
Comp 411

Principles of Programming Languages

Lecture 13

The Semantics of Recursive Let

Corky Cartwright

February 8, 2023

The Semantics of Recursive Binding
• Let's add the recursive binding construct letrec (akin to let) to LC

where we restrict right-hand sides to λ-expressions (which is the only

useful case for unary letrec).

• The Scheme code for the AST is:

(define-struct rec-let (lhs ; variable
rhs ; a λ-expression
body))

where lhs is the new local variable, rhs is the lambda-expression defining the

value of the new variable, and body is an expression thatcan use the new local

variable. The new variable lhs is visible in both rhs and body in both rhs and

body. The code for it in the interpreter might look like:

((rec-let? M) (MEval (rec-let-body M)
(extend env

(rec-let-lhs M)
(make-closure (rec-let-rhs M) <E>)))

• Problem: how should <E> expand into code? The environment should be the

enclosing (extend ...) expression.

How Can We Construct This Circular Environment?

Let's treat environments abstractly.

We need to build an environment E such that
E = (extend env

(rec-let-lhs M)
(make-closure (rec-let-rhs M) E)))

What is wrong with the following Scheme code?
(define E (extend env

(rec-let-lhs M)
(make-closure (rec-let-rhs M) E)))

Does the value of E satisfy the equation above?

Can We Find a Representation That Works?

• Slogan: functions are the ultimate lazy data structures. But they are completely

opaque; the only primitive operation on functions is application. (Recall the

convention in Java regarding interfaces corresponding to lambda-notation.)

• Unfortunately, even the function representation of environments cannot salvage

the preceding environment definition because a call-by-value language always

evaluates the right-hand-side of define and the arguments of function calls. We

need to tweak our code so that the circular reference to the new environment is

embedded inside a lambda. The following revision of our eval clause works:

((rec-let? M) (MEval (rec-let-body M)
(rec-extend env (rec-let-lhs M) (rec-let-rhs M)))

where

(define rec-extend

(lambda (env var rhs)
(letrec [(new-env (lambda (v)

(if (equal? v var) (make-closure rhs new-env)
(env v))))])

new-env)))

OO Representations for Environments

• If an environment is represented by an OO class or interface, it

can include whatever methods are appropriate. Methods such

as printing, equality testing (not an issue in our interpreters) and

iteration (not currently an issue in our interpreters since

mutation is forbidden) can easily be included. Moreover,

deferred evaluation can be incorporated (if desired) in the

interface. For example, a Binding interface might have both

eager (call-by-value) and lazy (call-by-name) subclasses.

• On the other hand, poorly designed OO interfaces can be just as

opaque as functions. Consider the standard command pattern

interface which has only one method (command invocation).

.

Question to Ponder

• Can we eliminate λ if we include the right

functional constants (combinators) in our

language?

• Haskell Curry preferred combinators to

explicit λ-notation. The former are

algebraic (can be interpreted as functions)

while the latter is not. Schoenfinkel and

(later) Curry independently discovered

combinators before Church invented the λ–

calculus.

