
Robert Cartwright <corky.cartwright@gmail.com>

[Instr Note] Real world CPS example
COMP 411 on Piazza <no-reply@piazza.com> Tue, Apr 7, 2020 at 1:46 AM
Reply-To: reply@piazza.com
To: cork@rice.edu

-- Reply directly to this email above this line to create a new follow up. Or Click here to view.--
Instructor Simran Virk posted a new Note.

Real world CPS example

I wanted to post an old piazza note by Nick Vrvilo, a previous TA of 411 (who also wrote the reference interpreter). It
provides some motivation for why the CPS transformation is useful -

Real-world Continuation-Passing Style (CPS) example
In past years, I know one thing students have struggled with is the motivation behind why you would want to do the CPS
transformation. Basically any time that you can't depend on a "call stack" of some kind to handle your application's control
flow, CPS (or some similarly-flavored transformation) is often the answer. Asynchronous computation and/or messages
are a common example of code that breaks your ability to rely on the call stack.

C# 5.0 introduced the async and await constructs to help programmers write asynchronous control flows in a way that
resembles synchronous code. They have a bunch of examples on that page of using these constructs to handle
asynchronous HTTP communication. There's a similar feature being added to Scala in SIP-22, although it's available as a
library right now. The C++20 standard is expected to add support for "coroutines" (formerly known as "resumable
functions") to the language, which is another restricted version of the CPS transformation. The official editor of the
coroutine proposal is a member of the Microsoft Visual C++ team, and the features are already available in Visual Studio.

The async/await constructs in both C# and Scala make use of the CPS transformation over a delimited section of the
code (i.e., delimited continuations) in order to transform the seemingly sequential code into a series of asynchronous
function calls. The Scala version actually uses a simplified CPS transform called A-Normal Form (ANF). I'm pretty sure
that the CPS transformation we do in Jam is pretty much identical to the ANF transformation. This is not surprising
since ANF was invented by a student of Matthias Felleisen—back when he was a professor at Rice—and our current
Comp 411 material is rooted in the programming languages class that Dr. Felleisen created at Rice.

I think this quotation from the C# documentation nicely sums up the advantage of having this kind of CPS-transformation
support build into the compiler/interpreter for your language:

The compiler does the difficult work that the developer used to do, and your application retains a logical
structure that resembles synchronous code. As a result, you get all the advantages of asynchronous
programming with a fraction of the effort.

As an example of a language that didn't have a built-in concept of continuations, look at JavaScript and the callback
hell that JavaScript developers have to work so hard to avoid. In contrast, TypeScript introduced async/await in version
2.1, saving their developers from callback hell by getting the TypeScript compiler to do the CPS transformation
automatically on asynchronous control flows.

However, Async functions and futures were finally added to ECMAScript (the JavaScript standard) in 2017 in the 8th
edition (i.e., ES8).

https://piazza.com/class?cid=k8pjjhnzyvb65r&nid=k5980yrfobqal&token=WWKeCSXxtUq
http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://docs.scala-lang.org/sips/pending/async.html
https://github.com/scala/async
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4628.pdf
https://blogs.msdn.microsoft.com/vcblog/2017/01/27/yield-keyword-to-become-co_yield-in-vs-2017/
http://en.wikipedia.org/wiki/Delimited_continuation
http://en.wikipedia.org/wiki/A-normal_form
http://callbackhell.com/
https://blogs.msdn.microsoft.com/typescript/2016/11/08/typescript-2-1-rc-better-inference-async-functions-and-more/#user-content-downlevel-async-functions

async/await in Python was added in 3.5, and they call CPS'd code "coroutine" code:
https://docs.python.org/3/library/asyncio-task.html#coroutines

Search or link to this question with @133.

Sign up for more classes at http://piazza.com/rice.

Thanks,
The Piazza Team
--
Contact us at team@piazza.com

You're receiving this email because cork@rice.edu is enrolled in COMP 411 at Rice University. Sign in to manage your email preferences or un-enroll from this
class.
Email id: k5980yrfobqal|k8pjjhnzyvb65r|WWKeCSXxtUq

https://docs.python.org/3/library/asyncio-task.html#coroutines
http://piazza.com/rice
mailto:team@piazza.com
mailto:cork@rice.edu
https://piazza.com/login
https://piazza.com/remove/WWKeCSXxtUq/k5980yrfobqal

