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A Fatal Weakness in Simple Structural Typing

Structural similar types like list-of-int and list-of-bool are 
completely disjoint.  Standard list operations that do not depend on the 
element type must be rewritten for every different element type.  There 
are no common abstractions connecting list-of-int and list-of-bool
because they are disjoint types like int and bool. 

The solution is to introduce type parameterization (polymorphism) into 
the data domain and the corresponding type system.  Instead of 
defining

int-list :: = empty() | consint(int, int-list)

bool-list :: = empty() | consbool(bool, bool-list)

...

we define a single parameterized form of list:

list T :: = empty() | cons(T, list T)



What Types Correspond to Parametric Data?
Henceforth, we will assume that our λ-language supports an arbitrary number of arguments in 

λ-abstractions, which is required to support pure let constructions with an arbitrary number of 

bindings.

In the data definition:

list T :: = empty() | cons(T, list T)

what are the types of data operations like empty, cons, and the corresponding accessors?  

The simplest approach to parameterizing a definition with respect a variable is to schematize 

the definition: let the definition abbreviate an infinite set of definitions, one for each possible 

value of the parameter.  

We need to introduce the notion of type schemes to associate a rigorous mathematical meaning 

with parameterized type definitions.  A type scheme has syntax

∀α1 · · · αn . τ

where α1, ..., αn (n > 0) are type variables, and τ is a type that may include type variables.  The 

types of the data operations in our example are:

empty: ∀α ( → list α)

cons: ∀α (α x list α → list α)

cons-1: ∀α (list α → α)

cons-2: ∀α (list α → list α)

To form a type scheme we simply “close” the corresponding type expression (now generalized to contain 

type variables) over the free type variables in the expression.



How Are Type Schemes Added to the Type System?

Two Options:

1. First option: explicit polymorphism.  We add type variables, explicit type abstraction 

and application to the programming language. The expressions in our language are:

M :: = λv:σ. M | (M N) | V | Λt. M | (M τ)
τ :: = D1 | … | Dn | (σ → τ) | ∀t τ

where V is the set of vars, v:σ is a (finite) list of vars together with their types,  T is the 

set of type variables, t is a finite list of type variables, M is an expression, N is a (finite) 

sequence of expressions, τ is a type expression, and σ is a finite cross product of  type 

expressions, and D1 …, Dn are primitive types. The symbol Λ is a capital λ; it denotes 

type abstraction, just as λ represents value abstraction.  This extension is more general

than merely adding type schemes since quantifiers can be embedded within types. It is 

called the polymorphic λ-calculus or System F.  The typing rules for the simply typed 

λ-calculus can be extended to type programs in the polymorphic λ-calculus (as shown 

on the next slide), but type reconstruction (determining the typing, if any, for an 

untyped expression) is undecidable. The polymorphic λ-calculus is clumsy in practice 

and; it has not been incorporated in any practical programming language.  

Nevertheless, it is worth understanding because of its impact on the generic type 

systems for OO languages (like Java 5+).

2. Better option: implicitly polymorphic λ-calculus (quantifiers only appear on outside of 

type expressions and are typically implicit)



Typing Rules for the Polymorphic λ-Calculus
(also called System F)

• The binding axiom and rules for (functional) abstraction and 
(functional) application same as in the simply typed λ-calculus (with 
λ-abstraction generalized to arbitrary finite arity) with one extension: 
types may contain type variables.

• Rules for type abstraction and type application:

Γ Ͱ M:τ; α not free in Γ
―――――――――――――――――  (type abstraction rule)

Γ Ͱ Λα.M: Ɐα τ

Γ Ͱ M: Ɐα τ
――――――――――――― (type application rule)

Γ Ͱ (M σ):τ[α:=σ]

Note: type abstraction and application are degenerate if τ does not contain α

• In practice, the Polymorphic λ-Calculus has proven to be an 

inappropriate basis for practical type systems.  



Implicit Polymorphism
Second option for interpreting type schemes, which is much more important in practice than 
explicit polymorphism 

(i) We restrict type expressions to ordinary type expressions (possibly containing type 
variables) and type schemes which are ordinary type expressions surrounded by a universal 
quantifier at the top level.  Hence, ∀ can only appear at the top-level in a type expression and 
the body of a type scheme is an ordinary type.

(ii) We make no changes to the programming language, which looks like a (dynamically typed) 
λ-language. 

If we ignore Milner’s polymorphic let construct (explained later), the typing rules are the same 
as for ordinary typed λ-languages, except:

• the inductive definition of types τ includes type variables α as an additional base case;

• the type environment can include type schemes (as defined earlier) in place of types (but 
type schemes can only appear in type environments!); and

• an additional axiom supports fully instantiating type schemes:

Γ, x:∀α S Ͱ x: S'

where S is a type scheme and S' is a substitution instance of S (replacing all type 
quantified type variables α) containing no quantifiers.

Note: our typing rules will ensure that in any typing judgment Γ Ͱ M:τ, all variables in M are 
assigned types in M, all type variables in τ appear free in Γ, and type schemes (ordinary type 
expressions enclosed by quantification at the top level) only appear in Γ.  You should carefully 
study the Type Inference Study Guide.



Implicit Polymorphism cont.

Different instantiations of same type scheme axiom:

Γ, x:∀α(α→α) Ͱ x: int→int

Γ, x:∀α(α→α) Ͱ x: (int→int) → (int→int)

In the absence of polymorphic let, we can use primitive 
operations with schematic types because the types of primitive 
operations are built into the base environment (as in Assignment 
5), but how do we define new polymorphic operations?  We 
need to extend our language so that let and letrec introduce 
polymorphic operations!  Robin Milner introduced these 
constructions in his original formulation of the language ML, 
which has spawned a family of statically typed (mostly) 
functional languages including Haskell and Ocaml.  Haskell is 
purely functional while Ocaml is (mostly) functional.  Milner 
was awarded the Turing Award IMO for this innovation.



Typed Jam and Polymorphic Jam

The course master web page contains links to a handout describing two 
different closely related typing rules for let.  Consider

let id := map x to x; in (id(id))(4)

If we interpret let as either pure let or recursive let as described in 
our previous lecture, this program is untypable because id is used two 
different ways: as the identity function for type int→int and for type 
int.

But we can revise (strengthen) our typing rule for (recursive) let as 
follows:

Γ, x:σ Ͱ M:σ; Γ,{x:close(σ,Γ)} Ͱ N:τ
―――――――――――――――――――――――――――――――――――  (polymorphic let rule)

Γ Ͱ let x:σ := M in N : τ

where close(σ,Γ) means find all of the free type variables α1 , ..., αn in 

σ that do not appear in Γ and generate ∀α1,…,αn σ.

Key intuition: the proof of  Γ, x:σ Ͱ M:σ is schematic in the free type 

variables.  Hence, we can instantiate them in the proof without breaking it!



Defining Polymorphic Functions
The following polymorphic let construct was Milner's greatest insight in 
devising ML.  Consider the Jam program

let id := map x to x; in (id(id))(4)

If we interpret let as either pure let or recursive let as described in our 
previous lecture, this program is untypable because id is used two different 
ways: as the identity function for type int→int and for type int.

But we can revise (strengthen) our typing rule for (recursive) let as follows:

Γ,{x:σ} Ͱ M:σ; Γ,{x:close(σ,Γ)} Ͱ N:τ
―――――――――――――――――――――――――――――――――――  (polymorphic let rule)

Γ Ͱ let x:σ := M in N : τ

where close(σ,Γ) means find all of the free type variables α1 , ..., αn in σ
that do not appear in Γ and generate ∀α1,…,αn σ.

Key intuition: the proof of  Γ,{x:σ} Ͱ M:σ is schematic in the free type 

variables in σ.  Hence, we can instantiate them in the proof without breaking 

it!  This idea can be used to formalize implicit polymorphism as a notational 

extension of the simply typed λ-calculus.- calculus 



Type Reconstruction

Implicit polymorphism is far more important in practice than explicit polymorphism 

because the types in implicitly typed programs can easily be reconstructed if they are 

erased. (This process is often called “type inference” but we will use the term 

“reconstruction” instead of “inference” because we want to use the term “inference” 

to refer to formally proving programs are typable using typing rules.)  Explicit 

polymorphism which forces explicit type abstraction and application is painful and 

essentially unused in practice in the context of structural typing. 

How does type reconstruction work?  Mechanically build the type inference tree for a 

program using the typing rules with type variables for the types of all variables 

introduced in λ-abstractions.  To make this tree a valid proof tree, certain equality 

relationships must hold between type expressions (these equality constraints are 

implicit in the rules).  Generate the list of equality constraints (on symbolic 

expressions!) and solve them using unification which we will describe in our next 

lecture. 

This reconstruction process is algorithmic!  For this reason, implicitly polymorphic λ-

languages adopt the convention that types can be dropped from the binding 

occurrences of variables. In languages supporting Hindley-Milner typing such 

annotations are typically optional.


