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Machine-level  Semantics

Interpreters written in a clean functional metalanguage (like 
functional Scheme or Haskell) provide clear definitions of meaning 
for programming languages.  We can even tolerate occasional use 
of imperative features (e.g., mutation operations on shared data in 
Scheme/Racket) and still claim that interpreters clearly define the 
behavior of programs (provided we define the semantics of the 
imperative extension of metalanguage).

But these interpreters do not describe how to implement 
programming languages efficiently in terms of conventional 
machine instructions.  What is missing?  A description of the 
meaning of function calls and error operations used in the 
interpreter metalanguage.  Most primitive functions (e.g., addition 
of 2's complement integers) are implemented by machine 
instructions or short sequences of machine instructions.  In 
principle, we would like to know how to hand translate our 
interpreters to machine code, or even better, how to compile source 
programs directly into machine code.



Guidance From an Example

Consider the following Jam procedure, which computes the product of a list of 
numbers:

let Pi := map l to

if l = empty then 1 else first(l)*Pi(rest(l))

in Pi(...)

What if the input list may be corrupt (contain non-numbers)?  How can Pi report 
an error?

let

PiAcc := map l,acc to

if l = empty then acc

else PiAcc(rest(l), first(l)*acc);

Pi2 := map l to PiAcc(l, 1);

in Pi2(...)

Does Pi2 preserve the order of evaluation in Pi?



Guidance From an Example cont.

Suppose Pi2 is passed a corrupt list. In that case, PiAcc multiplies all 

the numbers found until the erroneous input is encountered. Can we 

avoid these wasted multiplications?  Yes.  By making acc into a 

suspension (thunk), which requires wrapping acc in a function with 

a dummy parameter ?.

let PiLAcc := map l,lacc to

if empty?(l) then lacc(true)

else if number?(first(l)) then

PiLAcc(rest(l), map ? to first(l)*lacc(true))

else first(l)  // return the rogue element;

Pi3 := map l to PiLAcc(l, map ? to 1)

This program avoids unnecessary multiplications.  But like  Pi2, it 

changes the order of multiplications from Pi.  If the * primitive were 

not associative, the transformation used to create Pi2 would not 

work.



Systematically Avoiding Nested Function Calls

We failed to preserve the evaluation order in Pi in constructing Pi2 and Pi3 because 

updating an accumulator reverses the order of operations on a list.  Is there a systematic way 

to avoid nesting function calls while preserving evaluation order?  Yes!  It is called 

transformation to continuation-passing style (CPS).  The CPS transform of Pi is:

let Pik := map l,k to  //function k performs the rest of the computation

if empty?(l) then k(1)

else if number?(first(l)) then 

Pik(rest(l), map prod to k(first(l)*prod))

else first(l); // abort on an illegal input

Pi4 := map l to Pik(l, map x to x)

Why does the first else clause work? Because Pi4 and Pk are tail-recursive. P4 is only 

called at top-level; it tail-calls the tail-recursive function Pik.  Hence, the value returned by 

an else clause is guaranteed to return directly to the top-level caller of Pi4.  CPS converts 

all functions to tail-call-form (every call on a program-defined function can only appear as 

the last function call or operation in the execution of the function body).  A CPSed program 

can be executed without the support of a call stack!  All subroutine call operations become 

jumps because they appear in tail position.  Argument values can be passed in a fixed block 

of registers (limiting arity to the register block size). 



Key Intuition Underlying CPS

Consider the accumulated stack in the Algol 60 Runtime (where the environment is 

bundled with the activation records required to support subroutine linkage [saved 

registers, passed arguments, return address] which was originally called the “save 

area” (in assembly language and Fortran programs) and statically allocated in each 

routine [including the main program] making recursion impossible.  Algol 60 

placed these activation records in a stack in memory managed by the operating 

system; the format of the stack (and activation records) had to conform to linkage 

conventions established by the operating system. (In the IBM System 360/370, the 

operating system did not use a stack for subroutine linkage and did not support 

recursion!) 

At any point in a computation, the current continuation is the unary “function” 

(technically a procedure since the executed code can mutate program 

variables/data structures) defined by returning a value (the input to the function) 

from the existing activation record to its caller (the next element in the dynamic 

chain pointing back program to the invocation by the operating system).  Note that 

the command line arguments provided to a program run from an OS shell are the 

arguments passed to the main method of the program.  (In Java, these arguments 

are packaged as a String array.)



The CPS Transformation
A primitive expression is constructed from constants, variables, operators and primitive functions.   (Intuition: 

primitive expressions can be implemented by simple blocks of machine code.)  Assume Jam programs are restricted 
to a form where let only appears at the top-level and the body of a function is either :

• an ordinary expression, which has the same definition as a primitive expression except that may contain calls on 

program-defined functions; or

• a conditional expression (if-then-else chain) where the predicates are primitive expressions and the result 

clauses are ordinary expressions (primitive expressions augmented by program-defined functions).  

Assume that primitive operations never diverge or abort.  (Accommodating this unusual behavior requires a more 

elaborate translation as in Project 6.)

Then the CPS transformation of such a program is defined as follows:

1. Add an extra parameter k to every function definition (which is expressed using map).

2. For each function body b that is a primitive expression, write k(b).

3. For each function body that is a conditional expression, each predicate (test expression) is unchanged and each 

result clause is treated separately as follows: 

a. For each result clause b composed from primitive operations and constants, write  k(b).

b. For each clause (which we call a body) containing calls on program-defined functions, pick the call that will be 

evaluated first. Make the body for the new result clause a call (on the reshaped function definition) that takes 

an extra continuation argument of the form map res to body.  The original contents of the result clause are 

placed in the body, enclosed in a call on the continuation k, with the selected recursive call replaced by res.  

Repeat this step (3b) on the tranformed result clause until no unconverted function calls remain.

A continuation corresponds to a reification (packaging some program behavior as a function) performing the 
rest of the computation as described by the control stack (in an Algol-style runtime) The top-level let creates 

an activation record and each function call creates a new activation.

The generated continuation functions have the same restricted form as the original program.

4. For each function body that is an ordinary expression (but not a primitive expression), convert it to CPS form 

using the process described in 3b) above.



A More Interesting Example

Assume that Jam includes binary trees with int leaves (the BT type from an earlier 

lecture).  Then:

let treePi := map t to

if leaf?(t) then t

else treePi(left(t))*treePi(right(t))

This example is more complex because there are two embedded calls on program-

defined functions. In the first iteration in creating the CPS version is:

let treePik := 

map t,k to

if leaf?(t) then k(t)

else treePik(left(t), map res to k(res*treePi(right(t)))

The preceding program in not in tail-call-form because the continuation function in 

the recursive call on treePik is not in tail-call-form.  In addition is still contains a 

call on treePi



Second Iteration

After the first iteration, the generated continuation (which is a program map) is not

in tail-call-form, so we must transform it as well.

let tree-Pi-k := 

map t,k to

if leaf?(t) then k(t)

else tree-Pi-k(left(t), 

map r1 to tree-Pi-k(right(t),

map r2 to k(r1*r2))

which is in tail-call-form.



CPS Granularity
In pure form, the CPS transformation is typically given for the untyped λ-

calculus (see the optional notes on the CPS Transformation in OCaml).  But 

this characterization (like most formalisms based on the untyped λ-calculus) is 

misleading in practice because it does not address the issue of processing 

primitive operations (the untyped λ-calculus has no primitive operations!).  

Neither does the polymorphic λ-calculus (System F).

Of course, primitive operations are much easier to process than program 

functions because they typically do not abort (a few operations like division 

and object accessors are exceptions) or otherwise discard the pending 

continuation.  Modular 2’s complement arithmetic (other than division) is a 

good example.  Note than finite arithmetic with overflow is not!

If primitive operations can abort but never use the stack (perform subroutine 

calls), then the CPS transformation can correctly process (preserve the 

semantics of programs) by simply ensuring that the the order of primtive

operations is preserved.  The rules in Assignment 6 follow this regimen; the 

intuitive description of the CPS conversion on slide 7 does not.  The 

designation of which operations are primitive has a huge impact on the final 

form of the CPSed code.  In practice, only operations that do not use the stack 

(i.e., expand to inline machine code) should be designated as primitive.



CPSing Within Compilers

The CPS transformation is often performed by compilers for “higher -

order” languages (those that support functions as data values), because 

CPSing exposes all of the operations that are implicitly performed on 

the stack in standard code (which uses an algol-like stack run-time).

But there are less severe alternative transformations (notably A-normal 

form [invented at Rice]) that expose most of the same operations. In A-

normal form, every non-trivial intermediate result is explicitly stored in 

a local variable.   An application is trivial iff the rator is a primitive 

operation.

If no operation is treated as primitive, then A-normal form conversion 

is very similar to a much older representation used in optimizing 

compilers called value-numbering. In value-numbering, hashing is used 

to avoid duplicating subtrees in a concrete representation of the abstract 

syntax of a program.  Every application (App in the AST)



Reviewing the CPS Transformation

Assume Jam/Scheme programs are restricted to a form where the body of a function is 

either:

• a primitive expression constructed from constants, variables, operators, and primitive 

functions,  and program-defined functions; or

• a conditional where the predicates are primitive expressions and the result clauses are 

ordinary expressions (primitive expressions augmented by program-defined functions). 

Then the CPS transformation of such a program is defined as follows:

1.  Add an extra parameter k to every function.

2.  For each function body b that is a primitive expression, write k(b).

3.  Each clause in a conditional is treated separately:

a. For each result clause b composed from primitive operations and constants, write 

k(b).

b. For each clause containing calls on program-defined functions, pick the call that will be 

evaluated first. Make the body of the new clause a call on a reshaped version of the 

program-defined function that takes an extra argument of the form map res to body, 

called the continuation.  The original contents of that clause are placed in the body, 

enclosed in a call on the continuation k, with the selected call replaced by res.

c. Repeat preceding step 3(b) until no unconverted function calls remain.



Review:  Another Example

let
treeSum :=
map t to if leaf?(t) then t

else Tree-Sum(left(t)) + Tree-Sum(right(t))
In treeSum( ... )

Then first iteration in creating the CPS version, treeSumK, is

let 
treeSumK :=
map t,k to if leaf?(t) then k(t)

else treeSumK(left(t), 
map res to k(res + treeSum(right(t)))

in treeSumK( ... , map x to x)



Second Iteration

let

treeSumK := map t,k to                    // rule 1

if leaf?(t) k(t)                        // rule 3a

else treeSumK(left(t),                  // rule 3b

map r1 to treeSumK(right(t),

map r2 to k(r1 + r2)))

in treeSumK( ...,  map x to x)



Comprehensive Formulations of the CPS 
Transformation

The rules for performing the CPS transformation are more complex in the 

context of explicit binding constructs like lambda, let, and letrec (recursive 

let).   In principle, these extensions do not add anything new, but they 

complicate the detailed structure of environments and the CPS transformations 

eliminates explicit environments (other than local variables) by encoding 

environments (represented using the stack in algol-like run-times) as closures 

(continuations) in the heap.

Study the rules for Assignment 6, which constitute one possible way to handle 

the Jam recursive let and map constructs.  Good CPS translations are concise.   

The rules for Assignment 6 produce reasonably concise CPS translations but 

they could be improved at the cost of more complexity.

The rules in Assignment 6 also preserve the execution order of primitive 

operations.


