Comp 411
Principles of Programming Languages
Lecture 12
The Semantics of Recursion 111 & Loose Ends

Corky Cartwright
February 6, 2023

Call-by-name vs. Call-by-value Fixed-Points

Given a recursive definition £ 2 E. in a call-by-value language
where E, IS an expression constructed from constants in the base
language and f. What does it mean?

Example: let b be the domain of Scheme values. Then the base
operations are continuous call-by-value functions on b and

fact :=map n to if n = 0 then 1 else n * fact(n-1)
IS a recursive definition of a function on b.

In a call-by-name language map n to ... Is interpreted using call-
by-name B-reduction, the meaning of fact Is

Y(map fact to E.,)
What if map (A-abstraction) has call-by-value semantics? Y does

not quite work because evaluations of form vy(map f to E;)
diverge with call-by-value p-reduction.

Defining Y In a Call-by-value Language

We want to define Y,, a call-by-value variant of .

Key trick: use n(eta)-conversion to delay the evaluation of
F(x x) inside of the expression defining Y. In the
mathematical literature on the A-calculus, n-conversion is often
assumed as an axiom. In models of the pure A-calculus, it
typically holds.

Definition: n-conversion is the following equation:
M= AXx . Mx

where x Is not free in M. If the A-abstraction used in the
definition of Y has call-by-value semantics, then given the
functional F corresponding to recursive function definition, the
computation YF diverges. We can prevent this from happening
by n-converting both occurrences of F(x x) within'Y.

What Is the Code for v, ?

Y, = AF. (Ax. (Ay. (F(x x))y)) (Ax.(Ay.(F(x x))y))

Does this work for Scheme (or Java with an appropriate encoding of functions as
anonymous inner classes) where A-binding has call-by-value semantics? Yes!

Let G be some functional Af.An.M, like FACT, for a unary recursive function
definition. G and An.M are values (A-abstractions). Then

Y, o = (A (AY. (G(x x)) y)) (AX.(Ay.((x X)) y))
= Ay.[CC(AX. (Ay. (C(x x)) ¥)) (Ax.(Ay.(5(x X)) ¥))) V]
= C((AX.(Ay. (5(x %)) ¥)) (Ax.(Ay.(“(x X)) ¥y)))

Is a value. In call-by-value, Y © isnota value buty, is.

But ©(Y, ©) = (Af.An.M)(Y, (Af.An.M)) = An.M[f:=Y (Af.An.M)],
which is a value.

As shown above (using call-by-value B-conversion) Y,G = G(Y,G) whereGis
any closed functional Af.An.M.

Disadvantage of Y,, vs. Y: Y, is arity-specific for recursive function definitions in
languages like Jam that support multiple arguments in A-abstractions. (Note: unary
Y, works for all curried function definitions since every A-abstraction is unary.) b

Alternate Definitions of v,

The following defintion of the call-by-value version Y also works:
Y, = AF. (Ax. F(Ay.(x x)y)) (Ax. F(Ay.(x x)y))
In this case, we n-convert (x x) instead of F(x x).

Let G be some functional Af.An.M, like FACT, for a unary recursive function
definition. G and An.M are values (A-abstractions). Since © has the form Af.An.M
Y (Ax. C(Ay.(x x)y)) (Ax. C(Ay.(x x)y)))

(Ay. (Ax. S(Ay.(x x)y)) (Ax. “(Ay.(x x)y)))

An.M[f := Ay. (Ax. C(AYy.(x x)y)) (Ax. “(Ay.(x x)y))

which is a value in both call-by-value and call-by-name.

\"

In call-by-value, Y © is nota value buty, « is.

But ©(Y,”) = (Af.An.M)(Y, (Af.An.M)) = An.M[f:=Y (Af.An.M)],
which is a value.

As shown above (using call-by-value B-conversion) Y,G = G(Y,G) whereGis
any closed functional Af.An.M.

Disadvantage of Y,, vs. Y: Y, is arity-specific for recursive function definitions in
languages like Jam that support multiple arguments in A-abstractions. (Note: unary
Y,, works for all curried function definitions since every A-abstraction is unary.)

_oose Ends

* Meta-errors
* Read the notes!
* 1letrec (In notes)

Lazy JamVal: a Concrete Example

Consider Jam with call-by-value A and lazy cons. What
IS the domain Jamval of data values? It consists of the
flat domain of integers Z, augmented by JamList, the
domain of lazy lists over Jamvals, and the function
domain Jamvalk — Jamval of call-by-value functions of
arity k for k e N (natural numbers).

JamVal = Z, + JamList + U, Jamvalk — Jamval
JamList = JamEmpty + cons(JamVal, JamList)

where cons IS lazy (non-strict) in both arguments. Does
call-by-value Y, let us recursively define infinite trees?
Yes!

Call-by-value Y with Lazy Llists

Assume we want to define the infinite lazy tree with no leaves:
consMax = cons(consMax, consMax)

How do we express this in Jam? We need letrec (let
with recursive binding):

letrec consMax := cons(consMax,consMax);
in consMax

What is the denotational meaning of recursive definition? The least
call-by-value fixed-point (using Y,) of the corresponding function C
which is Ac.cons(c,c). Since cons is lazy, the standard least
fixed point construction yields the desired infinite tree. Try
evaluating Y,, C in the Assignment 3 reference interpreter (using
value-need mode).

