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Review

• In Algol-like languages, the collection of environments that exist 

at any point during a computation is embedded in the machine 

control stack supporting (recursive) procedure calls.  When the 

frames of the control stack are used in this way, they are called 

activation records.

• In each activation record, a pointer called the static link points to 

the environment parent of the record.  Similarly, a pointer called 

the dynamic link points to the preceding stack frame (activation 

record) to which control will return when the current 

computation (conducted using the current activation record) 

completes. The static link is used for looking up non-local 

bindings (variables bound in the surrounding lexical context) 

• The dynamic link is used to return control from the current 

“procedure” to its caller (whose local variables may not be 

accessible from the current frame).



Example I
Consider the following Scheme program to reverse a list:

(define rev (lambda (l)
(letrec
[(revhelp ; :=

(lambda (tl acc)
(if (empty? tl) acc

(revhelp (rest tl) (cons (first tl) acc)))))]
(revhelp l empty))))

The Pidgin Algol equivalent (extended to include functional lists as a built-in type:

function List rev(l: List) = {

{ function List revhelp(tl: List, acc: List) = {

if empty?(tl) then acc else revhelp(rest(tl), cons(first(tl), acc)) };

revhelp(l, empty)

}}

What happens when (rev '(0 1)) is called?  

• The top level call on rev allocates activation record (AR) #1 with null static and dynamic 

links and a slot for l (the alphabetic letter) initialized to '(0 1).  

• The body of rev (executing in AR #1) allocates AR #2 for the letrec with static and 

dynamic links pointing to preceding activation record and a slot for revhelp initialized to 

the closure for its definition.  

• The body of revhelp allocates AR #3 record for the recursive call on revhelp with static 

link taken from closure binding of revhelp (in AR #2) and dynamic link pointing to 

preceding activation record.



Example I cont.

• Since l is not empty, body of revhelp allocates AR #4 for the recursive call 

on revhelp with static link taken from closure binding of revhelp, dynamic link …,

and slots for tl and acc initialized to '(1) and '(0), respectively.

• Since l is not empty, body of revhelp allocates AR #5 record for recursive call 

on revhelp with static link taken from closure binding of revhelp, dynamic link …,

and slots for tl and acc initialized to '() and '(1 0), respectively.

• Since l is empty, body of revhelp in context of AR #5 returns the value '(1 0), popping AR 

#5 off  the stack.

• The pending evaluation in AR #4 returns the value '(1 0), popping AR #4.

• The pending evaluation in AR #3 returns the value '(1 0), popping AR #3.

• The pending evaluation in AR #2 returns the value '(1 0), popping AR #2.

• The pending evaluation in AR #1 returns the value '(1 0), popping AR #1.

Notes:

1. The last four steps are trivial because they are returns from tail calls.

2. The dynamic link is always set to point to the preceding AR.

3. Algol 60 was designed so that the ARs could be stack allocated (and deallocated).  Function 

values are not “first-class”.

4. Guy Steele’s heap allocation “hack” relies on a heap with automatic storage management to 

extend the Algol stack allocation runtime to support first-class functions/procedures.  

5. In Java, inner classes enable the nesting of scopes as in Algol; the static chain is formed by 

embedding hidden parent instance pointers in the inner class objects.  In addition all non-local 

variables accessed in an inner class must be final so that they can be copied into the inner class 

instances.  Note that non-local variables that are lexically “in scope” are only accessible if they 

are final (a restriction that added as a modification to John Rose’s original inner class design).



Example II
Consider the following Scheme program to lookup a binding value in a list of pairs:
(define lookup (lambda (sym env)
(letrec

[(lookup-help
(lambda (env)  
(cond [(empty? env) null]

[(eq? sym (pair-var (first env))
(pair-val (first env))]

[else (lookup-help (rest env) tl)]))]
(lookup-help env))))

Let’s trace the evaluation of (lookup 'a (cons (make-pair 'a 5) null))

• The top-level call on lookup allocates AR #1 with null static link and slots 

for sym and env initialized to 'a and '(['a 5])).

• The body of lookup (executing in AR #1) allocates AR #2 for the block with the 

static link pointing to AR #1 and a slot for lookup-help initialized to the closure 

for its definition.  Can AR #1 be replaced by AR #2?  What about sym and env? 

• The body lookup executing in AR #2 allocates AR #3 for the call on lookup-help

with the static link extracted from the closure bound to lookup-help and a slot for 

env initialized to '(['a 5])) (the value of env in the environment determined by 

the static link of AR #2).  Can AR #2 be replaced by AR #3?

• The body of lookup-help executing in AR #3 looks at env and finds a match for 

sym (found in the static chain in AR #1) in the first pair, namely ['a 5] and 

returns that pair, popping AR #3, which bubbles up through tail calls to point of 



Exceptions
Exceptions were not included in Algol 60 or most of its successors (Pascal, 

Algol W, C).  But the Algol 60 run-time stack can easily handle the modern 

Java try/catch construct.   This construct evolved in the context of Lisp 

(which started with a crude version of essentially the same construct as 

err/errset) and appeared in a form very similar to the Java/C# formulation in 

ML.  Most modern languages (Java, C#, Swift) support exceptions, although 

they may include less costly constructs than full exceptions and recommend 

these for most applications (where the exceptional condition does not 

correspond to a catastrophic local failure (like a ParseException [in a program 

that is presumed syntactically correct] or EvalException.

How does exception handling work?  Activation records must include a catch

table for the thrown exception listing the caught exception classes (types) and 

their handlers (the bodies of the catch clauses).  (A catch is active if control 

is within the corresponding try block.)  When an exception is thrown the 

executing code (interpreter or compiled code) searches back through the 

dynamic chain⸺popping exited frames off the stack⸺to find the first matching 

catch clause.  Obviously, if the control stack is very deep, throwing an 

exception can be an expensive operation.  Exceptions should not be used for 

normal program control.

.


