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Variables

• What is a variable?

A legal symbol (typically an alphanumeric identifier) without a pre-defined (reserved) 
meaning that can be bound to a value (and perhaps rebound to a different value) during 
program execution.

• Examples in Scheme/Java

x   y   z

• Non-examples in Java

+  null true false 7f throw new if else

In Scheme,

7f throw new

are legal variables; the other identifiers have reserved meanings.

• Complication in Java: variables vs. fields

• What happens when the same name is used for more than one variable?

• Example in Scheme:

(lambda (x) (x (lambda (x) x)))

We use scoping rules to distinguish them.



Some scoping examples

• Java:
class Foo {

static void sampleMethod() {
int[] a = ...;
for (int i = 0; i < a.length; i++) { ... }
...

//  Is a in scope here?  Is i in scope here?
...

}
}

What is the scope (portion of the program 
where it can be accessed/referenced) of a?

What is the scope of i?



Formalizing Scope Using LC

• Let us focus on a pedagogic functional language that we will call LC, which corresponds 
to a subset of Jam (with different surface (concrete) syntax).  LC (based on the Lambda 
Calculus) is the language generated by the root symbol Exp in the  following grammar

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp) | (+ Exp Exp)

where Var is the set of alphanumeric identifiers excluding lambda and Num is the set of 
integers written in conventional decimal radix notation.  (LC is very restrictive; there are 
no operators on integers other than +.  Later in the course, we will slightly expand it.)

• If we interpret LC as a sub-language of Racket/Scheme, it contains only one binding 

construct: lambda abstractions. In (lambda (a-var) an-exp) Racket/Scheme 

encloses the parameter list in parentheses but otherwise conforms to the syntax we have 

used for LC.  LC restricts lambda-abstraction to unary functions (as does the Pure 

lambda-calculus), but this restriction is merely a notational inconvenience because n-ary

functions (where n > 1) can be “curried”, expanding n-ary abstraction into a nested 

collection of unary abstraction (n levels deep).  We briefly discuss currying on the next 

slide.

• a-var is introduced as a new, unique variable whose scope is the body an-exp of the 

lambda-expression (with the exception of possible "holes", which we describe in a 

moment).



An Aside: Unary Lambda-Abstraction and Currying

• A fundamental, elementary concept from functional programming is the currying of functions.   

In the world of functional programming the verb curry has a universal meaning that does not yet 

appear in dictionaries (at least the ones I have checked).  The word curry in the context of 

programming languages as a completely different etymology than the various dictionary 

meanings.  Haskell Curry was a pioneer in the realm of the lambda-calculus and the related field 

of combinatory logic.  There is an obvious one-to-one correspondence between functions in the 

space A1× A2×… × An  B and functions in the space (A1  A2  …  An)  B where 

 associates to the right, i.e., 

A1  A2  …  An  (A1  (A2  ( …  An)))

• Given a function f  A1× A2×… × An  B, there is a unique corresponding function f ′ such 

that f(x1, x2, …, xn) = f ′(x1)(x2) … (xn) where function application associates to the left, i.e., 

f ′(x1)(x2) … (xn)  ( …((f ′(x1))(x2)) … (xn))

• As a result, it suffices to only support unary lambda-abstraction, exactly like LC.  Similarly, the 

pure lambda calculus follows this convention. The Lisp family of language (including Scheme 

and Racket) does not.  Most mainstream languages (including all the non-functional languages I 

have seen) do not.  Why?  This transformation presumes that functions are first-class values!

• In some functional languages like Haskell,  f ′(M1)(M2) … (Mn) is written f ′ M1 M2 … Mn, so the 

notation for applying a curried function is simpler than it is for applying the uncurried function  f

to the same n arguments because the latter requires forming an n-tuple [M1, M2, …, Mn] first.  In 

such languages, functional (lambda) abstraction is strictly unary.  



Abstract Syntax of LC
• Recall that

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp) | (+ Exp Exp)

where

Num is the set of numeric constants (given in a lexer spec)

Var is the set of variable names (given in a lexer spec)

• To represent this syntax as trees (abstract syntax) in Scheme, we define

; exp := (make-num number) + (make-var symbol) + (make-app exp exp)

+ (make-proc symbol exp) + (make-add exp exp)

(define-struct num (n))            ;; n is a Scheme number

(define-struct var (s))            ;; s is a Scheme symbol 

(define-struct app (rator rand))

(define-struct proc (param body))  ;; param is a symbol not a var!

(define-struct add (left right)

where the structures

app represent function applications,

proc represent function definitions (lambda x exp), and

add represent applications of addition to two arguments.



Free and Bound Occurrences
• An important building block in characterizing the scope of variables is defining when a 

variable x occurs free in an expression.  For LC, this notion is easy to define inductively.

• Definition (free occurrence of a variable in LC):
Let  x, y range over the elements of  Var. Let  M, N range over the elements of Exp. Then x
occurs free in:

• y if x = y;

• (lambda y M) if x != y and x occurs free in M

• (M N) if it occurs free either in M or in N.

• The relation " x occurs free in M " is the least relation on LC expressions satisfying the 
preceding constraints.  Note that no variable x occurs free in a number.

• The variable name immediately following (“introduced by”) a lambda is not considered a 

conventional “occurrence” of the variable and is not classified as either free or not free. It is 

usually called a binding occurrence of a variable.

• It is straightforward but tedious to define when a particular occurrence (excluding binding 

occurrences) of a variable x (identified by a path of tree selectors) is free or not free; the 

definition proceeds along similar lines to the definition of occurs free given above.

• Definition: an occurrence of x is bound in M iff it is not free in  M and it is not a binding 

occurrence (which is neither bound nor free).



Examples of Free and Bound Occurrences

• Consider the LC expression M = (lambda y (y x)).

• The first occurrence of  y in M is a binding occurrence.

• The second occurrence of y in M is bound by the binding occurrence.

• There are no other occurrences of y in M .  Hence, y does not occur free in M

• The variable x occurs free in M; the only occurrence of x in M is free.

• The variable y occurs free in (y x); so does the variable x.



Nested Scope
• A lambda-expression of the form (lambda Var Exp) is called a 

lambda abstraction.  

• The expression Exp forming the body of a lambda abstraction can contain 

lambda abstractions.  For example, the lambda abstraction (lambda y 

(lambda x y)) defines a function that takes an input y and returns the 

constant function that always returns y.  

• The inner lambda abstraction (lambda x y) introduces a binding 

occurrence of the variable x.  In LC, the scope a variable introduced in a lambda 

abstraction is simply the body of the lambda abstraction.  The choice of the 

variable name x is almost arbitrary. We could use z or v instead.  Of course, we 

would have to change the name of all free occurrences of  x in the body to the 

new variable name.  Nevertheless, we could use any variable name instead of x

except y.  Why?  If we use y as the name of the variable introduced by the inner 

lambda abstraction, we would shadow the variable of the same name introduced 

by the outer lambda abstraction.  No matter what name we choose for the variable 

introduced by the inner lambda abstraction, that variable hides any variable with 

the same name in an enclosing lambda abstraction.



Nested Scope cont.

• At any point in an LC program, a finite collection of variables—
introduced in enclosing lambda abstractions—is visible.  This 
collection is always finite because all programs are finite in size.  

• If we try to access a variable that has not been introduced in an 
enclosing lambda abstraction, then the attempted access will 
generate a runtime error.  It is easy to detect such references 
because they are precisely the free variables of the whole 
program.  

• If we control the content of an entire LC program, we can make 
sure that all variable names are unique, avoiding all shadowing.  

• In practice, we typically do not have control over all of the code 
in a program, particularly code that may be revised in the future, 
so shadowing happens even if we manage to avoid it in the code 
under our control.



Static Distance Representation

• The choice of variable names introduced in a lambda expression is arbitrary 
(modulo ensuring distinct, potentially conflicting variables have distinct names).

• We can completely eliminate explicit variable names by using the notion of 
“relative addressing” (widely used in machine language and assembly language): 
a variable reference simply identifies which lambda abstraction introduces the 
variable to which it refers.  We can number the lambda abstractions enclosing a 
variable occurrence 1, 2, ... (from the inside out) and simply use these indices 
instead of variable names.  Since LC includes integer constants, we will italicize 
the indices referring to variables to distinguish them from integer constants.

• These indices are often called deBruijn indices.

• The numbering of deBruijn indices may start at 0 instead of 1; it a design choice 
in defining a deBruijn notation system.

• Examples:

(lambda x x) →  (lambda 1)

(lambda x (lambda y (lambda z ((x z)(y z))))) →

(lambda (lambda (lambda ((3 1)(2 1)))))



Generalized Static Distance

• In LC, lambda abstractions are unary; only one 
variable appears in the parameter list.

• In practical programming languages, parameter lists 
can contain any finite number (within reason) of 
parameters.

• How can we generalize deBruijn notation to 
accommodate lambda abstractions of arbitrary arity?

• Hint: does a variable reference have to be a simple 
scalar (physics terminology)? Lists and vectors are not 
scalars.



Generalized SD Example

(lambda (x y) (lambda (z) ((x z)(y z)))) →
(lambda (lambda (([2 1] [1 1])([2 2] [1 1]))))

Note that we are indexing the variables within a given 
parameter list starting at 1, not 0.  In the context of 
intermediate representations used for compilation, 
indexing typically starts at 0 (because the 
corresponding addressing arithmetic uses an offset of 
0).


