := kl; v := k2 %variable node then u
else u := k~; v := kl %is now a variable node
fi

if
t h e n

else

variable-node(u)
if occur(u,v)
t h e n r e t u r n false %occur-check failure
else union(u,v); %replace variable u by the

r e t u r n true %term corresponding to v
fi

% u and v are function nodes
if function-symbol(u) r function-symbol(v)
t h e n r e t u r n false %clash failure

else n := arity(function-symbol(u));
(ul,... , u~) := successor-list(u);
(vl, ..., v=) := successor-list(v);
i := O; bool := true

whi le i < n and bool do
i : = i + 1; bool := unifyl(find(ui),find(vi))
od

fi
fi

fi

r e t u r n bool

end p r o c e d u r e unifyl

Figure t: A recursive version of Robinson's algorithm working on dags

the corresponding arguments. This can be achieved by a very simple modification of our
procedure unify1. One simply has to insert the statement "union(u,v)" immediately in
front of the while-loop. Thereby, one obtains a procedure unify2 which is of quadratic
time complexity. Since each call of unify2 either returns "true" immediately (if the nodes
were physically identical) or makes one more node virtually unreachable (i.e., it can no
longer be the result of a find operation), there can only be linearly many recursive calls of
unify2. This also shows that there are only linearly many calls of And, union, and occur.

160

The quadratic time complexity comes from the fact that the complexity of both
find and occur is not constant, but may be linear. This should be obvious for occur.
As an example for the linearity of find, consider the unification problem for the terms
S l "'~-" f (x 2 , f (x 3 , . . . , f (x n , y) . . .)) and s2 := f (w l , f (x l , . . . , f (x l , X l) . . .)) . Let kl, k2 be
the nodes corresponding to sl, s2 in a dag-representation of this problem. During the
execution of unify2(kl,k2), find is called n times with the node corresponding to xl, and
for i = 1, . . . n, the i th call has to follow a pointer chain of length i - 1.

3 . 3 A n a l m o s t l i n e a r a l g o r i t h m

Thus we have detected two sources of non-linearity of unify2, namely occur and find.
The first source can easily be circumvented by just omitting the occur check during
the execution of the unification procedure. Since occur-check failures are not detected
immediately, the procedure may return "true" even if the terms are not unifiable. But
in this case a cyclic structure has been generated, and this can be recognized by a linear
search. The complexity of find can be reduced by employing a more efficient union-find
algorithm as e.g. described in [Tr75]. In this way one gets an almost linear unification
algorithm (see Figure 2) which is very similar t~ Huet's algorithm. To be more precise,
the algorithm is of time complexity O(n �9 a(n)) where the function a is an extremely
slow-growing function, which for practical purposes (i.e., for all terms representable at all
on a computer) never exceeds the value 5.

The algorithm uses three additional auxiliary procedures, namely:

collapsing-find: Like find, this procedure gets a node k of the dag as input, and follows
the additional pointers until the node find(k) is reached. In addition, collapsing-find
relocates the pointer of all the nodes reached during this process to find(k).

union-with-weight: This procedure gets a pair u, v of nodes (which do not have additional
pointers) as input. If the set {k [k is a node with find(k) = u} is larger than the
set {k I k is a node with find(k) = v}, then it creates an additional pointer from v
to u, otherwise it creates an additional pointer from u to v.

not-cyclic: This procedure gets a node k as input, and it tests the graph which can be
reached from k for cycles. The test is performed on the virtual graph expressed by
the additional pointer structure, i.e., one first applies collapsing-find to all nodes
reached during this test.

Please note that we cannot apply the weighted union procedure in the case where we
have a variable node and a function node. In this case the pointer has to go from the
variable to the function node. Otherwise we should lose important information such as
the name of the function symbol and the argument list. However, it is easy to see that the
use of this non-optimal union can increase the time complexity at most by a summand
O(m) where m is the number of different variable nodes occurring in the dag.

161

p r o c e d u r e unify3(k~,k2)

if cydic-unify(kl,k~) and
not-cyclic(kl)

t h e n r e t u r n true
else r e t u r n false
fi end p r o c e d u r e unify3

p r o c e d u r e cyclic-unify(kl,k2)

if kl = k2 t h e n r e t u r n true
else %kl and k2 are physically different nodes

function-node(k2) %if one of the nodes is a
u := kl; v := ks %variable node then u
u := k2; v := kl %is now a variable node

if
t h e n
else
fi

if
t h e n

else

variable-node(u)
if variable-node(v)
t h e n union-with-weight (u,v)
else union(u,v)
fi
r e t u r n true

% u and v are function nodes
if function-symbol(u) # function-symbol(v)
t h e n r e t u r n false %clash failure

else n := arity(function-symbol(u));
(ul,..., u ,) := successor-list(u);
(vi, ..., v=) := successor-list(v);
i := O; bool := true;
union-with-weight (u,v)

whi le i < n and bool do
i : = i + l ;

%no weighted union

~no occur-check

bool := cyclic-unify(collapsing-find(ui),collapsing-find(vi))
od

r e t u r n bool
fi

fi
fi end p r o c e d u r e unify3

Figure 2: An almost linear unification algorithm

162

4 U n i f i c a t i o n in n o n . e m p t y t h e o r i e s

In this section we shall first sketch by two examples why unification in equational theories
was introduced into the fields automated theorem proving and term rewriting. Then we
shall give some examples for new problems--i.e., problems not occurring for the empty
theory--which arise in theory unification. These examples will show that one has to
be very careful when trying to generalize definitions and results from 0-unification to
unification in non-empty theories.

4.1 Motivations for using E-unification

Plotkin [P172] observed that resolution theorem provers may waste a lot of time by ap-
plying axioms like associativity and commutativity. As a solution to this problem he
proposed to build such equational axioms into the theorem proving mechanism. As a
consequence one has to use unification modulo theses axioms in place of unification in the
empty theory. Plotkin's paper was seminal for unification theory since, for example, the
important notion of minimal complete set of unifiers (which Plotkin called a maximally
general set of unifiers) was formally introduced for the first time.

Example 4.1 Assume that we have the axioms f (f (x , y) , z) = f (x , f (y , z)) for associa-
tivity and f (x , x) = x for idempotence, and that we should like to apply idempotency to
the term

f(xo, f (x l , . . . , f(x,~-l, f(x,~, f (xo , . . . , f (x , -1 , x,~). . .))) . . .))

There are exponentially many ways of rearranging the parentheses with the help of as-
sociativity, and it takes a lot of time if the theorem prover has to search for the right
o n e .

To solve this problem one can consider what a human mathematician would do in this
case. (S)he would of course use words instead of terms, i.e., (s)he would work modulo
associativity. In this framework one could at once apply idempotency xx = x to the word

x x

If we want to adopt this proceeding in a resolution theorem prover, then we have to
replace 0-unification in the resolution step by A-unification.

In term rewriting one comes very soon to the point where one would like to work
modulo an equational theory. This is a consequence of the fact that certain identities
cannot be oriented into terminating rewrite rules. As a solution to this problem o n e

can leave some identities unoriented, and then pursue rewriting modulo these equational
axioms. But then one must also use unification modulo these axioms when computing
critical pairs (see e.g., [PSSl,JK86] for details).

163

Example 4.2 In [KB70], the equational theory of groups was used as the motivating
example. If one tries to apply the completion method of [KB70] to the theory of abelian
groups, then one has to face the following problem: obviously, the commutativity axiom
f (x , y) = f (y , x) cannot be oriented into a terminating rule. A solution to this problem
is to use rewriting modulo

AC := { f (f (x , y) , z) = f (x , f (y , z)) , f (x , y) = f (y , x) } .

Rewriting modulo C := { f (x , y) = f (y , x) } is not possible because modulo C asso-
ciativity cannot be oriented into a C-terminating rule. Modulo AC one can for example
make the following rewrite step:

modulo AC
f (x , f (y , i (x))) , f (e , y)

f (x , i(x)) ---* e

When computing critical pairs for the resulting system one has to use an AC-unification
algorithm.

In the following subsections we shall consider some of the particular problems which
arise when one goes from unification in the empty theory to unification in non-empty
theories.

4 . 2 S i n g l e e q u a t i o n s v e r s u s s y s t e m s o f e q u a t i o n s

Until now we have considered E-unification problems for pairs s, t of terms, i.e., we
have considered a single equation s = t which has to be solved in the E-free algebra
T(f~, V) / = E. For many applications, one has to solve systems F = {sl = t l , . . . , s,~ = t,}
of equations, i.e., one wants to find a substitution a satisfying sxa =E t la, ..., s , a =E t ,a.
The substitution a is then called E-unifier of the system F. Now the notions complete
and minimal complete set of unifers and unification type of a theory can also be defined
with respect to solving systems of equations.

For the empty theory, solving systems of equations can trivially be reduced to solving
single equations. In fact, it is easy to see that a is an 0-unifier of the system F =
{sl = t l , . . . , s , , = tn} iff it is an 0-unifier of the pair f (s a , f (s 2 , ' " f (s , - 1 , s n) ' ")) ,
f(t~, f (t 2 , ' " f (t ,_a, t ,) . . .)) of terms.

More general, for unitary and finitary theories E, a finite E-unification algorithm
for single equations can always be used to get a finite E-unification algorithm for finite
systems of equations. This is an immediate consequence of the following fact: Let F be
a finite unification problem, and let s, t be terms. If cUE(F) is a finite complete set of
E-unifiers of F, and if for all substitutions a E cUE(F), the sets cUE(sa, ta) are finite
complete sets of E-unifiers of sa, ta then

U a o cUE(sO', to') :-- {a o r I o" E cUE(F) and r E cUE(sa, ta)}

164

is a finite complete set of E-unifiers of I" U {s = t} (see e.g., [He871).

There are also non-finitary equational theories where solving finite systems of equations
can be reduced to solving single equations; but the reduction may often be more complex.
As an example for this case one can take associativity (see e.g., [P6Sl]). However, a
reduction cannot be achieved for all equational theories. This is demonstrated by the
following two results:

�9 Schmidt-Schaut~ has shown that there exists an equational theory E (see [BH89])
sudh that

- E-unification for single equations is infinitary, but

- E-unification for systems of equations is of type zero.

Narendran and Otto have shown that there exists an equational theory F (see
[NO90]) such that

- testing for unifiability is decidable for single equations, but

- it is undecidable for systems of equations.

4 . 3 A c l o s e r l o o k a t t h e s i g n a t u r e

It is important to note that the signature over which the terms of the unification problems
may be built has considerable influence on the unification type and on the existence of
unification algorithms.

To make this remark more precise, we define the signature of an equational theory E
(for short sig(E)) as the set of function symbols occurring in the identities of E. When
talking about unification in the theory E, often one only thinks of E-unification problems
where the terms to be unified are built over sig(E), i.e., are elements of T(sig(E) , Y) .
However, the applications of E-unification in theorem proving and term rewriting usually
require that these terms may contain additional constant symbols, or even function sym-
bols of arbitrary arity. Because the interpretation of these symbols is not constrained by
the equation theory, they are called free symbols.

Example 4.3 The theory A = { f (f (x , y) , z) = f (x , f (y , z)) } has signature sig(A) =
{f}. When talking about A-unification, one first thinks of unifying modulo A terms
built by using just the symbol f and variables, or equivalently, of unifying words over the
alphabet V.

However, suppose that our resolution theorem prover--which has built in the theory
A--gets the formula

3z : (Vy: f (x , y) = y ^ Yy3z : f (z , y) = x)

as axiom. In a first step, this formula has to be Skolemized, i.e., the existential quantifiers
have to be replaced by new function symbols. In our example, we need a nullary symbol

165

e and a unary symbol i in the Skolemized form

Vy: f (e ,y) = y A Vy: f(i(y) ,y) = e

of the axiom. This shows that, even if we start with formulae containing only terms built
over f , our theorem prover has to handle terms containing additional free symbols.

The same situation Occurs in term rewriting modulo equation theories. In Example 4.2
we have proposed to use rewriting modulo AC for the theory of abelian groups. Obviously,
the remaining rules (for the neutral element and the inverse) also contain symbo.ls not
contained in sig(AC) = {/}.

To sum up, one should distinguish between three types of E-unification, namely

Elementary E-unification: the terms of the problem may contain only symbols of sig(E);

E-unification with constants: the terms of the problem may contain additional free con-
stant symbols;

General E-unification: the terms of the problem may contain additional free function
symbols of arbitrary arity.

For the empty theory, we have of course considered general 0-unification because
elementary unification and unification with constants are trivial in this case. The following
facts show that there really is a difference between the three types of E-unification.

There exist theories which are unitary with respect to elementary unification, but
finitary with respect to unification with constants. An example for such a theory is
the theory of abelian monoids, i.e., AC t3 {f(x, 1) = x} (see e.g., [He87,Sa89]), or
the theory of idempotent abelian monoids, i.e., AC t3 {/(x, 1) = x, f (x , x) = x} (see
e.g., [BB86]).

There exists an equational theory for which elementary unification is decidable, but
unification with constants is undecidable (see [B/i86]).

From the developement of the first algorithm for AC-unification with constants
[St75,LS75] it took almost a decade until the termination of an algorithm for general
AC-unification was shown by Fages [Fa84].

4.4 The combination problem for unification algorithms

Motivated by the previous section, one can now ask: How can algorithms for elementary
unification (or for unification with constants) be used to get algorithms for generM unifi-
cation? This leads to the more general question of how to combine unification algorithms
for equational theories with disjoint signatures.

166

More formally, this combination problem can be described as follows. Assume that two
finitary equational theories E, F with sig(E)N sig(F) = 0 are given. How can unification
algorithms for E and F be combined to a unification algorithm for E t3 F ? Recall that
by a unification algorithm we mean an algorithm which computes a finite complete set of
unifiers.

This combination problem was first considered in [St75,St81,Fa84,HS87] for the case
where several AC-symbols and free symbols may occur in the terms to unified. More
general combination problems were for example treated in [Ki85,Ti86,He86,Ye87], but
the theories considered in these papers always had to satisfy certain restrictions (such as
collapse-freeness or regularity ~) on the syntactic form of their defining identities.

The problem was finally solved in its most general form by Schmidt-SchauI3 [Sc89].
His combination algorithm imposes no restriction on the syntactic form of the defining
identities. The only requirements are:

�9 There exist unification algorithms for unification with constants for E and F.

�9 All constant elimination problems must be finitary solvable in E and F.

A constant elimination problem in a theory E is a finite set {(cl, t a) , . . . , (c,~, t,~)} where
the c/'s are free constants (i.e., constant symbols not occurring in sig(E)) and the t~'s are
terms (built over sig(E), variables, and some free constants). A solution to such a problem
is called a constant eliminator. It is a substitution a such that for all i, 1 < i < n, there
exists a term t~ not containing the free constant ci with t~ =E tier. The notion complete
set of constant eliminators is defined analogously to the notion complete set of unifiers.
The requirement that all constant elimination problems must be finitary solvable in E
means that one can always compute a finite complete set of constant eliminators for E.

A more efficient version of this combination method has been described in [Bo90]. It
should be noted that the method of Schmidt-Schaut3 can also handle theories which are
not finitary. In this case, procedures which enumerate complete sets of unifiers for E and
F can be combined to a procedure enumerating a complete set of unifiers for E U F.

5 Some topics in unification theory

The purpose of this paper was not to give an overview of the state of art in unification
theory, and for this reason there are many important topics we have not touched. Now
we shall give a (certainly not complete) list of some of the research problems of current
interest in unification theory.

�9 Determine unification types of equational theories (see e.g., [Sc86,Ba87,Fr89]).

2A theory E is called collapse-free if it does not contain an identity of the form x = t where z is
a variable and t is a non-variable term, and it is cMled regular if the left and right hand sides of the
identities contain the same variables.

167

�9 Investigate the decidability of the unification problem, and the complexity of this
decision problem (see e.g., [SS86,KN89]; in [KN89] there is a table summarizing
many of the known results in this direction).

�9 Devise unification algorithms for specific unitary and finitary theories. For example,
a lot of work was--and still is--devoted to finding efficient algorithms for AC-
unification (see e.g., [St81,Fa84,Ki85,Bt86,He87,HSS7,FoS5,CF89,BD90]).

�9 Devise universal unification algorithms, i.e., algorithms where the equational theory
also belongs to the input of the algorithm. Examples are methods based on narrow-
ing (see e.g., [Fy79,H180,Fi84,NR89]), or on Martelli and Montanari's decomposition
technique (see e.g., [GS87,KK90]).

For more information on these and other topics in unification theory one can consult
Siekmann's overview of the state of art in unification theory [Si89], or Jouannaud and
Kirchner's survey of unification [JK90]. In particular, these papers contain an almost
complete list of references on unification theory.

References

[Ba86]

[Ba87]

[Ba89]

[BB86]

[Bc87]

[Bx76]

[BC83]

[Bo90]

[BD90]

F. Baader, "The Theory of Idempotent Semigroups is of Unification Type Zero,"
d. Automated Reasoning 2, 1986.

F. Baader, "Unification in Varieties of Idempotent Semigroups," Semigroup Fo-
rum 36, 1987.

F. Baader, "Unification in Commutative Theories," in C. Kirchner (ed.), Special
Issue on Unification, J. Symbolic Computation 8, 1989.

F. Baader, W. Bfittner, "Unification in Commutative Idempotent Monoids,"
Theoretical Computer Science 56, 1986.

L. Bachmair, Proof Methods for Equational Theories, Ph.D. Thesis, Dep. of
Comp. Sci., University of Illinois at Urbana-Champaign, 1987.

L. Baxter, The Complexity of Unification, Ph.D. Thesis, University of Waterloo,
Waterloo, Ontario, Canada, 1976.

M. Bidoit, J. Corbin, "A Rehabilitation of Robinson's Unification Algorithm,"
In R.E.A. Pavon, editor, Information Processing 83, North Holland, 1983.

A. Boudet, "Unification in a Combination of Equational Theories : An Efficient
Algorithm," Proceedings of the l Oth Conference on Automated Deduction, LNCS
449, 1990.

A. Boudet, E. Contejean, H. Devie, "A New AC-unification Algorithm with a
New Algorithm for Solving Diophantine Equations," Proceedings of the 5th IEEE
Symposium on Logic in Computer Science, Philadelphia, 1990.

168

[Bfi86]

[BH89]

[Bt861

[CF89]

[Fa84]

[Fy79]

[Fo851

[Fr89]

[Fi84]

[GS87]

[He86]

[He87]

[HS87]

[Hu76]

[HUB0]

H.-J. Biirckert, "Some Relationships Between Unification, Restricted Unification,
and Matching," Proceedings of the 8th Conference on Automated Deduction,
LNCS 230, 1986.

H.-J. Bfirckert, A. Herold, M. Schmidt-Schaut~, "On Equational Theories, Unifi-
cation, and Decidability," in C. Kirchner (ed.), Special Issue on Unification, J.
Symbolic Computation 8, 1989.

W. Bfittner, "Unification in the Data Structure Multiset," J. Automated Rea-
soning 2, 1986.

M. Clausen, A. Fortenbacher, "Efficient Solution of Linear Diophantine Equa-
tions," in C. Kirchner (ed.), Special Issue on Unification, J. Symbolic Computa-
tion 8, 1989.

F. Fates, "Associative-Commutative Unification," Proceedings of the 7th Con-
ference on Automated Deduction, LNCS 170, 1984.

M. Fay, "First Order Unification in an Equational Theory," Proceedings of the
4th Workshop on Automated Deduction, Austin, Texas, 1979.

A. Fortenbacher, "An Algebraic Approach to Unification under Associativity and
Commutativity," Proceedings of the 1st Conference on Rewriting Techniques and
Applications, Dijon, France, LNCS 202, 1985.

M. Franzen, "Hilbert's Tenth Problem Has Unification Type Zero," Preprint,
1989. To appear in J. Automated Reasoning.

L. Fribourg, "A Narrowing Procedure with Constructors," Proceedings of the
7th Conference on Automated Deduction, LNCS 170, 1984.

J.H. Gallier, W. Snyder, "A General Complete E-Unification Procedure," Pro-
ceedings of the Second Conference on Rewriting Techniques and Applications,
Bordeaux, France, LNCS 256, 1987.

A. Herold, "Combination of Unification Algorithms," Proceedings of the 8th
Conference on Automated Deduction, LNCS 230, 1986.

A. Herold, Combination of Unification Algorithms in Equational Theories, Dis-
sertation, Fachbereich Informatik, Universit~t Kaiserslautern , 1987.

A. Herold, J.H. Siekmann, "Unification in Abelian Semigroups," J. Automated
Reasoning 3, 1987.

G.P. Huet, R~solution d'dquations dans des langages d'ordre 1,2, ...,w, Th~se
d'l~tat, Universit6 de Paris VII, 1976.

G.P. Huet, "Confluent Reductions: Abstract Properties and Applications to
Term Rewriting Systems," d. ACM 27, 1980.

169

[H180]

[JL84]

[JK86]

[JK90]

[KN89]

[Ki851

[KK90]

[Kn891

[KB70]

[LS75]

[MM77]

[NO90]

[Ne74]

[NR89]

[PW781

F.M. Hullot, "Canonical Forms and Unification," Proceedings of the 5th Confer-
ence on Automated Deduction, LNCS 87, 1980.

J. Jaffar, J.L. Lassez, M. Maher, "A Theory of Complete Logic Programs with
Equality," J. Logic Programming 1, 1984.

J.P. Jouannaud, H. Kirchner, "Completion of a Set of Rules Modulo a Set of
Equations," SIAM J. Computing 15, 1986.

J.P. Jouannaud, C. Kirchner, "Solving Equations in Abstract Algebras: A Rule-
Based Survey of Unification," Preprint, 1990. To appear in the Festschrift to
Alan Robinson's birthday.

D. Kapur, P. Narendran, "Complexity of Unification Problems with Associative-
Commutative Operators," Preprint, 1989. To appear in J. Automated Reasoning.

C. Kirchner, M~thodes et Outils de Conception Syste'matique d'Algorithmes
d'Unification dans les ThEories equationnelles, Th~se d'Etat, Univ. Nancy,
France, 1985.

C. Kirchner, F. Klay, "Syntactic Theories and Unification," Proceedings of the
5th IEEE Symposium on Logic in Computer Science, Philadelphia, 1990.

K. Knight, "Unification: A Multidisciplinary Survey," ACM Computing Surveys
21, 1989.

D.E. Knuth, P.B. Bendix, "Simple Word Problems in Universal Algebras," In
J. Leech, editor, COmputational Problems in Abstract Algebra, Pergamon Press,
Oxford, 1970.

M. Livesey, J.H. Siekmann, "Unification of AC-Terms (bags) and ACI-Terms
(sets)," Internal Report, University of Essex, 1975, and Technical Report 3-76,
Universit;~t Karlsruhe, 1976.

A. Martelli, U. Montanari, "Theorem Proving with Structure Sharing and Ef-
ficient Unification," Proceedings of InternationM Joint Conference on Artit~cial
Intelligence, 1977.

P. Narendran, F. Otto, "Some Results on Equational Unification," Proceedings
of the lOth Conference on Automated Deduction, LNCS 449, 1990.

A.J. Nevins, "A Human Oriented Logic for Automated Theorem Proving,"
J. ACM 21, 1974.

W. Nutt, P. R6ty, G. Smolka, "Basic Narrowing Revisited," J. Symbolic Com-
putation 7, 1989.

M.S. Paterson, M.N. Wegman, "Linear Unification," J. Comput. Syst. Sci. 16,
1978.

170

[P~I]

[PS81]

[P172]

[P 65]

[Ro71]

[S S6]

[Sc891

[Si761

[si89]

[ss86]

[S174]

[st75]

[st81]

[st85]

[Ti86]

[Tr75]

[YegT]

J.P. P~cuchet, Equation avec constantes et algorithme de Makanin, Th~se de
Doctorat, Laboratoire d'informatique, Rouen, 1981.

G. Peterson, M. Stickel, "Complete Sets of Reductions for Some Equational
Theories," J. ACM 28, 1981.

G. Plotkin, "Building in Equational Theories," Machine Intelligence 7, 1972.

J.A. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle,"
J. ACM 12, 1965.

J.A. Robinson, "The Unification Computation," Machine Intelligence 6, 1971.

M. SChmidt-Schaut], "Unification under Associativity and Idempotence is of Type
Nullary," J. Automated Reasoning 2, 1986.

M. Schmidt-Schauf~, "Combination of Unification Algorithms," J. Symbolic Com-
putation 8, 1989.

J.H. Siekmann, "Unification of Commutative Terms," SEKI-Report, Universit~t
Karlsruhe 1976.

J.H. Siekmann, "Unification Theory: A Survey," in C. Kirchner (ed.), Special
Issue on Unit~cation, JournM of Symbolic Computation 7, 1989.

J.H. Siekmann, P. Szabo, "The Undecidability of the DA-Unification Problem,"
SEKI-Report SR-86-19, Universit/~t Kaiserslautern, 1986, and J. Symbolic Logic
54, 1989.

J.R. Slagle, "Automated Theorem Proving for Theories with Simplifiers, Com-
mutativity and Associativity," J. ACM 21, 1974.

M. Stickel, "A Complete Unification Algorithm for Associative-Commutative
Functions," Proceedings of the International Joint Conference on ArtificiM In-
telligence, 1975.

M.E. Stickel, "A Unification Algorithm for Associative-Commutative Functions,"
J. ACM 28, 1981.

M.E. Stickel, "Automated Deduction by Theory Resolution," J. Automated Rea-
soning 1, 1985.

E. Tiden, "Unification in Combinations of Collapse Free Theories with Disjoint
Sets of Function Symbols," Proceedings of the 8th Conference on Automated
Deduction, LNCS 230, 1986.

E.T. Trajan, "Efficiency of a Good But Not Linear Set Union Algorithm,"
J. ACM 22, 1975.

K. Yelick, "Unification in Combinations of Collapse Free Regular Theories,"
J. Symbolic Computation 3, 1987.

