
Comp 411

Principles of Programming

Languages

Lecture 6

Implementing Syntactic

Interpreters

Corky Cartwright

January 23, 2022

A Syntactic Evaluator
Can we translate our syntactic reduction rules into a program?

;; AST → V AST ; an illegal program can return a non-value in AST\V
(define eval
(lambda (M) ; M is an AST
(cond ; case split on form of M
((var? M) M) ; M is a free var (stuck!)
((or (const? M) (proc? M)) M) ; M is a value
((add? M) ; M has form (+ l r)
(const-add (eval (add-left M)) (eval (add-right M))))

(else ; M has form (N1 N2)
(apply (eval (app-rator M)) (eval (app-rand M)))))))

;; A═►B A → B
(define apply (lambda (a-proc a-value)
(cond
((not (proc? A-proc)) ; ill-formed app
(make-app a-proc a-value)) ; return stuck state [ERROR!]

(else ; return reduced, substituted body
(eval
(subst a-value (proc-param a-proc)(proc-body a-proc)))))))

Coding Substitution
;; V Sym R → R Blindly substitutes v for x in M (ignoring capture)
(define subst

(lambda (v x M)
(cond

[(var? M) (cond [(equal? (var-name M) x) v] [else M])]
[(const? M) M]
[(proc? M))

(cond [(equal? x (proc-param M)) M]
[else (make-proc (proc-param M) (subst v x (proc-body M)))])]

[(add? M) (make-add (subst v x (add-left M))
(subst v x (add-right M)))]

[else ;; M is (N1 N2)
(make-app (subst v x (app-rator M))

(subst v x (app-rand M)))])))

Is subst safe? No! It is oblivious to free variables in M. Does it work in the context

of our syntactic interpreter? Provisionally: it fails in some cases for illegal programs

unless a distinction is made between top level constants and variables. All top level

bindings (define in Scheme) must be classified as constants. So the set of constants

is program dependent. In the absence of such a distinction, some programs with free

variables fail to generate run-time errors when free variables are evaluated because

they have been captured

Exercise: Revise subst so that it is safe. Note that blind substitution is safe as long as

our top-level expression/program M is well-formed and contains no free variables.

Why?

Comments on our Syntactic Interpreter

We still need to define const-add. What does const-add do on non-const values?

The key property of this evaluator is that it only manipulates (abstract) syntax. It

specifies the meaning of LC by mechanically transforming the syntactic

representation of a program. This approach only assigns a satisfactory meaning to

complete LC programs, not to subtrees of complete programs. Counter-example:

((lambda (x) (+ x y)) 7)
If const-add mirrored syntactic evaluation, then it would return the abstract syntax

tree for (+ 7 y) which is an irreducible “stuck” state—not a value—and the correct

choice if we are strictly implementing syntactic evaluation. A more attractive

alternative that is an elaboration of syntactic interpretation is to generate a run-time

error because y is not a value. In a context where y is bound to (the abstract syntax

tree for) 5, it returns (the abstract syntax tree for) 12; which is not (the abstract syntax

tree for) (+ 7 y) or a run-time error. From a mathematical perspective, The

meaning of sub-expressions should be defined so that meaning ⟦...⟧ is compositional,

i.e.
⟦ (c M1 … Mk)⟧ = ⟦ c ⟧ (⟦ M1⟧, … , ⟦ Mk⟧)

Syntactic interpretation utterly fails in this regard because it cannot cope

with free variables.

Can We Make Syntactic Evaluation Compositional?

The short answer is “no”.

Since syntactic evaluation does not directly assign meaning to components of

abstract syntax trees, it technically does not satisfy the compositionality

criterion. If we apply the definition syntactic evaluation to the subtrees of a

program, then we must address the fact that the syntactic evaluation of many

subtrees will “stick”. Some of these stuck results correspond to actual run-time

errors in the syntactic evaluation of the entire program. Hence, the

compositional meaning (based on syntactic evaluation) of a program must be

error if any subtree means error. But this definition of meaning is clearly

wrong and inconsistent with the results of syntactic evaluation since every

program containing a variable reference will be assigned some form of error as

its meaning.

To assign a compositional meaning to abstract syntax trees, we need a more

sophisticated definition of meaning for program expressions than syntactic

evaluation. We will address this issue in the next lecture.

Toward Semantic Interpretation
From a software engineering perspective, what is wrong with our syntactic

interpreter? How fast is subst? How can we do better? We can avoid

unnecessary and costly substitution operations by keeping a table of bindings,

which we will call an environment. This same “refactoring” also corresponds

to a compositional semantics.

;; Binding = (make-Binding Sym V) ; Note: Sym not Var [coding detail]

;; Env = (listOf Binding)

;; R Env → V

(define eval

(lambda (M env)

(cond

((var? M) (lookup (var-name M) env))

((or (const? M)(proc? M)) M) ;; Do procs really evaluate to themselves

((add? M) ; M has form ‘(+ l r)’ in LC syntax

(const-add (eval (add-left M) env) (eval (add-right M) env)))

(else ; M has form ‘(N1 N2)’ in LC syntax

(apply (eval (app-rator M) env) (eval (app-rand M) env) env)))))

;; Proc V Env → V

(define apply

(lambda (a-proc a-value env)

(eval (proc-body a-proc) (cons ((proc-param a-proc) a-value) env)))

• In essentially all functional programming languages, there is

alternate special notation for

((lambda x M) N)

namely

(let [(x N)] M) Scheme

or

let x := N; in M Jam

• This alternate notation is literally an abbreviation for the explicit

lambda form

• For this alternate notation, the beta-reduction rule has the form
(let [(x V)] M) ⇒ M[x := V] Call-by-value (mainstream languages)

(let [(x N)] M) ⇒ M[x := N] Call-by-name (Haskell only)

Gotcha's in Naive Semantic Interpretation

• What if a-proc in our putative semantic interpreter contains free

variables (which can happen in legal programs)? Do we always get

the right answer (as defined by syntactic interpretation)?

Illustration:

• (let [(a 5)]

(let [(app-to-a (lambda (f) (f a))]

(let [(a 10)]

(+ a (app-to-a (lambda (x) x))))))

• What goes wrong ? Should a lambda-expression really evaluate to itself?

This is the most serious and most common blunder in writing

interpreters.

• Think about how you might fix the problem. Hint: what information is

missing in env when a-proc is evaluated? Remember, you want the same

result as if you were performing syntactic interpretation.

