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Intuitive Overview
• Compiled code (machine code corresponding to high-level language code) is typically much 

faster than interpreted code because the executed operations are directly implemented by short 

sequences of machine instructions.  In addition, interpreters are typically written in high-level 

languages that add overhead and constrain how the data values are represented and the 

interpreted operations are implemented.  Note it is straighforward (albeit a bit more complex) 

to write interpreters that are much, much faster than our Jam interpreters by using lowe level 

representations for programs and incorporating the optimizations in environment 

representations that we will discuss.

• For fast execution of source programs, they almost always need to be compiled.

• Compiled code executes in the context of a run-time, a protocol for how each compiled source 

program unit couples with the compiled code for other program units including a 

representation for the execution environment.  (Compiled code relies on an environment just 

like meta-interpreters do, but its representation is optimized for efficiency at machine level.)

• The first comprehensive compiler run-time was the run-time created for Algol 60.  The 

committee who designed this run-time was brilliant.  Most contemporary compiler run-times 

are extensions/elaborations of this design.  Is this surprising?  Yes.  Is it unprecedented?  No.  

Carl Friedrich Gauss invented the FFT algorithm in 1805, wrote it up as a cute trick for 

solving an otherwise intractable computational problem (which he did by hand) in his 

research notes, but never published it.  For Gauss, it was a perhaps a “trifle”.  Fourier did not 

do his work until about 1820 although Francois Budan published much of the same work in 

1807-1811.   The same algorithm was “discovered” by computer scientists in 1965.

Jeff Erickson’s free online book on Algorithms is a great source of misattribution.



Stack-Based Environment Representations
• In Algol-like languages, the environments that exist at any point during a computation can 

be collectively represented using a stack that is an elaboration of the control stack 

supporting procedure calls in most modern processors. Processor design evolved to 

support Algol 60 and its descendants including nearly all modern languages.

• Algol-like languages are almost always compiled to machine code rather than interpreted 

like Jam. Nevertheless, the compiled code must perform the same operations on program 

data structures as interpreted code does.  A compiler typically performs far more program 

analysis than an interpreter enabling it to pre-compute quantities that are determined at 

run-time by an interpreter.

• Almost all modern machines provide a control stack to store the return addresses of 

procedure calls. In addition, other context information (such as saved register values) is 

typically saved with the return address in a frame on the control stack. To return, the called 

procedure pops the current (top) frame off the stack restoring the saved context 

information and jumps to the specified return address.  Popping the stack frame for a 

called procedure restores the stack to the form it had before the call (but the bindings of 

some variables stored in the stack may have changed).

• Many machines also pass procedure/method argument values in the stack.   Another 

possible convention is to pass arguments (up to some bound) in machine registers.

• The result returned by a procedure is typically returned in a register because the stack 

frame associated with the call is deallocated on return.  



Lexical Scope in Stack Environments
In a stack-based implementation of a lexically-scoped language, a new environment is 

constructed (extend-env in our LC interpreter) to evaluate the body of a let or 

lambda-application by allocating a new frame called an activation record (or stack 

frame) on the control stack. The activation record contains:

• the new variable binding values introduced by the let or lambda,

• a pointer called the static link pointing back to the rest of the environment(a 

linked list of activation records),

• a pointer called the dynamic link to the preceding activation record,

• the return address (address of the next instruction in the code block that 

invoked the let or lambda-application), and

• any register/context values that need to be saved for restoration on return 

from the let or lambda.

In this representation, an environment consists of a linked list of activation records 

called the static chain where the static link serves as the link field of the list.  The first 

record in the gives the bindings at static distance 0 and so forth. The length of this list 

is simply the lexical nesting level of the body of the let or lambda-application being 

evaluated.  The compiler knows the exact structure of the static chain and the offset of 

each binding value in each activation record. The length of the static chain always 

matches the nesting depth of the called function/procedure.  Hence the maximum 

length of the static chain is the maximum nesting depth in the program.



Extensions of Stack Environments

For let invocations (regardless of whether let is recursive)
(let ([x1 e1] ... [xn en]) E)

and raw lambda applications

((lambda (x1 ... xn) E) e1 ... en)

the static link and dynamic link in the new activation record both point to 

the same place, namely the preceding activation record on the stack (the 

activation record for the enclosing let form or lambda application).

For a function application

(f e1 ... en)

where f is the name of a declared function (in scope), the static link in

the new activation record points to the activation record in the static chain

corresponding the static distance between the application site and the

definition of f.   Hence, this activation record contains the bindings of

the variables defined in the same lexical unit as f.  For a simple

recursive function call (e.g., a recursive call in the usual definition of

factorial), this static link is identical to the static link in the calling

activation record (the preceding activation record on the stack).         



Closure Representation in Stack Environments

• Recall the definition of a closure: a pair containing an executable unit of code 

and an environment (or relevant part of it).

• How can we represent such a pair given the environment is a linked list of 

activation records?

• Environments are represented by pointers to activation records.  The 

represented environment is the linked list of activation records (determined 

by the static link fields) specified by the pointer.  Each such record 

contains a sequence of binding values. 

• A closure is a pair consisting of the address of the routine (procedure) to be 

executed and the corresponding environment (pointer).  But this 

implementation has severe restrictions.  Algol 60 obviously imposes a 

similar restriction on the lifetimes of ordinary variables.  There is no such 

thing as “new” for objects/structures in Algol 60.   In/ safe dialects of 

Algol 60, structure sharing is prohibited; in fact,pointers to structures are 

not legal values.  (Algol 60 did not include structures but C of course does.  

In C, pointers are values and the language is notoriously unsafe.)

• When a closure is invoked, the embedded environment frame is typically 

not the top (most recently created) stack frame. This environment pointer 

is copied into the static link of the new frame allocated for the closure 

invocation.  



Supporting First-class Closures

• In Algol 60, the context in which lambda-abstractions may appear is 

severely restricted because each activation record and the variable 

bindings it contains are destroyed when the execution associated code 

body completes.  The “return” operation from a function/procedure or 

a let body deletes the corresponding activation record.

• To address this problem, the implementors of Lisp introduced a second 

storage area called the heap where values persist until they are no 

longer referenced from any static data area (a simple addition of the 

Algol 60 runtime equivalent to a base activation record that is never 

de-allocated during program execution).  Heap storage is recovered in 

blocks (data object representations) via automatic storage management, 

typically performed using a process called garbage collection.  Some 

languages use reference-counting instead.

• The default allocation policy for closures in a language with a heap is 

to allocate the closure on the heap, but stack allocation is a possible 

optimization in cases where the usage of the corresponding 

function/procedure meets the Algol 60 restrictions.



Alternate Light-weight Closure Representation

• Observation: the code in a closure can be executed 

without the entire closure environment.  Only the 

bindings of the referenced variables matter!

• Alternate representation of closures: code plus a 

pruned environment, typically a few bindings, which 

can be included in the closure object (increasing its 

size by the added fields)!  Of course the associated 

code must be tailored to the fact the binding values are 

located in the closure object rather than a standard 

environment.  The compiler can generate code where 

each free variable simply corresponds to an offset in 

the closure object/record.



Run times for Modern Languages

• Nearly all practical languages are stack-based following the Algol 60 run-time.  

Some ML implementations are not (all activation records are allocated in the 

heap) but it is a stretch to claim that they are practical. Nearly all modern stack-

based languages also include a heap which is simply a data area where the 

lifetimes of data values are not required to obey a stack discipline. 

• Data values that are directly stored in local variables are stack-allocated, unless 

they appear free in a closure.   Placing such variables in the heap is a critically 

important idea introduced by Guy Steele in the Rabbit compiler for Scheme.   

This “light-weight” representation of closures must store the addresses of all 

environment variables that may be accessed in the closure object/record because 

the conventional environment pointer does not work after the corresponding stack 

frame (activation record) has been deallocated.  Using this closure representation, 

there is no restriction on the use of closures as data values.  Functions are truly 

first-class.  Guy Steele’s important hack (in the good sense of the word) is yet 

another example of David Wheeler’s maxim: "All problems in computer science 

can be solved by another level of indirection.“

• Modern languages designed for efficiency like C, C++, and Rust ignore their 

Algol roots and fail to use Guy’s optimization for representing the values of 

variables that are not bound to functions or primitive machine types. The 

designers of these languages have been blinded by C and its copy semantics for 

structs (which C supports exactly as if they were machine types).  



Run times for Modern Languages II

• Why does Java require free variables in closures to be final? 

So that they can safely be copied into a light-weight closure 

representation (inner class instance)!  If they were mutable, 

copying them would break the semantics of .

• The original implementation of inner classes (by John Rose,   

who went to graduate school with Guy Steele) heap-allocated 

variables that appear free in closures as arrays of size 1 and 

stored (pointers to) these array objects in the inner class instance 

instead of the actual binding values.  As a result, inner class 

instances could close over mutable cells in addition to final

variables (values).  But it is easy to work around the restriction 

to final variables: the general solution is to simply use final

arrays, because the cells (elements) of an array are mutable!  

(Aside: what does it mean for a variable of array (or object) type 

to be final?) 


