
RICE UNIVERSITY

A Framework for Testing Concurrent Programs

by

Mathias Guenter Ricken

A Thesis Submitted
in Partial Fulfillment of the
Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Robert Cartwright, Chairman
Professor of Computer Science

Walid Taha
Assistant Professor of Computer Science

William Scherer III
Faculty Fellow

Houston, Texas

October 2007

A Framework for Testing Concurrent Programs

Mathias Guenter Ricken

Abstract

Incremental, test-driven development is sweeping the software industry, elevating test-

ing from an ancillary activity to an integral part of the programming process. Un-

fortunately, in our recent experience developing production programs in Java, unit

testing has only proven effective in assuring the reliability of code with a single thread

of control; it is much less effective in concurrent programs. To facilitate the develop-

ment of concurrent programs, we are developing:

1. An extension of the JUnit framework that actively supports the developer by

treating tests that could silently ignore failures in auxiliary threads as test

errors;

2. A lightweight Java annotation language that can be used to specify and check

the threading invariants of both existing and new code;

3. A testing framework that can record and analyze the schedules of unit tests,

detect deadlocks, and run the tests using modified schedules, increasing the

likelihood that concurrency problems are discovered.

Acknowledgments

I would like to thank my advisor, Robert “Corky” Cartwright. Without his guidance,

advice and patience, this project would not have been possible. I thank Corky for

his support and understanding, given in regard to this project as well as in private

matters. I owe many thanks to the members of my thesis committee, Walid Taha

and Bill Scherer, for their crucial suggestions, comments, and encouragements.

I am indebted to Joe Warren for piquing my curiosity and getting me interested

in research – and for experiencing informative failure for the first time: not achiev-

ing my goal, but learning a lot about it. I thank Jim Kinsey, Don Johnson, and

Jim Pomerantz for organizing the Rice Undergraduate Scholar Program, showing me

more about research and graduate school, and ultimately tipping the scale.

I also thank Dung “Zung” Nguyen, Stephen Wong, and my other teachers, the

department staff, my office mates James Sasitorn and Moez A. Abdel-Gawad, my

lab mate Dan Smith, and all my fellow students – my friends – for the often fruit-

ful discussions and all the help along the way. I thank Justin Crites for diligently

proofreading and commenting on my thesis and even helping me understand future

problems better. His curiosity and energy are infectious, and I hope, for everyone’s

sake, that it will always stay that way.

I thank the National Science Foundation, the Texas Advanced Technology Pro-

gram, the School of Engineering and the Department of Computer Science at Rice

University for funding this project. I thank Corky for giving me the opportunity

iv

to attend the “Summer School on Language-Based Techniques for Concurrent and

Distributed Software” in 2006 in Oregon, ten days of learning, laughing, and hiking

to completely new points of view. It was an invaluable experience, and I thank Jeff

Foster, Dan Grossman and Jim Allen for making it such a success.

I thank a good friend for being there for me so often. She has been much more

important to me than I have been able to show, and perhaps more important than I

can comprehend.

Finally, I thank my mother. Words cannot express the love and respect I feel

when I think of you. Everything that is good in me can be traced back to you.

Thank you for believing in me, Mama. Ich liebe Dich, so wie ein Sohn nur die

beste Mutter der Welt lieben kann.

Every designing mind which has mastered the earthly

Loves in the figure’s swing nothing more than the turning point.

(Rainer Maria Rilke, from Sonnets to Orpheus)

Contents

Abstract ii

Acknowledgments iii

List of Figures viii

List of Tables ix

List of Listings x

1 Introduction 1

1.1 Review of Prior Work . 1

1.2 Motivation . 4

1.3 Organization . 4

2 Problems Testing Concurrent Programs 6

2.1 Inadequacies of Existing Frameworks 9

2.2 Enforcement of Threading Disciplines 11

2.3 Tractability of Schedule-Based Testing 12

2.4 Common Problems in Concurrent Software 15

3 Improvements to JUnit 21

3.1 Default Exception Handler . 22

3.2 Enforcement of Thread Joins . 26

3.3 Results . 28

4 Annotations for Concurrency Invariants 31

4.1 Examples of Invariants . 33

vi

4.2 Annotations and Inheritance . 36

4.3 Primitive Annotations . 40

4.4 Predicate Annotations . 43

4.4.1 Predicate Link Annotations 45

4.4.2 Combine Annotations . 52

4.4.3 Predicate Annotations Using Reflection 58

4.5 External Annotations in XML Format 59

4.6 Comparison to Assertions . 61

4.7 Subtyping Relation for Annotations 62

4.7.1 Extended Syntax . 66

4.7.2 Featherweight Java Subtyping Relation 66

4.7.3 Auxiliary Definitions . 67

4.7.4 Combined Subtyping Relation 72

4.7.5 Extension of Featherweight Java Typing 73

4.7.6 Type Preservation and Progress 74

4.7.7 Implementation Differences 74

4.8 Problems Caused By Subclassing: When Is Something Really

“Thread-Safe”? . 75

4.9 Results . 79

5 Bytecode Rewriting Framework 85

5.1 Offline and On-the-Fly Instrumentation 88

5.2 Local and Global Instrumentation . 89

5.3 Marker Methods for Instrumentation 91

5.4 Other Uses of Bytecode Rewriting . 91

5.4.1 Recording Schedules . 92

5.4.2 Deadlock Monitor . 94

5.4.3 Random Delays and Yields . 95

vii

5.5 Results . 101

6 Conclusion 103

Bibliography 104

A Pre-Defined Predicate Annotations 109

B XML Annotation Syntax 122

B.1 Class-Based XML Format . 122

B.2 Invariant-Based XML Format . 123

B.3 XML Invariant Notation . 124

B.3.1 XML @PredicateLink Notation 125

B.3.2 XML @Combine Notation . 126

B.3.3 XML Argument Notation . 126

C Suggestions for Improving Java Annotations 129

C.1 Annotations of Data . 129

C.2 Repeated Annotations . 131

C.3 Subtyping for Annotations . 133

C.4 Generics for Annotations . 135

Figures

2.1 Formula for Number of Schedules . 14

4.1 Set of Annotations . 40

4.2 Stack for Calling @PredicateLink Annotation Predicate 47

4.3 Invariant Checker-Extended Featherweight Java (TCFJ) Syntax . . . 66

4.4 Featherweight Java Subtyping Relation 66

4.5 TCFJ - Extract the Method Declarations from a Class 67

4.6 TCFJ - Extract the Annotations from a Class 67

4.7 TCFJ - Extract the Annotations from a Method 67

4.8 TCFJ - Extract the Name from a Method Declaration 67

4.9 TCFJ - Extract Only Predicate Annotations 68

4.10 TCFJ - Extract Only @NotRunBy Annotations 68

4.11 TCFJ - Extract Only @OnlyRunBy Annotations 68

4.12 TCFJ - Method Introduction . 69

4.13 TCFJ - Annotations Lookup for Object 70

4.14 TCFJ - Annotation Lookup for Introduction 70

4.15 TCFJ - Annotation Lookup for Overriding 71

4.16 TCFJ - Check for Annotation Contradictions 71

4.17 TCFJ - Combined Subtyping Relation 72

4.18 TCFJ - Static Invariant Violation . 73

5.1 Time for n Synchronized Blocks . 102

Tables

4.1 Sample Invariants . 63

4.2 More Sample Invariants . 64

4.3 Unit Tests . 80

4.4 Invariant Checks and Violations . 81

4.5 Other Information . 82

4.6 Invariant Checker Benchmarks . 84

5.1 Schedule Codes . 93

A.1 Predicate Annotation Library: AnySynchronized* 109

A.2 Predicate Annotation Library: NoneSynchronized* 111

A.3 Predicate Annotation Library: OnlySynchronized* 112

A.4 Predicate Annotation Library: NotSynchronized* 113

A.5 Predicate Annotation Library: *EventThread 114

A.6 Predicate Annotation Library: OnlyThreadWithName* 115

A.7 Predicate Annotation Library: NotThreadWithName* 116

A.8 Predicate Annotation Library: OnlyThreadWithGroupName* 117

A.9 Predicate Annotation Library: NotThreadWithGroupName* 118

A.10 Predicate Annotation Library: Miscellaneous 119

B.1 XML @PredicateLink Member Type Codes 127

Listings

2.1 A Simple Unit Test . 8

2.2 A Simple Class to Test . 8

2.3 A Flawed Class to Test . 9

2.4 A Unit Test Using JUnit 4.2 . 9

2.5 Program with Race Condition . 16

2.6 Shared Data Protected By Lock . 17

2.7 Dining Philosophers: Deadlock . 18

2.8 Dining Philosophers, Locks in Right Order 19

3.1 Uncaught Exception and Assertion 22

3.2 Uncaught Exception and Assertion in an Auxiliary Thread 23

3.3 Uncaught Exception in an Auxiliary Thread Reached Too Late 27

3.4 Main Thread Waits for Auxiliary Thread to Finish 28

3.5 Concurrency Problems in DrJava Detected by Improved JUnit 30

4.1 Possible Deadlock Due to Lock Acquisition Order 35

4.2 Deadlock Avoided By Correct Order 35

4.3 Listing 4.1 with Annotations to Detect Deadlock 36

4.4 Synchronized Methods Before Transformation 37

4.5 Methods With Synchronized Blocks After Transformation 37

4.6 Annotated Method . 38

4.7 Method Annotated in Superclass . 38

4.8 Annotated Classes . 39

4.9 @ThreadDesc Annotation for Use with Primitive Annotations 41

4.10 Illustration of Primitive @NotRunBy Annotations 42

xi

4.11 Illustration of Primitive @OnlyRunBy Annotations 43

4.12 @PredicateLink Meta-Annotation 45

4.13 Memberless Annotation, 0 Parameters, Arguments not Passed 47

4.14 Annotation Definition of Listing 4.13 48

4.15 Predicate Method of Listing 4.13 . 48

4.16 Usage Site of Listing 4.13 . 48

4.17 Annotation with Members, 1 Parameter, Arguments not Passed . . . 49

4.18 Memberless Annotation, 2 Parameters, Arguments Passed 50

4.19 Annotation with Member, 2 Parameters, Arguments Passed 50

4.20 Predicate Accessing Private Field Using Nested Class 51

4.21 Predicate Accessing Private Field Using Reflection 52

4.22 Ideal, But Unachievable Usage Example 52

4.23 @Combine Meta-Annotation . 53

4.24 A @Combine Annotation With Default Values 56

4.25 A @Combine Annotation Used Twice 57

4.26 XML File in Class-Based Format . 60

4.27 XML File in Invariant-Based Format 60

4.28 Listing 4.30 with an Assertion . 62

4.29 Benign Program . 75

4.30 Modified Behavior by Subclassing . 76

4.31 Modified Behavior by Call to Overridden Method 77

4.32 Listing 4.30 with Annotation (Excerpt) 79

4.33 Listing 4.31 with Annotation (Excerpt) 79

4.34 Invariant Checker Output for Listing 4.32 79

4.35 Invariant Checker Output for Listing 4.33 80

5.1 IInstrumentationStrategy Source 86

5.2 ConditionalStrategy Source . 87

5.3 IScannerStrategy Interface . 87

xii

5.4 “Too Late” Faulty Program . 97

5.5 Fault Detected by Random Wait . 98

5.6 “Too Early” Faulty Program . 99

5.7 Possible Atomicity Hazard . 100

B.1 Class-Based XML Header . 122

B.2 Class-Based XML Footer . 122

B.3 Class-Based XML Body: Class . 123

B.4 Class-Based XML Body: Methods . 123

B.5 Invariant-Based XML Header . 123

B.6 Invariant-Based XML Footer . 123

B.7 Invariant-Based XML Body: Method 124

B.8 @PredicateLink Annotation in XML 125

B.9 @Combine Annotation in XML . 126

B.10 Non-Array <arg> XML Node . 126

B.11 Array <arg> XML Node . 128

C.1 Using a Dummy Method to Check Data 131

C.2 Annotation for Listing C.1 . 131

C.3 Predicate for Listing C.2 . 131

C.4 Invariant Checker Output for Listing C.1 132

C.5 Repeated Annotations . 132

C.6 Regular Expressions as Alternative 133

C.7 Annotation Array as Alternative . 133

C.8 Extending Annotations . 133

C.9 Subtyping for Annotations . 134

C.10 Annotation Definitions for Listing C.9 134

C.11 Usage Example for Listing C.9 . 135

C.12 Generics for Annotations . 135

1

Chapter 1

Introduction

The software industry is embracing test-driven development, popularized under the

banner of “Extreme Programming” [1, 2]. When tests for each program unit are

written before the unit is implemented, testing can influence the design of a program

and catch bugs early in its development. Together with automated build systems like

Ant [3], unit tests also provide a basis for refactoring a program while preserving its

reliability.

Incremental design and unit testing have proven to be effective for programs with

a single thread of control; however, our experience with programming larger applica-

tions, such as DrJava [4], has shown that this approach is much less reliable at detect-

ing bugs in programs with multiple threads: Thread scheduling is non-deterministic

and machine-specific, making it difficult to create meaningful unit tests.

These problems are exacerbated as CPU clock frequencies stagnate and multi-core

processors become more widespread. To benefit from these newer CPUs, programs

have to run several computations in parallel. Unless there is a breakthrough in CPU

design and manufacturing, writing and testing concurrent code is bound to change

from an expert activity to a skill that programmers use every day.

1.1 Review of Prior Work

The topic of testing programs and detecting bugs has been extensively discussed in the

literature; recent papers have even covered debugging concurrent programs [5, 6, 7].

The aspect of unit testing concurrent programs, though, is still largely unexplored.

2

There have been several articles in the Java trade press [8, 9, 10, 11], but none of

these publications provides a framework for thoroughly unit testing concurrent code.

In his Master’s thesis [12] and a technical report [13], Bruening approaches testing

concurrent programs by using schedule-based execution. Using a lockset algorithm

based on Eraser [14], his framework ensures that the program is race-free. In par-

allel, the framework then identifies the critical operations in the program where one

thread can have an impact on the computation of other threads, and if necessary,

the framework re-executes the program from that point on with a different schedul-

ing choice. As long as the program is race-free, executing all possible arrangements

of program blocks delimited by these critical operations is sufficient for covering all

possible concurrent behaviors.

Bruening’s work focuses on testing entire applications when they are nearly com-

plete; in essence, his framework allows acceptance testing for concurrent programs.

To do this, the framework has to have the ability to “roll back” to a previous point,

since re-executing the entire program to that point may be too expensive or even

impossible. The emergence of “Extreme Programming” [1, 2], however, has put a

greater emphasis on testing smaller program units at an earlier stage of the develop-

ment process. Since unit tests are short and predictable, it seems like the dynamic

techniques of schedule-based execution developed by Bruening and the dynamic race

detection by Savage et al may be easier to utilize with unit tests. There are several

frameworks available that support unit testing, JUnit [15] and TestNG [16] for Java

for example, but none of these frameworks takes concurrency into account. With-

out an improved unit testing framework, applying the research on schedule-based

execution is a compromised endeavor.

Aside from these dynamic techniques to improve the reliability of concurrent pro-

grams, several static approaches have been suggested. Many of them [17, 18], however,

rely on manual annotations to the program to guide the static analysis. This by itself

is not necessarily bad: After all, this very thesis proposes an annotation language for

3

detecting concurrency problems as well. It is nonetheless important to identify this

cost because static guarantees at compile time are often seen as getting something

for free. Some statement is guaranteed to always be true, and the program itself does

not need to ensure that this is actually the case. The fact that these static analyzers

require annotations as guidance should serve as a reminder that they, in fact, do not

solve the problem of bug detection for free.

It is interesting to point out that Java Specification Request (JSR) 305 [19] pro-

poses the use of Java annotations to specify invariants and detect violations. This

request, however, is still in its infancy.

Other approaches to ensuring program correctness, even in concurrent situations,

use specialized type systems [20, 21, 22, 23]. The benefits of a highly developed

type system, though, are often paid for by greater difficulties in implementing the

desired algorithms; complex types can become hurdles that the programmer needs to

overcome. Furthermore, these type systems are often experimental and not close to

being integrated into a language commonly used by the industry, such as C, C++ or

Java.

Another approach to simplifying concurrent software completely eschews locks:

These techniques are typically grouped as lock-free or wait-free algorithms [24, 25,

26, 27, 28]. At the core, these algorithms share an optimistic notion about the work

they perform; each thread assumes it will succeed without interference from other

threads. Without the help of locks, the thread performs all of its work, and in a final

step uses a device like an atomic N -way compare-and-swap to produce either change

at a large scale or a failure due to interference. In that latter case, the thread will

redo its work.

Libraries providing some lock-free algorithms are available for many platforms

(Java 5.0 introduced the java.util.concurrent package, for example). However,

lock-free algorithms need to be re-developed for each standard data structure to which

we have become accustomed, and not all data structures are supported yet.

4

While using lock-free algorithms may be easier than using one with locks, de-

signing a lock-free algorithm is a complex task. We doubt locks can be completely

eliminated in application programs. Furthermore, lock-free algorithms require robust

testing in concurrent situations; therefore, the tools developed for this thesis can be

helpful to the developer of lock-free algorithms.

1.2 Motivation

Our work was motivated by the problems the programmers of DrJava face during

the development of a large program with many threads of control. Our goal was to

provide a set of tools that help developers write better concurrent software by enabling

them to write correct unit tests, document and verify the concurrency invariants in

a piece of software, and simulate the execution of the unit tests using a number of

parameters that influence thread scheduling. This framework should not remain a

theoretical exercise but be of immediate use to programmers.

1.3 Organization

The first part of this thesis, chapter 2, examines the problems during the development

of concurrent programs. It introduces the basics of unit testing, the shortcomings of

existing unit testing frameworks, and the difficulties in documenting and maintaining

invariants crucial for executing programs correctly. Chapter 2 also discusses how

feasible it is to comprehensively test concurrent programs.

Chapter 3 and chapter 4 describe the contributions of this thesis:

• an improved unit testing framework based on JUnit (chapter 3)

• an annotation language for documenting and verifying the concurrency invari-

ants of a program (chapter 4)

Some of the more technical issues and details of the implementation are relegated

to chapter 5. This chapter also describes some of the other tools we have created

5

as part of this project, for example a utility to record the schedule a program has

executed, ways to change the schedule by inserting random yields or delays, and a

deadlock monitor.

The conclusion in chapter 6 contains a summary of this work and examines op-

portunities for future research.

Appendix A documents the library of pre-written annotations that have been

developed for this thesis. Appendix B describes the syntax of XML files to specify

invariants. Appendix C discusses some of the problems related to Java annotations

that we encountered during our implementation and makes several suggestions how

Java annotations could be improved.

6

Chapter 2

Problems Testing Concurrent Programs

Unit testing at an early stage has several advantages when compared to traditional

acceptance testing, which usually happens when the code of the application is com-

plete:

• By focusing on individual parts, such as methods or classes, unit tests check

code segments that are much smaller than the entire application. This automat-

ically localizes errors in the program, since there is no interference from other

code segments. Unit testing is particularly effective in combination with code

coverage tools like Clover [29], which can ensure that the unit tests actually

execute every line of the program’s code.

• Unit tests are executable programs, so testing can easily be automated and test

failures be reported. Since acceptance testing often involves programs with a

graphical user interface (GUI), automation is possible, but much harder, since

the actions of a user, such as mouse clicks or keystrokes, have to be simulated.

• By beginning to test earlier and only committing code that passes all unit tests,

flaws in the code are found earlier and usually by the same developer who is

writing the code. This reduces the importance of being familiar with all parts

of the program, facilitating concurrent development by multiple programmers.

• Since unit tests remain in place even when the application code is changed, the

program can be refactored safely. Should a change introduce an error, a unit

test will fail, giving the developers the opportunity to change the code and make

it adhere to previous specifications.

7

• It is common practice to first write a unit test that exhibits a reported bug –

a test that reliably fails because of the problem – and only then fix the bug.

The new unit test is added to the code repository together with the bug fix

and therefore prevents the problem from occurring again. Should a developer

re-introduce the problem, the new unit test will fail.

• Unit tests also provide usage examples of the code they test and can therefore

be considered part of the documentation. Studying the unit tests can greatly

simplify understanding how a program unit should be used and what its common

problems are.

Open-source unit testing frameworks are available for most languages; for Java,

JUnit [15] and TestNG [16] are frequently used.

Listing 2.1 shows a simple unit test using JUnit 3.8.2 that tests the Square.get

method, provided in listing 2.2. The unit test shows a typical list of assertions for

this kind of method: A couple of positive integers, a positive non-integral number,

and a negative number are used as inputs to the function.

The expected output of each function call is given as first argument to assert

Equals, the actual result of the function call as second argument, and since this test

has to work with inexact floating-point arithmetic, the acceptable deviation from the

expected value is given as third argument.

Together with the Square class shown in listing 2.2, the unit test will pass since

all assertions are met. If, however, an incorrect implementation of squaring is used,

like the one shown in listing 2.3, one or more assertions, and the unit test as a whole,

will fail. In the particular example in listing 2.3, the function works correctly for

integral input values only, and the assertion expecting a result of .25 for the input

value .5 will fail.

This is only a simple demonstration of unit testing and perhaps seems unnecessary.

Our experience with production programming for DrJava [4], however, has shown that

8

1import junit.framework.TestCase;
2public class SquareTest extends TestCase {
3public void testSquare () {
4// parameters are: expected value , actual value
5// and acceptable deviation (delta)
6assertEquals (4.0, Square.get (2), 0.001);
7assertEquals (9.0, Square.get (3), 0.001);
8assertEquals (6.25, Square.get (2.5), 0.001);
9assertEquals (16.0, Square.get(-4), 0.001);
10}
11}

Listing 2.1: A Simple Unit Test

1public class Square {
2public static double get(double x) {
3return x*x;
4}
5}

Listing 2.2: A Simple Class to Test

unit testing simple methods is an invaluable tool for ensuring that more complicated,

composed methods function correctly.

JUnit 3.8.2 and older versions impose some restrictions on the developer: All

methods to be run as unit tests have to be public void and their names have to

begin with test. The class containing the methods also has to be a subclass of

junit.framework.Test. TestNG and JUnit since version 4.0 freed the developer of

these limitations by using Java annotations to mark test methods. The disadvantage

of this approach is lost compatibility with Java versions prior to 5.0. We have provided

improved versions of JUnit 3.8.2 and 4.2, so programmers using Java 1.4 or older can

still benefit from this work, while programmers using Java 5.0 or newer may claim

all the advantages provided by JUnit 4.2. Listing 2.4 shows the same unit test from

listing 2.1 written using JUnit 4.2.

9

1public class Square {
2public static double get(double x) {
3// note: this only works for integral values of x!
4return (int)(x*x);
5}
6}

Listing 2.3: A Flawed Class to Test

1import static org.junit.Assert.assertEquals;
2import org.junit.Test;
3public class SquareTest4 { // no need to subclass
4@Test // annotation to mark test methods
5public void doSquare () { // test prefix not required
6assertEquals (4.0, Square.get (2), 0.001);
7assertEquals (9.0, Square.get (3), 0.001);
8assertEquals (6.25, Square.get (2.5), 0.001);
9assertEquals (16.0, Square.get(-4), 0.001);
10}
11}

Listing 2.4: A Unit Test Using JUnit 4.2

2.1 Inadequacies of Existing Frameworks

As shown above, powerful unit testing frameworks are already available. All of these

frameworks are designed for testing code with a single thread of control, though.

There are some extensions that address multithreading to a certain degree, GroboUtils

[30] and parallel-junit [31], for example, but they focus on running several unit tests

concurrently, not on running a concurrent unit test. Running several tests in parallel

may expose some flaws that occur in concurrent situations, but even with these exten-

sions, the current frameworks are deficient: They cannot reliably unit test concurrent

software.

Unit testing depends on the fact that the input and output are known in advance

and that the entire execution is deterministic. In concurrent programs, however,

thread scheduling introduces an element of nondeterminism. To get the full value

of unit testing, the process must be deterministic. The approach that we suggest is

10

schedule-based execution combined with race detection. We define a schedule as a

total order over all synchronization actions during the execution of the unit test. If

several schedules exist for a test, the unit testing framework executes all of them to

ensure that the unit test succeeds regardless of the schedule chosen.

The race detection algorithm that is run in parallel ensures that programs are

data-race-free: All accesses to a shared variable are consistently protected by the

same lock. The Java Memory Model [32] guarantees that data-race-free Java pro-

grams exhibit sequential consistency [33, 34]; in other words, every possible execution

of such a program, regardless of the number of processors, corresponds to an “as-if-

serial” execution for some schedule. Requiring correctly synchronized programs is a

reasonable demand: Good programming practices already insist on correct synchro-

nization, as a data race often is the result of a bug. Furthermore, the Java Memory

Model does not guarantee sequential consistency for a program with a data race,

making it harder to reason about the program’s behavior.

In order to produce meaningful results using schedule-based execution, the frame-

work first needs to reliably test programs in a single schedule, the one that was

nondeterministically chosen by the platform for this run. This is not an easy task

with the existing frameworks: Exceptions and failed assertions that occur in threads

other than the main thread are ignored, and the frameworks do not ensure that child

threads terminate before the test is declared a success.

The software developed as part of this project includes an improved version of the

JUnit framework, available as plug-in for JUnit 4.2 and self-contained replacements

of JUnit 3.8.2 and 4.2. It adds the ability to detect exceptions and failed assertions

in all threads and ensures that spawned threads have terminated when the test ends.

These improvements are described in detail in chapter 3.

11

2.2 Enforcement of Threading Disciplines

To prevent possible data loss, developers of concurrent software often need to follow

a certain discipline of locking data structures or calling methods only from certain

threads. At the same time, they have to be cautious when using locks, since a lock

owned by one thread may prevent other threads from making progress. In the worst

case, several threads own locks and wait for other threads to release their locks,

preventing all threads from making progress. This situation is called deadlock.

The second of the additions to JUnit described above, ensuring that all spawned

threads have terminated when the test ends, can be viewed as maintaining such a

threading discipline.

Java’s GUI frameworks, AWT and Swing, require developers to follow an especially

complex discipline. Some methods may only be called in the event thread, a special

thread that serializes changing the GUI and reacting to user input. This is necessary

because concurrent access by a regular thread and the event thread handling user

input may cause data loss or put the program in an inconsistent state.

On the other hand, some methods may not be called from within the event thread,

because doing so would cause a deadlock. Many methods fall in between these two

extremes: Some methods may be called from any thread as long as the GUI has not

been displayed yet, and other methods are even considered completely “thread-safe”

(a discussion of “thread-safe” methods can be found in section 4.8).

Additionally, applications add their own classes and data structures that have to

be kept synchronized, so they define their own threading disciplines. In DrJava, for

example, an extra lock has to be acquired before text is inserted into a document: The

application maintains two representations of the data, and both have to be consistent.

Unfortunately, these threading disciplines are often only poorly documented, per-

haps in Javadoc comments, regular comments inside a method, a white paper, or not

at all. This makes it difficult for developers to educate themselves about the required

threading discipline and harder to ensure that they actually adhere to it.

12

Chapter 4 describes a light-weight language, based on Java 5.0 annotations, that

allows programmers to describe the required threading discipline in the form of in-

variants. The language is concise, extensible and easy to use. It serves both as

authoritative documentation of the threading discipline and basis for the automated

verification that the threading discipline is indeed being followed. For this verifica-

tion, our tools extract the invariants from the annotations and rewrite the bytecode

of the class files to perform the necessary checks. While some problems are already

detected at the time of rewriting, most checks are performed at runtime and produce

a log detailing which invariant was violated, where the violation happened, and why.

2.3 Tractability of Schedule-Based Testing

The improvements outlined in the previous two sections are only able to detect prob-

lems in the schedule under which the test was actually executed. They do not detect

problems in all schedules.

The desire to obtain such a general statement – that the unit tests pass no matter

what schedule is chosen – was what motivated this project in the first place. If the

contributions of this thesis only find problems in one schedule, then the improvements

fall short of the goal. Why are these enhancements nonetheless important, even

crucial, for testing concurrent programs?

The enhancements of JUnit described here are important, for without them, the

framework is unable to detect all unit test failures even in the one schedule that was

chosen; failures are only detected if they occur in the main thread. Except for the

rare exceptions noted, the improved version of JUnit records uncaught exceptions and

failed assertions in any thread.

The same is true for the verification of threading invariants: Without the anno-

tation language, it is difficult to verify whether a program is obeying the threading

discipline in the schedule nondeterministically chosen. With the annotation language

13

and the invariant checker in place, the claim can be made that at least this one

schedule did not violate any invariants.

Armed with these strong claims about one particular schedule, the execution of

the program under several different schedules can provide even stronger claims. If

the tests are executed under all possible schedules, then the general statement can be

made that the unit tests succeed regardless of the scheduling choice. The detection

of all uncaught exceptions, failed assertions and violated invariants in one particular

schedule therefore is a necessity for detecting them in all possible schedules.

Unfortunately, the number of schedules grows exponentially with the number of

threads and the number of times a context switch is performed. For simplicity’s sake,

we assume in the following calculation that all threads are interrupted by a context

switch the same number of times, and that they do not interact with each other. We

also assume that the scheduler is free to schedule the threads in any order and does

not have to maintain some measure of fairness. On an actual system, the scheduler

is more constrained and the calculation more complex.

Let t be the number of threads and s be the number of time slices per thread. The

number of possible schedules N can then be calculated as a product of s-combinations.

The formula for N , given in figure 2.1, has been derived by first choosing the s time

slices, out of the total ts time slices, during which the first thread executes; there are(
ts
s

)
different choices. Then the s time slices for the second thread are chosen, out of

the remaining ts − s ones; there are
(

ts−s
s

)
ways to do that. This process continues

until only s time slices remain for the last thread.

Stirling’s approximation, n! ≈
√

2πnnn

en , demonstrates that the number of sched-

ules grows exponentially with both the number of threads t and the number of time

slices s: The square root factor grows polynomially; in the second factor, both the

numerator and the denominator grow exponentially, but the numerator dominates.

For example, if there are two threads, and each thread consists of two time slices

(t = 2, s = 2), then there are 4!
(2!)2

= 24
4

= 6 different schedules. If there are three

14

N =
∏t−1

x=0

(
(t−x)s

s

)
=

(
ts
s

)(
(t−1)s

s

)(
(t−2)s

s

)
. . .

(
2s
s

)(
s
s

)
= (ts)!

s!(ts−s)!
((t−1)s)!
s!(ts−2s)!

((t−2)s)!
s!(ts−3s)!

. . . (2s)!
s!s!

s!
s! 0!

The second term in the denominator of one fraction cancels out the

term in the numerator of the next fraction, resulting in the simpler term.

= (ts)!
s!

1
s!

1
s!

. . . 1
s!

1
s!

= (ts)!
(s!)t

Figure 2.1 : Formula for Number of Schedules

threads (t = 3, s = 2), there are already 6!
(2!)3

= 720
8

= 90 different schedules. It

becomes apparent that the execution of all schedules quickly becomes intractable.

The number of possible schedules should be taken with a grain of salt:

• While the problem of executing all schedules is intractable for large programs,

unit tests are much smaller than entire applications, resulting in a significant

drop of possible schedules.

• If each shared variable is protected by at least one lock when accessed, then it

is sufficient to test all interleavings of blocks between accesses to shared vari-

ables, acquiring or releasing locks, and other actions that influence concurrent

behavior [12]. Adherence to this so-called mutual exclusion locking discipline

can be verified by running a lockset algorithm in parallel [14].

• Unit tests are written to be non-interactive, so it is not as crucial to provide

results immediately as it is with programs that undergo acceptance testing.

This allows unit tests to be run unattended over night.

Even if the execution of the unit tests under all schedules takes a long time, the

benefits of finding problems that only occur in rare schedules outweigh the costs of

15

debugging the program after a release, especially as computers become faster and

concurrent programming even more frequent.

2.4 Common Problems in Concurrent Software

One of the most common problems in concurrent software is a race condition. A race

conditions occurs when two or more threads access the same data at the same time

and at least one of them is a write access. This situation is more common than one

might think, since even a simple increment operation like ++counter contains both

a read and a write operation, as shown here in pseudo-code: { move counter to

register; increment register; move register to counter; }.

In listing 2.5, ten threads each increment a shared counter 100,000 times. At the

end, the expected value of the counter is 1,000,000, but we obtained 894,936 and

many other values as results.

This deviation is a result of unfortunate and nondeterministic thread switches that

occur in the middle of the ++counter operation. Here is one sequence of operations

that results in data loss: Thread A moves 0, the counter’s value, into a register, but

is then preempted by thread B. Thread B itself also moves 0, the counter’s value, into

a register, increments the value to 1, and writes 1 back into the counter. Now thread

A resumes, increments the value it had stored in its register, which was 0, and writes

the result back into the counter. After two increments, the counter contains 1, not 2

as expected. Thread A has written stale data.

The different threads mutate shared data, and whenever that is the case, the

threads need to be synchronized in some way to prevent interference due to race

conditions. In Java, each object has a “lock” (or “monitor”) that only one thread

can acquire at a time, and only the owner is allowed into a synchronized block or

method protected by the lock. When a thread encounters a synchronized block

and no other thread owns the lock, the thread acquires the lock, executes the code

inside the block, and releases the lock again upon leaving. If a thread encounters

16

1public class RaceCondition {
2static int counter = 0;
3static int threadNum = 10;
4static int iterationsPerThread = 100000;
5static class Incrementor implements Runnable {
6public void run() {
7for(int i=0; i<iterationsPerThread; ++i) {
8++ counter;
9}
10}
11}
12public static void main(String [] args) {
13Thread [] t = new Thread[threadNum];
14for(int i=0; i<threadNum; ++i) {
15t[i]=new Thread(new Incrementor ()); t[i].start (); }
16try { for(int i=0; i<threadNum; ++i) { t[i].join(); } }
17catch(InterruptedException e) { }
18System.out.println("Counter: "+counter);
19System.out.println("Expected: "+
20(threadNum*iterationsPerThread));
21}
22}

Listing 2.5: Program with Race Condition

a synchronized block, but some other thread already owns the lock, the thread

is added to a set of threads waiting to acquire the lock; when the lock becomes

available again, one of the waiting threads is allowed to acquire it. Listing 2.6 shows

how a synchronized method can prevent the race condition from listing 2.5: Instead

of incrementing the counter directly, the threads now call a synchronized method

inc() to perform the increment operation.

The changes in listing 2.6 remove the race condition using a lock. Locks, however,

have their own set of problems, most notably deadlock.

A deadlock is created if two or more threads each own a resource (like a lock), but

they need to acquire another resource to continue, which is already owned by another

thread: Thread A owns the first lock, Thread B owns the second lock. To proceed,

thread A needs to acquire the second lock, already owned by thread B, and thread B

17

1static synchronized void inc() { ++ counter; }
2static class Incrementor implements Runnable {
3public void run() {
4for(int i=0; i<iterationsPerThread; ++i) inc();
5}
6}

Listing 2.6: Shared Data Protected By Lock

needs to acquire the first lock, already owned by thread A. Neither thread can make

any progress, both are doomed to wait forever.

One of the most famous problem that illustrates the concept of deadlock is the

“Dining Philosophers” problem: The philosophers have spaghetti for lunch, and they

each grab the fork to their right. The spaghetti is so slippery, though, that it is

impossible to eat with just one fork. Each philosopher decides to borrow the fork

of the philosopher on his left once it becomes available, but since all philosophers

hold on to the fork on their right, the university is forced to hire a completely new

Philosophy department.

Listing 2.7 shows a program simulating the “Dining Philosophers” that is likely to

produce a deadlock. Each philosopher is represented by a separate thread that first

grabs the lock (=fork) to the right (=at the specified index). Then it attempts to

grab the lock to the left (=at index+1, or if that is outside the array, at 0), and when

it has both locks, the thread terminates (=eats). By the time a thread attempts to

acquire the lock to the left, it is likely that another thread has already acquired it,

creating a deadlock.

One attempt to solve this problem is to let a philosopher realize he cannot eat

because he only has the right fork and cannot acquire the left fork, and then make

him drop the right fork. This should allow the person sitting to the right of that

self-sacrificing philosopher to pick up the fork and eat, but this may not always work

either. It is possible that all philosophers realize this at the same time, drop their

forks, and then start from the beginning by grabbing the fork on their right. Since

18

1public class Philosophers {
2static final int N = 5;
3static Object [] forks = new Object [5];
4static class Philosopher implements Runnable {
5int right , left;
6public Philosopher(int i) { right = i; left = (right +1)%N; }
7public void run() {
8synchronized(forks[right]) {
9System.out.println("Philosopher "+right+" has "+
10"fork "+right+", tries to get fork "+left);
11synchronized(forks[left]) {
12System.out.println("Philosopher "+right+" eats!");
13} } } }
14public static void main(String [] args) {
15Thread [] philosopher = new Thread[N];
16for(int i=0; i<N; ++i) { forks[i] = new Object ();
17philosopher[i] = new Thread(new Philosopher(i));
18philosopher[i].start ();
19}
20try { for(int i=0; i<N; ++i) { philosopher[i].join(); } }
21catch(InterruptedException e) { }
22System.out.println("All done eating.");
23}
24}

Listing 2.7: Dining Philosophers: Deadlock

the philosophers keep doing something, there is no deadlock, but no progress is made

either. This situation is called livelock.

The main problem in this implementation is the order in which the locks are

acquired. Thread 0 first acquires lock 0, then tries to acquire lock 1; thread 4 first

acquires lock 4, then tries to get lock 0, which is already owned by thread 0. In the

program’s wait-for graph (a graph that shows the threads, which locks they own and

which they need), this order of always grabbing the right lock first completes a cycle

and therefore the program enters a deadlock.

The most common solution for avoiding deadlock lets threads always acquire locks

in the same order. In this example, thread 4 should have tried to acquire lock 0 first,

not lock 4. This enabled thread 3 to acquire lock 4 and proceed. Listing 2.8 shows

the necessary changes.

19

1synchronized(forks[right <left?right:left]) {
2System.out.println(‘‘Philosopher ‘‘+right+’’ has ‘‘+
3‘‘fork ‘‘+right+’’, tries to get fork ‘‘+left);
4synchronized(forks[right <left?left:right]) {
5System.out.println(‘‘Philosopher ‘‘+right+’’ eats!’’);
6}

Listing 2.8: Dining Philosophers, Locks in Right Order

Another solution has just one lock for the entire table, one that guards access to

forks in general. All philosophers attempt to acquire that lock, but only one will.

That philosopher dines and releases the table lock when he is done. This enables

someone else to acquire the table lock and eat.

This solution works, but it is not very efficient: Only one philosopher can eat at

a time. In essence, the table lock has serialized all the threads, and they behave as

if there were just one thread at all. The locking scheme can have a profound impact

on the performance of the system.

A possible improvement releases the table lock once two forks have been picked

up. Then the next philosopher can acquire the table lock and attempt to pick up two

forks, which may or may not work, depending on who else is eating at the time. If

the philosopher has two forks available, he can drop the table lock and begin to eat;

if the philosopher cannot acquire two forks, he does not eat, releases the table lock

and gets back in line to re-acquire the lock.

This scheme also works, but it is not without flaws either: The system does not

guarantee fairness. An unfortunate philosopher might always find himself with fewer

than two forks.

Solving concurrency problems is not always as simple as in the “Dining Philoso-

phers” example, with the array of locks in plain sight. Developers therefore need

to be particularly careful when they combine two or more operations that each use

locks, and when different means of communication between threads are mixed. In

order to avoid deadlocks and livelocks, to maintain high performance and to guaran-

20

tee fairness, the threading discipline has to be meticulously documented. Since many

programs use unit testing and have extensive test suites, these properties should be

checked at the same time the unit tests are run.

21

Chapter 3

Improvements to JUnit

Despite the proven effectiveness of current unit testing frameworks for programs with

a single thread of control, we have found them difficult to use in multithreded pro-

grams. Writing good unit tests for concurrent programs is hard, for several reasons:

• Thread scheduling is non-deterministic and machine-specific, so the outcome of

a unit test may change from one run to the next.

• The non-determinism makes it hard to reproduce problems that only occur in

particular schedules, and even harder to ensure that the unit tests pass under

all possible schedules.

• Attempting to simulate a test under different schedules by adding additional

locks or wait-notify communication between the test and the framework re-

sults in unwieldy code.

As a result, a successful unit test provides only little assurance, and only a unit

test failure imparts tangible information to the developer. A failure proves that a

problem exists in the program, but a unit test success does not prove that the unit

test will always succeed. To make matters worse, the existing unit testing frameworks

do not correctly deal with concurrent programs and may completely ignore errors that

occur in threads other than the main thread. This chapter describes two defects in

current unit testing frameworks and then introduces Concutest-JUnit, an improved

version of JUnit that does not share these deficiencies.

22

1import junit.framework.TestCase;
2public class TestInMainThread extends TestCase {
3public void testException () {
4// uncaught , causes failure
5throw new RuntimeException ();
6}
7public void testAssertion () {
8// fails , causes failure
9assertTrue(false);
10}
11}

Listing 3.1: Uncaught Exception and Assertion

3.1 Default Exception Handler

The most serious problem of using JUnit to test concurrent programs is the lack of

reporting uncaught exceptions in auxiliary threads. A new child thread does not have

a default exception handler installed; therefore, unless a thrown exception is caught

somewhere in the program, the exception will unwind the thread’s stack, invoke

Java’s own exception handler to print a message, and then terminate the thread.

Other threads are not automatically notified of this, so an uncaught exception in an

auxiliary thread will be completely unnoticed by the main thread and JUnit, even

though the same code executed in the main thread would lead to a test failure. Since

JUnit’s assertions, like assertEquals shown in listings 2.1 and 2.4, are implemented

using exceptions, failed assertions will not be noticed either.

Listings 3.1 and 3.2 illustrate this problem in greater detail: The unit tests in

both listings contain two methods, testException and testAssertion. In both

listings, testException throws an exception that is not caught anywhere, while

testAssertion makes an assertion that is guaranteed to fail. Therefore, in both

listings 3.1 and 3.2, the two test methods should produce failures. In listing 3.2,

however, an auxiliary thread throws the exception and makes the assertion, not the

main thread as in listing 3.1. JUnit is never informed of the uncaught exception or

the failed assertion and declares both test methods successful.

23

1import junit.framework.TestCase;
2public class TestInOtherThread extends TestCase {
3public void testException () {
4new Thread(new Runnable () {
5public void run() {
6// uncaught , should cause failure but does not
7throw new RuntimeException ();
8}
9}).start();
10}
11public void testAssertion () {
12new Thread(new Runnable () {
13public void run() {
14// fails , should cause failure but does not
15assertTrue(false);
16}
17}).start();
18}
19}

Listing 3.2: Uncaught Exception and Assertion in an Auxiliary Thread

To remedy this problem, our modified Concutest-JUnit framework creates a new

thread group with an overridden ThreadGroup.uncaughtException method. The

framework then spawns a new thread in this thread group, executes the test in the new

thread, and waits for the test to complete. If an uncaught exception is thrown in the

test’s thread or any of its child threads, the overridden uncaughtException method

stores the exception to make it accessible to Concutest-JUnit. When the Concutest-

JUnit framework resumes execution, it checks whether an uncaught exception has

occurred and deals with the exception appropriately, just as if it had occurred in the

main thread.

The use of a thread group is essential for two reasons:

• When a parent thread spawns a child thread, the parent’s thread group is

inherited by the child thread (unless a specific thread group is passed to the

child’s constructor; more about this below). This assigns the same thread group

to auxiliary threads as to the test’s main thread; therefore, uncaught exceptions

24

in auxiliary threads also invoke the overridden uncaughtException method,

and uncaught exceptions and failed assertions are no longer ignored.

• Before Java 5.0 introduced the setDefaultUncaughtExceptionHandler method,

using a thread group was the only way to catch exceptions in threads other than

the current thread. While the feature introduced with Java 5.0 is easier to use,

thread groups offer compatibility with older versions of Java. Thread groups

are also more robust than the new setDefaultUncaughtExceptionHandler

method: There is only one default uncaught exception handler, and in order to

function correctly, the Concutest-JUnit framework would have to prevent the

program from changing it. A program that creates thread groups, on the other

hand, is not affected because of the hierarchical nature of thread groups.

Thread groups were introduced to the Java API to process threads and their

descendants collectively. The Concutest-JUnit framework uses this feature to record

uncaught exceptions in all threads that a test spawns.

There are a few problems with this approach:

1. Programmers can supply their own thread groups when creating threads, thereby

overriding the thread group installed by Concutest-JUnit. This is normally un-

problematic, since a thread group created in one of the test’s threads is a de-

scendant of Concutest-JUnit’s thread group, which is still informed about all the

uncaught exceptions it should know about. Which exceptions need to be recorded

by Concutest-JUnit depends on where they occur and whether the uncaughtEx

ception method of the new thread group has been overridden:

a. If the uncaughtException method has been overridden by the programmer,

then the intent has been declared that the program should handle uncaught

exceptions itself. These uncaught exceptions may therefore not be recorded by

Concutest-JUnit.

25

b. The only place where uncaught exceptions should be reported to Concutest-

JUnit is in the overridden ıuncaughtException method itself. Unfortunately,

uncaught exceptions thrown there do not get processed by Java at all. We argue

that this is an oversight in the Java Language Specification [35] and that the

parent thread group’s uncaughtException method should be invoked.

c. If the uncaughtException method has not been overridden, then the basic be-

havior of the ThreadGroup.uncaughtException method will automatically call

the uncaughtException method in the parent thread group, and the exceptions

are correctly registered.

2. It is possible to create a new thread group that is not a descendant of the current

thread group. If the programmer deliberately creates a thread group that does not

descend from Concutest-JUnit’s thread group, then exceptions could go unnoticed

by our Concutest-JUnit framework.

3. Uncaught exceptions thrown in the uncaughtException method of an applica-

tion’s Thread.UncaughtExceptionHandler cannot be processed, since the Java

virtual machine ignores them [36]. Again, we believe this is an oversight in the

Java Language Specification [35] and that the uncaughtException method of the

thread group should be invoked.

While the problems described in 1.b., 2. and 3. are real, the probability of acci-

dentally ignoring uncaught exceptions is low: Most code does not use thread groups

at all (in March 2007, Koders [37], a source code search engine, found 913 matches for

“ThreadGroup” in the Java source code it had scanned, compared to 49,329 matches

for “Thread”), does not override the uncaughtException method (in March 2007,

Koders reported 32 method definitions as matches for “uncaughtException”), and

does not create thread groups that do not descend from the current thread group.

For nearly all programs, the Concutest-JUnit framework can report all uncaught ex-

26

ceptions. Furthermore, all uncaught exceptions reported by the original framework

are reported by our improved framework.

It is important to understand that these improvements will not detect all un-

caught exceptions that could occur; only the uncaught exceptions thrown in the

chosen schedule are found. It is possible that the program can be executed under a

different schedule and fail. Adding a default exception handler to Concutest-JUnit

is nonetheless a crucial step in creating a framework suitable for testing concurrent

programs.

3.2 Enforcement of Thread Joins

If JUnit is modified as described in section 3.1, the Concutest-JUnit framework is

now able to detect uncaught exceptions in auxiliary threads. Unfortunately, listing

3.2 exhibits another problem often found in tests of concurrent software: The test does

not ensure that the auxiliary threads spawned in testException and testAssertion

finish before the test ends and is declared a success. The two test methods in listing 3.2

may or may not be successful, but the test method in listing 3.3 is almost guaranteed

to succeed even though it should fail: Because of the call to Thread.sleep, the

auxiliary thread is unlikely to reach its point of failure in time.

It is clear that this problem is caused by the test’s main thread not waiting for

auxiliary threads to finish before the test ends. A correctly written test should ensure

this by having a Thread.join call for every thread that it spawned; therefore, it is

logical to declare as invalid a test that finishes before all of its child threads have

terminated.

To address this issue and increase the framework’s ability to detect problematic

tests, the Concutest-JUnit framework checks if any child threads are still running. The

framework enumerates the remaining threads in the Concutest-JUnit thread group

and declares the test a failure if running threads are found after the test ended. To

27

1import junit.framework.TestCase;
2public class TestInOtherThreadSleep extends TestCase {
3public void testException () {
4new Thread(new Runnable () {
5public void run() {
6// sleep for 10 seconds
7try { Thread.sleep (10*1000); }
8catch(InterruptedException ioe) { /* ignore */ }
9// uncaught , should cause failure but does not
10throw new RuntimeException ();
11}
12}).start();
13// test’s main thread exits immediately
14}
15}

Listing 3.3: Uncaught Exception in an Auxiliary Thread Reached Too Late

help the programmer fix the incorrectly written test case, still running child threads

are listed, along with their current stack traces.

Some threads are excluded from the list of threads and are allowed to outlive the

test’s main thread:

• Daemon threads are automatically shut down once all non-daemon threads of

an application have terminated. In a unit test, they continue to run, though,

because the unit test is not a stand-alone application. It is therefore reasonable

to allow daemon threads to remain active even after the test has ended.

• Some system threads, namely those part of the AWT and RMI (remote method

invocation) libraries, may be created inside the thread group, but this hap-

pens automatically and without the programmer’s knowledge. Just like daemon

threads, they would terminate automatically once the application finishes. For

the reasons explained above, these threads are allowed to remain active after

the test has ended:

– AWT-Shutdown

28

1import junit.framework.TestCase;
2public class TestInOtherThreadSleepJoin extends TestCase {
3public void testException () {
4final Thread t = new Thread(new Runnable () {
5public void run() {
6// sleep for 10 seconds
7try { Thread.sleep (10*1000); }
8catch(InterruptedException ie) { /* ignore */ }
9// uncaught , causes test to fail
10throw new RuntimeException ();
11}
12});
13t.start ();
14// main thread waits for spawned thread to finish
15try { t.join(); }
16catch(InterruptedException ie) { /* ignore */ }
17}
18}

Listing 3.4: Main Thread Waits for Auxiliary Thread to Finish

– AWT event threads, i.e. threads starting with AWT-EventQueue-

– RMI Reaper

– DestroyJavaVM

The improvements added in this section find the active child thread in listing 3.3

and declare the test a failure. Listing 3.4 shows a correctly written version of the

test: Even though the auxiliary thread sleeps for 10 seconds, the uncaught exception

after the sleep is detected and causes the test to fail since the main thread waits for

the auxiliary thread to terminate.

3.3 Results

We used the 3.8.2 version of Concutest-JUnit as drop-in replacement for the junit.

jar that was previously used in the DrJava build process. Most tests passed without

problems; however, several tests that used RMI failed, and the requirement for child

threads to terminate first had to be relaxed. This can be done by attaching NOJOIN

29

to a method name in the 3.8.2 version or setting @Test(forceThreadJoin=false)

in the modified version of JUnit 4.2. Other than that, two problems were found, as

shown in the unit test output in listing 3.5.

Both problems are minor: In the first problem, a thread communicating with a

second virtual machine is waiting for more input and is not terminated. In the second

problem, there are several reader and writer threads, and the test does not ensure

that all of them finish before the test is over.

It was easy to integrate Concutest-JUnit into the existing DrJava project and use

it instead of the original junit.jar. We did not expect many problems, since the

DrJava developers had already created a much more complicated solution to deal

with multithreading and exceptions in other threads.

It has always been possible to write concurrent unit tests, but it has been very

difficult to write them well. Despite the complicated DrJava code and extensive unit

tests, the Concutest-JUnit library was able to detect several flaws.

Concutest-JUnit works on all three major platforms:

Windows, Linux, and Mac OS X.

All source code is open source and available at: http://www.concutest.org/ [38].

http://www.concutest.org/

30

Thread Timer -0 (java.util.TimerThread) is still alive: state=
WAITING

java.lang.Object.wait(Native Method)
java.lang.Object.wait(Object.java :474)
java.util.TimerThread.mainLoop(Timer.java :483)
java.util.TimerThread.run(Timer.java :462)

Thread Wait for Interactions to Exit Thread (edu.rice.cs.util.
newjvm.AbstractMasterJVM$1) is still alive: state=RUNNABLE

java.lang.ProcessImpl.waitFor(Native Method)
edu.rice.cs.util.newjvm.AbstractMasterJVM$1.run(

AbstractMasterJVM.java :197)

Testcase: testInterpretCurrentInteractionWithIncompleteInput(edu.
rice.cs.drjava.model.repl.InteractionsModelTest): Caused
an ERROR

The test did not perform a join on all spawned threads.

Thread Thread -2 (edu.rice.cs.util.
ReaderWriterLockTest$PrinterReaderThread) is still alive:
state=TERMINATED

Testcase: testMultipleReaders(edu.rice.cs.util.
ReaderWriterLockTest): Caused an ERROR

The test did not perform a join on all spawned threads.

Listing 3.5: Concurrency Problems in DrJava Detected by Improved JUnit

31

Chapter 4

Annotations for Concurrency Invariants

The improvements described in the previous chapter only address problems with the

unit testing frameworks currently available. These frameworks are not designed for

concurrency, even though concurrent programs are becoming more prevalent.

One of the areas that first became overwhelmingly concurrent was the graphical

user interface (GUI) of a program. In AWT/Swing, Java’s GUI frameworks, the main

program could be doing one thing, such as setting up the user interface components,

but once that has been done, a second thread, the "AWT-EventThread", is invoked

every time a button is pressed or a selection made. To maintain a responsive user

interface, programs performing long computations use both the event thread and a

worker thread in the background; therefore, they are concurrent. This serves as an

example of how widespread concurrent programs have become.

Along with the problems of testing concurrent programs comes the task of defining,

documenting, and enforcing a threading discipline. A threading discipline is defined

as a set of rules that dictate which threads must acquire what sets of locks before

they may access data.

There are many commonly used examples of these threading disciplines, and a

reasonable variety is found in AWT/Swing: For example, the Javadoc documentation

states that all the methods defined first in Java’s TreeModel, DefaultTreeModel,

TreeNode, MutableTreeNode, and many other classes associated with the model side

of Swing’s tree component may only be called from the event thread. The same

applies to classes that belong to Swing’s table model, and some methods involved in

model-to-view coordinate conversion. On the other hand, calling SwingUtilities.

32

invokeAndWait from the event thread is a recipe for an instantaneous deadlock, since

the event thread will wait until the specified task has been completed by the event

thread – but the event thread will never even attempt to complete it, because it

was told to wait. Both of these limitations define threading disciplines, and these

examples merely came from the Swing GUI library; applications and other libraries

usually have their own disciplines that need to be followed.

Unfortunately, these threading disciplines are often undocumented, hidden in

source code comments, or only found in a white paper about the library. Many

times, the authors of concurrent code use several of these approaches to communicate

the necessary circumstances for safe access, but there is no way the threading disci-

plines are enforced. Disobeying a library’s threading discipline often does not result

in an informative error message, but instead goes unnoticed until much later, when

the code has grown and changed, clouding the actual cause of the problem.

This chapter specifies a light-weight language, using Java 5.0 annotations, that

allows threading invariants to be applied to methods which require the caller or

subclass to adhere to a threading discipline. The invariants are directed outward:

They specify contracts that code using the annotated methods must uphold. Most of

the time, the verification of adherence is done at runtime, but some verification can

be done statically at compile time.

Both the verification of complicated threading invariants at runtime, and the lim-

ited static analysis at compile time offer a great benefit to library developers and

users: A library developer can precisely describe the required threading invariants,

not in comments or white papers, but as Java annotations that can be automatically

checked. The users of a library can determine whether they are violating the li-

brary’s invariants at runtime, if not even statically at compile time. Considering that

writing and using extensible, multi-threaded libraries is one of the most challenging

programming tasks, these annotations add a lot of value to a library.

33

This project provides two kinds of annotations: primitive annotations, described

in section 4.3, and predicate annotations, described in section 4.4. Primitive annota-

tions allow the detection of contradicting invariants and perform in a very predictable

way, but they may not be able to codify all the invariants a program requires. Primi-

tive annotations can only express invariants based on thread names, IDs and whether

a thread is an event thread. Predicate annotations offer more flexibility to the pro-

grammer, but require judicious use.

The verification of a program’s conformity with the threading discipline described

by the annotations is performed by automatically inserted bytecode. Since this byte-

code “applies instruments” to measure certain aspects of the program, the act of

modifying the program’s code is called “instrumentation”. Different ways of rewrit-

ing the program are encapsulated in “instrumentation strategies”.

While working extensively with Java 5.0 annotations, we found them to be quite

limited in many aspects and have provided suggestions on how they can be improved

in appendix C.

4.1 Examples of Invariants

We first consider some of the threading invariants that an application may need to

maintain. Invariants are often library- or application-specific, but there are some

invariants that occur commonly:

• The method has to be executed in the event thread. This is the case for many

methods in Java’s AWT and Swing GUI libraries.

• A common relaxation to the preceding invariant is that any thread may call a

method of a GUI component before it has been displayed, or “realized” in Java

jargon. Once a component has been realized, only the event thread may call a

method.

34

• On the other hand, some methods must not be executed in the event thread.

SwingUtilities.invokeAndWait has already mentioned as an example.

• Both threads and thread groups can be given names in Java. It is conceivable

that some tasks may only be executed by threads or thread groups with a certain

name. For example, an application may want to limit the execution of certain

methods to threads whose name starts with "SecureThread". Code loaded

from an untrusted source could be run in a thread with a different name and

therefore be prevented from calling the annotated methods.

• Commonly, only one specific thread may execute a method. The above exam-

ple uses names, but this convention lacks the precision to specify exactly one

instance of a thread. Using custom annotations, the programmer can compare

the current thread to a thread stored in a field and allow only that thread to

execute the method.

• Often, a certain lock has to be acquired before a method may be executed. This

is done automatically in synchronized methods, but in many cases, it may be

preferable to leave a method unsynchronized and use explicit synchronized

blocks to limit the time a lock is held. This is particularly true if several

locks have to be acquired: If the wrong order is used, the application may

deadlock. With automatically acquired locks, the programmer does not have

direct control over the order, and a simple program could deadlock under an

unfortunate schedule. If threads t1 and t2 in listing 4.1 are interrupted each

time after they acquire a lock, the program will deadlock. Listing 4.2 leaves the

methods unsynchronized and avoids this problem.

• Similarly, the annotations can check that a certain lock is not yet held, as the

programmer may know that this would lead to a deadlock. Listing 4.3 shows

how listing 4.1 can be annotated to express the requirement that no other thread

owns lock1 or lock2, respectively, because the annotated method will need it.

35

1public class SyncMethodOrder {
2public static interface BoolRunnable {
3public void run(boolean stop); }
4static BoolRunnable lock1 = new BoolRunnable () {
5public void run(boolean stop) { // own lock1 , try lock2
6if (!stop) { lock2.run(true); } }
7};
8static BoolRunnable lock2 = new BoolRunnable () {
9public void run(boolean stop) { // own lock2 , try lock1
10if (!stop) { lock2.run(true); } }
11};
12public static void main(String [] args) {
13Thread t1 = new Thread(new Runnable () {
14public void run() { lock1.run(false); }
15}); t1.start();
16Thread t2 = new Thread(new Runnable () {
17public void run() { lock2.run(false); }
18}); t2.start();
19try { t1.join(); t2.join(); }
20catch(InterruptedException ioe) { }
21}
22}

Listing 4.1: Possible Deadlock Due to Lock Acquisition Order

1public class SyncBlockOrder {
2// no synchronization here
3static BoolRunnable lock1 = new BoolRunnable () {
4public void run(boolean s) { if (!s) lock2.run(true); }
5};
6static BoolRunnable lock2 = new BoolRunnable () {
7public void run(boolean s) { if (!s) lock1.run(true); }
8};
9public static void main(String [] args) {
10Thread t1 = new Thread(new Runnable () {
11public void run() { // synchronization here
12synchronized(lock1) { synchronized(lock2) {
13lock1.run(false); } } } });
14Thread t2 = new Thread(new Runnable () {
15public void run() { // and here , in same order
16synchronized(lock1) { synchronized(lock2) {
17lock2.run(false); } } } });
18t1.start(); t2.start();
19try { t1.join(); t2.join(); }
20catch(InterruptedException ioe) { }
21}
22}

Listing 4.2: Deadlock Avoided By Correct Order

36

1public class SyncMethodOrder {
2static BoolRunnable lock1 = new BoolRunnable () {
3@NoneSynchronizedField(SyncMethodOrder.class , "lock2")
4public void run(boolean stop) { /* ... */ }
5};
6static BoolRunnable lock2 = new BoolRunnable () {
7@NoneSynchronizedField(SyncMethodOrder.class , "lock1")
8public void run(boolean stop) { /* ... */ }
9};
10// ...
11}

Listing 4.3: Listing 4.1 with Annotations to Detect Deadlock

4.2 Annotations and Inheritance

To express the invariants, we have elected to use Java annotations, a facility intro-

duced with Java 5.0 to store meta-data, information about the program itself.

Compared to the alternative approach of using comments with special formatting,

annotations have the advantage of being part of the Java language; therefore, their

syntax is checked by the Java compiler, and their content is accessible by using the

Java API or by reading the well-defined format of a Java class file. Furthermore, it

is possible to restrict the places where annotations can be applied: The annotations

designed for the invariant checker can only be applied to types (classes and interfaces),

methods and constructors. An annotation facility based on comments would involve

much more processing to parse annotations and detect badly placed ones.

The invariants introduced in this section are checked at the beginning of a method,

right when it is entered, except in constructors, which make a super call first. Syn-

chronized methods are changed to regular methods with a synchronized block around

the entire method body. This allows the invariant checks to be executed before the

lock is acquired: The synchronized methods in listing 4.4 are transformed into the

methods shown in listing 4.5. All of this is done using bytecode rewriting, either by

an offline tool or on-the-fly by a custom class loader at the time a class is loaded into

memory.

37

1class C {
2synchronized void nonS() { /* some code */ }
3static synchronized void s() { /* some code */ }
4}

Listing 4.4: Synchronized Methods Before Transformation

1class C {
2void nonS() { synchronized(this) { /* some code */ } }
3static void s() { synchronized(C.class) { /* some code */ } }
4}

Listing 4.5: Methods With Synchronized Blocks After Transformation

A method can acquire an invariant in three different ways:

1. The method itself is annotated. Listing 4.6 shows and example of this.

2. The same method in a superclass or one of the implemented interfaces has

been annotated. Once a method has been assigned an invariant, all overriding

implementations will be assigned the same invariant. An example can be found

in listing 4.7.

3. The class or interface in which the method is first introduced is annotated. The

invariant will be assigned to the same method in all classes or interfaces that

extend or implement the annotated class. Examples are shown in listing 4.8.

Note that a class annotation is only shorthand for annotating all methods in

the class.

38

1class C {
2@OnlyEventThread void someMethod () {
3// Method may only be run in the event thread
4} }

Listing 4.6: Annotated Method

1class C {
2@OnlyEventThread public void someMethod () {
3// Method may only be run in the event thread
4}
5}
6interface I {
7// Method may only be run in the event thread
8@OnlyEventThread public void otherMethod ();
9}
10class D extends C implements I {
11public void someMethod () {
12// Method may only be run in the event thread
13// D.someMethod () hasn’t been annotated , but C.someMethod (),
14// the same method in the superclass , has
15}
16public void otherMethod () {
17// Method may only be run in the event thread
18// D.otherMethod () hasn’t been annotated , but
19// I.otherMethod (), the same method in an implemented
20// interface , has
21}
22}

Listing 4.7: Method Annotated in Superclass

39

1class B { public void nothing () { /* no annotation at all */ } }
2@OnlyEventThread class C extends B {
3public void nothing () { // no annotation at all
4// even though class C is annotated , because nothing ()
5// already defined in the superclass
6}
7public void someMethod () { // May only run in event thread
8// C.someMethod () hasn’t been annotated , but the class
9// in which it was introduced has
10} }
11@OnlyEventThread interface I { // May only run in event thread
12// I.otherMethod () has not been annotated , but the interface
13// in which it was introduced has
14public void otherMethod ();
15}
16class D extends C implements I {
17public void nothing () { /* still no annotation at all */ }
18// someMethod () and otherMethod () may only run in event thread
19// they weren’t annotated itself , but the superclass or
20// interface where they were already defined , were annotated
21public void someMethod () { /* ... */ }
22public void otherMethod () { /* ... */ }
23}

Listing 4.8: Annotated Classes

More formally, let A be an annotation, let m be a method, and let C, D, S be

classes or interfaces. Let m(C) be the set of methods defined (i.e. introduced or

overridden) in class C. Let a(C) be the set of annotations that are directly attached

to class C, i.e. that appear in front of C’s class definition, and let a(C, m) be the set

of annotations that are directly attached to method m in class C, i.e. that appear in

front of m’s method definition in the class definition of C. Then annotations(C, m),

shown in figure 4.1, is the set of annotations that are applied to a method m in class

C, either because the method was directly annotated or because the annotations were

somehow inherited.

The first subset contains all annotations attached directly to methods. Because

of the reflexive property of subtyping <:, this subset contains both annotations from

40

annotations(C, m) = {A : ∃S such that C <: S, A ∈ a(S, m)} ∪

{A : ∃D such that C <: D ∧

6 ∃S such that D <: S, D 6= S, m ∈ m(S),

A ∈ a(D)}

Figure 4.1 : Set of Annotations

methods in superclasses and class C itself. The second subset contains annotations

are attached to methods because the class in which they were introduced was anno-

tated. More precisely, the second subset consists of all the annotations that meet the

following three criteria: the method exists in the class, superclass, or an implemented

interface; that class, superclass, or interface is annotated with the annotation; and

the method has not already been introduced in a class or interface higher up.

This structure of inheritance of invariants is crucial in enforcing invariants in

subclasses. It allows library developers to design APIs that users can extend while

still ensuring that the original threading discipline is maintained.

The decision to let annotations on classes only affect methods that are first intro-

duced in that class or one of its subclasses helps localize the effect of an annotation.

The users of a library are free to introduce their own invariants, in addition to the

library’s invariants, without accidentally strengthening the invariants of methods that

have already been defined in a library superclass or interface. It should be noted that

an annotation on a class is just shorthand for annotating every method in the class

and its subclasses.

4.3 Primitive Annotations

Initially, we decided to only allow invariants that use the currently executing thread to

determine whether a certain method is allowed to be run or not, using the @OnlyRunBy

and @NotRunBy annotations. Threads are distinguished by

41

1public @interface ThreadDesc {
2/** @return regular expression for the thread name. */
3String name() default "";
4/** @return regular expressions for thread group name. */
5String group() default "";
6/** @return ID number as returned by Thread.getID(). */
7long id() default -1;
8/** @return designates if the event thread has been
9* selected (for use inside @OnlyRunBy). */
10OnlyRunBy.EVENT_THREAD eventThread ()
11default OnlyRunBy.EVENT_THREAD.NO;
12}

Listing 4.9: @ThreadDesc Annotation for Use with Primitive Annotations

• name

• group name

• id

• whether the thread was an AWT event thread

The @OnlyRunBy and @NotRunBy annotations store an array of @ThreadDesc anno-

tations, which actually describe the thread using one of the four criteria listed above.

This way, it is possible to specify more than one invariant per method. Listing 4.9

shows the implementation of the @ThreadDesc annotation.

The thread descriptions of an @OnlyRunBy annotation are combined using “or”;

that means they are seen as acceptable alternatives, and only one of their invariants

has to be met. The descriptions of a @NotRunBy annotation are combined using “and”,

and all of the invariants must be met for an application to not violate the threading

discipline.

The Concutest framework uses bytecode rewriting to implement the invariant

checks: An offline tool or custom class loader inserts calls to pre-written methods

at the beginning of all affected constructors and methods. Inside those methods,

the current thread’s information is compared to the data in the annotation, and if a

42

1@NotRunBy(@ThreadDesc(name="foo"))
2public class ThreadCheckSample {
3@NotRunBy ({ @ThreadDesc(group=".*ai.*")})
4public ThreadCheckSample () {
5System.out.println("ctor");
6}
7@NotRunBy ({
8@ThreadDesc(name="bar"),
9@ThreadDesc(id=1)})
10public void run() {
11System.out.println("run");
12}
13@NotRunBy ({
14@ThreadDesc(name="main"),
15@ThreadDesc(name="fum")})
16public static void main(String [] args) {
17System.out.println("main");
18(new ThreadCheckSample ()).run();
19}
20}

Listing 4.10: Illustration of Primitive @NotRunBy Annotations

violation is detected, it is added to a log file. For @NotRunBy annotations, there is one

call per @ThreadDesc, and the description from the annotation is passed as parameter

and compared immediately. Since threads described in an @OnlyRunBy annotation are

seen as alternatives, a conclusion about whether a violation has occurred can only

be made once all thread descriptions have been compared. The implementation of

@OnlyRunBy therefore is more complex: There is one call per @ThreadDesc, which

stores the thread description in a list, and then another final call to a method that

evaluates all stored descriptions.

It is worth noting that, since it is possible that multiple threads evaluate an

@OnlyRunBy invariant at the same time, there is one list of thread descriptions for

each thread. Without this measure, two concurrently executed invariant checks could

interfere with each other.

Listings 4.10 and 4.11 show examples of these primitive annotations. It is apparent

that they are not very flexible or extensible.

43

1@OnlyRunBy(@ThreadDesc(name="main2"))
2public class ThreadCheckSample3 {
3@OnlyRunBy ({
4@ThreadDesc(name="main"),
5@ThreadDesc(name="main3"),
6@ThreadDesc(eventThread=OnlyRunBy.EVENT_THREAD.ONLY),
7@ThreadDesc(id=3),
8@ThreadDesc(id=4)})
9public void run() {
10System.out.println("run");
11}
12@OnlyRunBy ({
13@ThreadDesc(name="main3"),
14@ThreadDesc(group="foo"),
15@ThreadDesc(group="bar"),
16@ThreadDesc(id=3),
17@ThreadDesc(id=4)})
18public static void main(String [] args) {
19System.out.println("main");
20(new ThreadCheckSample3 ()).run();
21}
22}

Listing 4.11: Illustration of Primitive @OnlyRunBy Annotations

4.4 Predicate Annotations

After implementing the primitive annotations, we noticed that only a small set of

the desirable invariants could be expressed, particularly when annotating the model

object associated with a GUI component: For instance, it is easy to specify that a

JTable should only be accessed by the event thread once the component has been

realized, but how would a developer do the same for the TableModel object that

contains the data displayed in the table? The model object does not have a reference

to the GUI component.

Several alternatives were considered:

1. Defining the semantics of “event thread only after realized” for non-component

classes such that any thread can call this method until the event thread calls it

the first time; after that, only the event thread may call the method.

44

2. Linking model and view classes with a HashMap<String,Boolean> by letting

the view set the value indexed by some unique name to true and defining “event

thread only after realized” as allowing any thread to run the method as long as

the value indexed by the unique name is false; once it is true, only the event

thread is allowed. This idea could be generalized to allow arbitrary Boolean

expressions.

3. Specifying a Java method by name in the annotation and calling it.

4. Allowing arbitrary Java code as a string in the annotation, extracting, compiling

and then inserting it in the right place.

The first alternative seemed too limited and the second one too brittle, because

it involved assigning unique names. The fourth option seemed very attractive, but

it would have involved a major effort to correctly implement parsing and access to

classes, methods, fields, and annotation values. We therefore chose the third option,

which lead to the development of predicate annotations.

A predicate annotation is an annotation that itself is annotated by one of the two

meta-annotations @PredicateLink and @Combine. These meta-annotations have the

dual purpose of marking an annotation as predicate annotation and specifying the

way the predicate annotation behaves.

Annotations marked as @PredicateLink may only contain primitive data mem-

bers, strings, class objects, enumerations, and arrays of the types just mentioned;

they may not contain other annotations or arrays of annotations as members. An-

notations marked with @Combine, on the other hand, are the dual and may only

contain other annotations or arrays of annotations (in fact, the annotations must

even be predicate annotations, i.e. they must have either a @PredicateLink or a

@Combine meta-annotation); they may not contain primitive data members, strings,

class objects, enumerations, or arrays of those types.

45

1@Retention(RetentionPolicy.RUNTIME)
2@Target ({ ElementType.ANNOTATION_TYPE })
3public @interface PredicateLink {
4/** Class containing the predicate method.
5* @return class with the predicate method. */
6Class value ();
7/** Name of the predicate method. If not
8* specified , the name "check" is assumed.
9* @return name of the predicate method. */
10String method () default "check";
11/** Whether method arguments should be passed
12* to the predicate.
13* @return true if arguments should be passed. */
14boolean arguments () default false;
15}

Listing 4.12: @PredicateLink Meta-Annotation

4.4.1 Predicate Link Annotations

Listing 4.12 shows the definition of the @PredicateLink meta-annotation. The

@PredicateLink meta-annotation establishes a link between the annotation it is

marking and a static method returning a boolean (the predicate method, specified

by a Class instance and a method name). This method is called, and if it returns

false, a violation has occurred. The predicate method must be in a completely

static context, which means the method cannot be in an anonymous inner class or a

non-static inner class; methods in static inner classes can be used. To be precise, it

has to be possible to call the predicate method from the beginning of every method

that is affected by the annotation.

The method is specified using the @PredicateLink.value() and @Predicate

Link.method() members. The former specifies the class that contains the predicate

method. The latter is optional and specifies the method name; if no method name

is specified, "check" is assumed. The third member, @PredicateLink.arguments()

decides whether the method arguments should be passed.

46

The predicate method is required to have a very particular signature: It has to

return boolean and have at least one parameter of type Object. That first Object

parameter contains the value of this if the method whose invariant is checked is

non-static, or null if the method is static.

Additionally, if @PredicateLink.arguments() is true, the predicate method

must accept an Object[] array as second parameter which contains the argument

values of the annotated method. If the method has no arguments, the length of

the array will be 0. Primitive parameters like int or boolean will automatically be

converted to their respective boxed versions, such as Integer and Boolean.

Finally, the method has to have one parameter for each member of the annotation

that the @PredicateLink meta-annotation is marking, in the same order as they ap-

pear in the annotation, with the same types and the same names. For example, if the

annotation has three members (int m1; float m2; String m3;) and @Predicate

Link.arguments() is false, the method has to accept four parameters (Object

this0, int m1, float m2, String m3); if @PredicateLink.arguments() is true,

the method needs to have five parameters (Object this0, Object[] args, int

m1, float m2, String m3).

When an invariant check is performed at the beginning of a method, the bytecode

is rewritten to first load this or null on the stack, depending on whether the method

is non-static or static. Then, if @PredicateLink.arguments() is true, an array of

the method arguments is built and put on the stack; the left-most argument is at

array index 0. Finally, the values of the annotation members are read out and put

on the stack and the specified predicate method is called. Figure 4.2 shows the stack

layout.

The predicate method returns a boolean, and if it is false, a violation has oc-

curred, which is added to a log. Listings 4.13 to 4.19 show examples of how annota-

tions, predicate methods, and methods to which annotations are applied fit together.

47

(top of stack)

annotation member value n

values from the annotation members

...

annotation member value 2

annotation member value 1

method argument array optional, only if @PredicateLink.arguments()

is true

this or null for non-static or static methods

Figure 4.2 : Stack for Calling @PredicateLink Annotation Predicate

1@PredicateLink(value=Predicates.class)
2public @interface OnlyEventThread { }
3class Predicates {
4public static boolean check(Object thisObject) {
5// this0 is the bar method ’s this
6return EventQueue.isDispatchThread ();
7}
8}
9class Foo {
10@OnlyEventThread public void bar() { }
11}

Listing 4.13: Memberless Annotation, 0 Parameters, Arguments not Passed

In listing 4.13, the annotation OnlyEventThread does not have any members, and

the method, Foo.bar does not have any parameters either. Therefore, the predicate

method Predicates.check (check because no other name was specified) has only

one parameter, this0, which is the bar method’s this, since the method is non-

static. The annotation OnlyEventThread can be used to mark methods that must

be executed in the event thread.

Predicate annotations consist of three individual parts: The annotation definition,

the predicate method, and the actual usage site of the annotation. While listings 4.13,

48

1@PredicateLink(value=Predicates.class)
2public @interface OnlyEventThread { }

Listing 4.14: Annotation Definition of Listing 4.13

1class Predicates {
2public static boolean check(Object thisObject) {
3// this0 is the bar method ’s this
4return EventQueue.isDispatchThread ();
5}
6}

Listing 4.15: Predicate Method of Listing 4.13

and 4.17 to 4.19 show all three parts together, the reader should keep in mind that

the annotation definition and the predicate method are usually written by the library

developer, and the application developer only needs to work with the annotation

usage.

To show the simplicity of this scheme, the individual parts from listing 4.13 have

been separated and are shown in listings 4.14, 4.15 and 4.16.

Listing 4.17 has an annotation OnlyThreadWithName with two members, String

value and boolean regex, and the method Foo.bar also has a parameter. However,

since arguments are not passed, the Foo.bar’s x argument is not passed. The predi-

cate method Predicates.checkName has three parameters, this0 (which is null this

time, since the bar method is static), String value and boolean regex from the

annotation. The OnlyThreadWithName annotation in listing 4.17 is used to restrict

execution of the Foo.bar method to threads with then name “main”.

1class Foo {
2@OnlyEventThread public void bar() { }
3}

Listing 4.16: Usage Site of Listing 4.13

49

1@PredicateLink(value=Predicates.class , method="checkName")
2public @interface OnlyThreadWithName {
3String value(); boolean regex() default false;
4}
5class Predicates {
6public static boolean checkName(Object this0 ,
7String value , boolean regex) {
8// this0==null
9// value , regex contain the values in the annotation
10final String name = Thread.currentThread ().getName ();
11return regex?(name.matches(value)):(name.equals(value));
12}
13}
14class Foo {
15@OnlyThreadWithName(value="main")
16public static void bar(int x) { }
17}

Listing 4.17: Annotation with Members, 1 Parameter, Arguments not Passed

Listing 4.18 has an annotation NoNullArguments without members and a method

with two parameters. Since argument passing has been enabled, the predicate method

Predicates.checkNoneNull has two parameters, this0 (which is bar’s this, since

the method is non-static) and an two-element array args, containing the values of

the arguments passed when bar is called. The annotation NoNullArguments in this

example reports a violation if bar is called and at least one arguments is null.

In listing 4.19 an annotation with a member, NotNullArgument, is applied to a

method with two parameters, Foo.bar. The predicate method, Predicates.check

NotNullArg, therefore has three arguments: this0 (which is the value of this in the

bar method), an array args with two elements (the values of dummy0 and dummy1), and

an int with the value of i from the annotation. The annotation NotNullArgument

in this example is used to restrict the parameter with index 0 (dummy0) to non-zero

values.

Since the predicate methods are regular static Java methods, developers can per-

form any operation allowed in any static Java method: access static fields, call static

methods, and, using the first parameter, even access this if the call came from a

50

1@PredicateLink(value=Predicates.class , method="checkNoneNull",
2arguments=true)
3public @interface NoNullArguments { }
4class Predicates {
5public static boolean checkNoneNull(Object this0 ,
6Object [] args) {
7// this0 is bar’s this , args.length ()==2
8for(int i=0; args <args.length; ++i)
9if (args[i]== null) return false;
10return true;
11}
12}
13class Foo {
14@NoNullArguments
15public void bar(String dummy0 , Object dummy1) { }
16}

Listing 4.18: Memberless Annotation, 2 Parameters, Arguments Passed

1@PredicateLink(value=Predicates.class ,
2method="checkNotNullArg", arguments=true)
3public @interface NotNullArgument { int i(); }
4class Predicates {
5public static boolean checkNotNullArg(Object this0 ,
6Object [] args , int i) {
7// this0 is bar’s this , args.length ()==2
8// i is from the annotation
9if (i>=args.length) return false;
10return args[i]!= null;
11}
12}
13class Foo {
14@NotNullArgument(i=0)
15public void bar(String dummy0 , Object dummy1) { }
16}

Listing 4.19: Annotation with Member, 2 Parameters, Arguments Passed

51

1@PredicateLink(value=Foo.Predicates.class)
2@interface AccessPrivate { }
3class Foo {
4// static inner class
5public static class Predicates {
6public boolean check(Object this0) {
7if (this0==null) return false;
8return (((Foo)this0)._privateField ==0)
9}
10}
11private int _privateField = 1;
12@AccessPrivate public void bar() { }
13}

Listing 4.20: Predicate Accessing Private Field Using Nested Class

non-static method. If @PredicateLink.arguments() is true, then the predicate

method also receives the values of the arguments that were used to call the annotated

method. Private fields are not directly accessible, unless the predicate is contained

in an inner class, as shown in listing 4.20. Reflection can also be used to access

private fields of any object, but the predicate method may have to call Accessible

Object.setAccessible(true) first, as demonstrated in listing 4.21.

Predicate methods and reflection can be a powerful diagnostic tool, but with power

also comes responsibility. The predicate methods should be kept as short and simple

as possible: Since any Java code can be executed, a predicate annotation could easily

introduce an infinite loop or a deadlock into an otherwise unproblematic program.

If a predicate method throws an uncaught exception, this is recorded as incorrectly

written predicate. Exceptions are not allowed to escape from a predicate method, as

that would alter the behavior of the program being tested.

The library that is part of the invariant checker contains a large number of pre-

defined annotations. These are discussed in appendix A.

52

1@PredicateLink(value=Predicates.class)
2@interface AccessPrivateReflect { }
3// not an inner class
4class Predicates {
5public boolean check(Object this0) {
6if (this0==null) return false;
7Field field = this0.getClass ().
8getDeclaredField("_privateField");
9boolean isAccessible = field.isAccessible ();
10field.setAccessible(true); // access private
11Object value = field.get(thisObject);
12field.setAccessible(isAccessible); // reset access
13return value.equals (0);
14}
15}
16class Foo {
17private int _privateField = 1;
18@AccessPrivateReflect public void bar() { }
19}

Listing 4.21: Predicate Accessing Private Field Using Reflection

4.4.2 Combine Annotations

@Combine meta-annotations were created because we longed for the ability to per-

form Boolean operations on predicate annotations to create larger, more complex

compound annotations. The example shown in 4.22 would have been the ideal usage,

but as discussed in section C.3 in the appendix, this was not possible with Java’s

primitive annotation system. The @Combine-style annotations presented in this sec-

tion are the best solution we could find.

1@And({
2@Or({
3@NotThreadWithName("foo"),
4@NotThreadWithName("bar")}),
5@Not(@NotThreadWithGroupName("main")),
6@NotThreadWithID (5)})
7void someMethod () { /* ... */ }

Listing 4.22: Ideal, But Unachievable Usage Example

The definition of the @Combine meta-annotation can be found in listing 4.23. The

meta-annotation has two members, @Combine.value() and @Combine.arguments().

53

1@Retention(RetentionPolicy.RUNTIME)
2@Target ({ ElementType.ANNOTATION_TYPE })
3public @interface Combine {
4public static enum Mode {
5AND , OR , XOR , NOT , IMPLIES;
6}
7/** Operation used to combine the member predicate
8* annotations , i.e. AND , OR, XOR , NOT , IMPLIES.
9* @return combining operation */
10Mode value() default Mode.OR;
11/** Whether method arguments should be passed
12* to the predicate.
13* @return true if arguments should be passed. */
14boolean arguments () default false;
15}

Listing 4.23: @Combine Meta-Annotation

The former decides if the member annotations of the annotation marked by the

@Combine meta-annotation should be merged using “and”, “or”, “xor”, “not”, or

“implies”. The second member, @Combine.arguments(), determines whether the

method arguments should be passed to the predicate methods, just like @Predicate

Link.arguments() did.

Since @Combine-style annotations are used to create compounds of other predi-

cate annotations, the only members allowed in a @Combine-style annotation are other

predicate annotations or arrays of predicate annotations; primitive data, strings, class

objects, enumerations, or arrays of the aforementioned types are not allowed. The

member annotations or the elements in the member array must also have been an-

notated with one of the meta-annotations @PredicateLink or @Combine. There is

a further restriction: If a @Combine-style annotation has arguments() set to false,

then none of the member annotations may have arguments() set to true, because

that information simply is not available to the parent annotation’s predicate method.

If, however, @Combine.arguments() is true, then the member annotations are free

to either have the member arguments be passed to their predicate methods or to

ignore them.

54

At the usage site, there is no difference between using a @PredicateLink- style

or a @Combine-style annotation: For both kinds of annotations, this or null is first

put on the stack, depending on whether the method is non-static or static. Then, if

arguments() is true, an array is created and the arguments are stored in the array.

As third step, the annotation’s member values are put on the stack. Finally, the

annotation’s predicate method is called.

A @Combine-style annotation, however, does not have a designated predicate

method, like the one specified by a @PredicateLink meta-annotation. A @Combine-

style annotation may have members that have predicate annotations, though, but

even that is not guaranteed: A @Combine-style annotation may combine several

other @Combine-style annotations. The annotations generate a call graph that is

tree-shaped, with @Combine-style annotations as interior nodes and @PredicateLink-

style annotations as leaves. Arrays of annotations are treated specially: They are not

treated as a single entity; instead, each array element becomes a child annotation of

the annotation that contains the array. Since programs are finite, these call trees are

finite too, and eventually there will be predicate methods at the leaves that can be

called.

When the invariant checker encounters a usage site of a @Combine-style annotation,

it automatically generates a predicate method in a reserved package, by default edu.

rice.cs.cunit.threadCheck.predicates. In doing so, it recursively explores the

call tree in a depth-first fashion and automatically generates predicate methods for

member annotations that are also @Combine-style annotations. Once it reaches the

leaves, it accumulates the member values of the @PredicateLink-style annotation.

When the tree has been fully explored, all predicate methods for @Combine-style

children have been generated, and a list of the member values of the @PredicateLink-

style annotations at the leaves has been built. In essence, the tree has been flattened,

and all of the member values present in the leaves are available to the root.

55

This flattening has the negative side effect that a predicate method for a parent

@Combine-style annotation has to accept all the arguments for all its children. If, for

example, an annotation @Parent is a @Combine-style annotation with five members,

which are all @PredicateLink annotations with two members, then the predicate

method for @Parent must have ten parameters, and the parameter for this or null,

and perhaps the Object[] array for method arguments.

The flattening of all member values made it easy to integrate @Combine-style

annotations with @PredicateLink annotations. We considered two alternatives: in-

stantiating instances of the annotations, which basically means creating anonymous

inner classes on-the-fly; and creating wrapper classes that contain the same infor-

mation as the annotations but are placed in a completely separate class hierarchy

and package. Both approaches seemed to involve more work and particularly higher

memory usage than the flattening solution.

The automatically generated predicate method first loads a start value into a

boolean accumulator: true for “and”, false for “or” and “implies”, and 0 for “xor”.

It then prepares the stack for calling the first member predicate method, in the same

way @PredicateLink-style predicate methods were called: It puts this or null on

the stack, depending on whether the method that was annotated with this @Combine-

style annotation was non-static or static. If @Combine.arguments() is true, then

an array with the method arguments is created. Then all the member values for the

child annotation are put on the stack, and finally the predicate method for the child

annotation is called.

When the call returns, the predicate’s boolean return value is processed. If the

mode is “not”, the return value is negated and returned. If the mode is “and” or

“or”, the return value is merged with the accumulator using the appropriate Boolean

operation. If the mode is “xor”, then the number of times true is returned is counted,

and true is returned if and only if that count is one. For the “implies” mode, the

Boolean equivalence a → b = (¬a) ∨ b is used: The first return value is negated

56

1@Combine(value=Combine.Mode.AND)
2public @interface CombineWithDefault {
3NotThreadWithName name()
4default @NotThreadWithName("foo");
5NotThreadWithGroupName group ()
6default @NotThreadWithGroupName("bar");
7}
8@CombineWithDefault
9void someMethod () { /* ... */ }
10@CombineWithDefault(name=@NotThreadWithName("fee"))
11void someMethod () { /* ... */ }

Listing 4.24: A @Combine Annotation With Default Values

and the disjunction with the second return value is returned. Since “implies” is

not commutative, but Java does not specify the order in which annotation members

appear in a class file, “implies” requires a two-element array of annotations. The

array imposes an order for the operands.

When the predicate methods of all child annotations have been called, the value of

the accumulator is returned and represents the success or failure of the @Combine-style

annotation.

The use of default values for members is crucial in achieving ease of use: If all

members of a @Combine-style annotation have default values, then the annotation can

be used as a parameterless annotation. In listing 4.24, the annotations @NotThread

WithName and @NotThreadWithGroupName are combined to form the @CombineWith

Default annotation. The members of @CombineWithDefault are all given default

values, so when @CombineWithDefault is actually used, it can be done without spec-

ifying any arguments, as in line 8, or with arguments, overriding the default values,

as in line 10.

The automatic generation of predicate methods for @Combine annotations is quite

complex, right now requires disk write access, and due to the recursive nature can

be a bit time-consuming. Fortunately, the predicate methods can be cached, so

they only need to be generated once for each annotation usage. However, since a

57

1@Combine(value=Combine.Mode.AND , arguments=true)
2public @interface TestCombine {
3NotThreadWithName [] value ();
4}
5@TestCombine ({ @NotThreadWithName("foo")})
6void someMethod () { /* ... */
7@TestCombine ({
8@NotThreadWithName("foo"),
9@NotThreadWithName("bar")})
10void otherMethod () { /* ... */ }

Listing 4.25: A @Combine Annotation Used Twice

@Combine-style annotation may be used in more than one way it may be necessary to

generate more than one predicate method. Listing 4.25 illustrates this problem: The

first time @TestCombine is used, the array contains only one @NotThreadWithName

annotation; the second time @TestCombine is used, there are two array entries. Since

the first use in line 5 needs to make only one call to a child predicate, but the second

use in line 7 needs to make two, each use requires its own predicate method. To

distinguish the different predicate methods, the names of the automatically generated

predicate methods contain the encoded sizes of the arrays. The predicate method

name for the first use in line 5 would be check$value$$$1 and the name for the

second use in line 7 check$value$$$2. In case of arrays nested inside of arrays, a

path-like string using one or more ’$’ as separator encodes the nesting. For example,

check$value$$$1$value$$0$nested$$$4 indicates that nested is an array with four

elements, and it is stored in value[0], and the value array has only one element.

Every time the array sizes, the numbers following the triple ’$’, or the indices of

nested arrays, the numbers following the double ’$’, change, a new predicate method

has to be generated. At the usage site, the invariant checker analyzes the annotation,

generates the encoded method name, and then either generates that predicate method

or re-uses a cached, already existing one.

58

4.4.3 Predicate Annotations Using Reflection

We have also written an instrumentation strategy for invariant checking that relies

less on bytecode rewriting and more on reflection. Every time a predicate annotation

is encountered, a call is made to a library method, passing just the class, the method

name and descriptor, and possibly the method arguments. There is no need to re-

cursively generate predicate methods for @Combine annotations and to flatten all the

values of the annotations, since that is done using reflection in the library method.

Our framework locates the Method object for the method that was entered and pro-

cesses all @PredicateLink and @Combine annotations that should affect the method,

using the rules specified in figure 4.1. For a @PredicateLink, the reflection-based

invariant checker requests the Method instance for the predicate method and then

calls Method.invoke with the appropriate arguments. For a @Combine annotation,

the member annotations are processed recursively.

Using the reflection-based invariant checker instead of the one that performs ex-

tensive bytecode rewriting has two advantages:

• Since no predicate methods need to be generated, @Combine-style annotations

using reflection have less initial overhead.

• The annotation is an actual object retrieved using reflection and can therefore

be printed out more easily, giving the developer more information about why

the violation occurred.

Reflection has downsides, too. Line number information is harder to retrieve, and

since reflection operates at runtime, the annotations need to be available at runtime

as well. That means that their retention policy has to be runtime, while the invariant

checker that uses bytecode rewriting only needs class retention. If the annotated

program uses reflection itself, then a runtime retention policy could interfere with

the program’s desired behavior. Furthermore, the predicate methods generated by

bytecode rewriting alone are typically small and may be inlined by a JIT compiler.

59

4.5 External Annotations in XML Format

The information that can be supplied to the invariant checker in the form of predi-

cate or primitive annotations, as described in the previous two sections, requires the

modification of source code: To specify a concurrency invariant, a class or method

has to be prefixed by a Java 5.0 annotation.

The software developed as part of this thesis has the ability to convert source

code-based annotations into a separate, stand-alone XML file expressing the same

information. The XML file can be imported back again, resulting in instrumented

bytecode that checks the same concurrency invariants without having had to modify

source code.

The structure of the XML file is simple enough to be written by hand and can use

two different formats, one sorted by Java packages and classes, the other sorted by

invariant. Listings 4.26 and 4.27 show examples of XML files expressing annotation

information in both the class- and invariant-based formats. Tools to convert from

one format to another are also available.

Internally, the XML annotations are converted to the class-based format because

it corresponds more closely with the behavior of the instrumentation strategy that

rewrites the class files: It moves from package to package, class to class, method to

method. The invariant-based format, though, is typically easier to create by hand,

and it is used in merging and minimizing sets of invariants.

By using individual XML files that are not directly connected to source code,

programmers can annotate and add invariants to programs and class libraries even if

the source code is not available or cannot be recompiled.

As part of the Concutest project, we have started an online community website [39]

that contains information about the concurrency invariants of the Standard Java API

and other commonly used libraries, sorted both by class and by invariant. The content

is accessible to anyone, and any programmer can register, add content, and participate

60

1<?xml version="1.0" encoding="UTF -8"?>
2<concutest ><threadcheck >
3<javax ><swing ><text >
4<DefaultCaret >
5<class >
6<method sig="repaintNewCaret ()V">
7<eventThread type="only"/>
8</method >
9</class >
10</DefaultCaret >
11<JTextComponent >
12<class >
13<method sig="setText(Ljava/lang/String ;)V">
14<name type="only" value=".*"/>
15</method >
16</class >
17</JTextComponent >
18</text ></swing ></javax >
19</threadcheck ></concutest >

Listing 4.26: XML File in Class-Based Format

1<?xml version="1.0" encoding="UTF -8"?>
2<concutest >
3<threadcheck:def >
4<invariant >
5<name type="only" value=".*"/>
6</invariant >
7<method name="javax.swing.text.JTextComponent"
8sig="setText(Ljava/lang/String ;)V"/>
9</threadcheck:def >
10<threadcheck:def >
11<invariant >
12<eventThread type="only"/>
13</invariant >
14<method name="javax.swing.text.DefaultCaret"
15sig="repaintNewCaret ()V"/>
16</threadcheck:def >
17</concutest >

Listing 4.27: XML File in Invariant-Based Format

61

in the discussion. We plan to survey the information that is entered by community

volunteers and add it to freely available XML files.

The format of the XML files is discussed in appendix B.

4.6 Comparison to Assertions

The annotations introduced in this chapter are very similar to assertions already

found in Java since version 1.4. They correspond to assertions placed at the top of a

method.

Assertions, however, are written for one specific purpose: To ensure that a certain

property is met at one, and only one, place in the program code. Assertions are not

inherited by overriding methods or attached to methods first introduced in annotated

classes. Assertions are therefore very suitable for performing sanity checks of rela-

tively static code, but they are unsuitable for ensuring that concurrency invariants of

extensible frameworks are maintained.

In listing 4.28, the assertion in line 3 successfully protects the application from

deadlocking, as it did in listing 4.30, but the overridden method in line 8 does not

execute the assertion and is therefore vulnerable to the same deadlock as the code in

listing 4.30.

The annotation shown in listing 4.32 is passed on to the overridden method and

will detect the problem. Compared to assertions, the annotations introduced in this

chapter are therefore more suitable in extensible libraries like those found in modern

GUI frameworks.

Another product, Contract4J [40] provides similar capabilities to specify precondi-

tions and postconditions. However, Contract4J requires an aspect-oriented version of

Java, which makes the insertion of invariant checks at certain points easier. AspectJ

[41], an aspect-oriented version of Java, is not used very frequently, though. The

expressiveness of the invariants in this chapter already surpasses that of Contract4J,

and an extension to postconditions or data verification is possible.

62

1public class MalignSubClassAssert extends Benign {
2public void run(Object o1 , Object o2) {
3assert(o1!=o2);
4// ...
5}
6public static class MalignSubClassNoAssert
7extends MalignSubClassAssert {
8public void run(Object o1 , Object o2) { /* ... */ }
9}
10private static String s = "foo";
11public static void main(String [] args) {
12Benign b = new MalignSubClassAssert (); b.run(s, s);
13b = new MalignSubClassNoAssert (); b.run(s, s);
14}
15}

Listing 4.28: Listing 4.30 with an Assertion

4.7 Subtyping Relation for Annotations

In many cases, the invariant checker is able to statically determine problems in a

program’s source code by detecting subtyping violations. As long as adding an anno-

tation to a method makes the invariants stricter, then annotations on methods define

a subtyping relation similar to the one defined by Java.

With @NotRunBy annotations, it is quite clear that each annotation adds an

invariant (or duplicates one already present), thus making the invariants for a method

in a subclass stricter (or keeping it at least as strict). @OnlyRunBy, however, are im-

plemented to represent alternatives of which only one has to be true: A method

may be executed only by threads named "foo" or "bar", for example. Adding an

@OnlyRunBy annotation to a method in a subclass therefore makes the invariants

weaker, so for the purpose of statically detecting potential concurrency problems,

they need to be excluded.

For predicate annotations, it is not as obvious that each annotation makes the

invariant stricter, but it should be clear that adding another required invariant, even

if it is universally true, cannot make the overall invariant weaker; at worst, the re-

63

Class A B extends A

New invariant (none) not event thread

Combined invariants (none) not event thread

Effective invariants (none) not event thread

Table 4.1 : Sample Invariants

quirements will remain just as strict as without the added predicate annotation.

Therefore, it is reasonable to assume that the subtyping described below applies to

both @NotRunBy annotations and predicate annotations.

Consider the following two classes A and B, with class B extends A, and the

invariants shown in table 4.1. In this table, “new invariant” refers to the invariant

added for a class, “combined invariant” shows the new invariant combined with the

invariant inherited from the superclass, and the “effective invariant” is a simplified

restatement of the combined invariant.

Remember that the invariants from the superclass are passed on to the subclass.

It is clear that class A is less restrictive than class B: The methods in A may be run

by any thread, but those in B may be run by all those except the event thread. The

invariant for method execution have been made stricter for class B.

We now use the lambda calculus to illustrate and formalize the behavior of the

invariant checker. We pretend that the set of invariants restricting the execution of

a method is a special input parameter passed to every function. In the extended

typed lambda calculus described in sections 11.7 and 15.2 in Pierce’s “Types and

Programming Languages” [42], a record storing unit can be used. The subtyping

rules for records tell us that the wider record is a subtype of the narrower record, and

64

subtyping for function types suggests that there should be contravariant behavior for

function parameters. Since the set of invariants IA that constrains methods in class

A contains fewer elements (none, in fact) than the set of invariants IB that constrains

class B, IB is the subtype of IA: IB <: IA.

Let <@ be the invariant subtyping relation to distinguish it from the <: symbol

that is used for classical subtyping. When we consider the contravariant behavior of

the special function parameter containing the set of invariants, it follows that class A

is the invariant subtype of class B: A <@ B. It becomes clear that this runs counter

to the direction of subtyping set up by Java with class B extends A, B<:A.

A second, larger example uses the classes W, X, Y and Z, with class X extends

W, class Y extends X, and class Z extends Y, and the invariants in table 4.2.

Class W X extends W Y extends X Z extends Y

New (none) not event thread not "foo" not regex ".*"

invariant

Combined (none) not event thread not event thread not event thread

invariants not "foo" not "foo"

not regex ".*"

Effective (none) not event thread not event thread

invariants not "foo"

no thread fits

Table 4.2 : More Sample Invariants

Again, the invariants acquired by a superclass get passed on to its subclasses, changing

65

the effective invariant: While class W may be executed by any thread, class X may be

executed by all threads except the event thread, and class Y narrows it further down

to threads not named "foo". When class Z adds the invariant that it may not be

executed by any thread whose name matches the regular expression ".*", there are

no more threads left that satisfy all these invariants.

When considering the sets of invariants that constrain the execution of the meth-

ods of these classes, then the set of invariants IW of class W is empty and therefore

the smallest, the set IX of class X contains one element, IY two elements, and set

IZ is the largest set, containing three elements. The subtyping of records indicates

that IZ <: IY <: IX <: IW . From that and the contravariant relationship of function

parameters, we can establish the invariant subtyping relationship W <@ X <@ Y <@ Z.

Again, the invariant subtyping runs exactly in the opposite direction as the subtyping

established by Java.

The invariant checker can use these observations to statically determine that the

programmer is likely extending an annotated class library in a way that does not

maintain substitutability. To make this example concrete: Assume that JComponent’s

methods may be executed by any thread; they do not have any concurrency require-

ments. The methods in JTextField, which is a subclass of JComponent, may only

be accessed in the event thread. If programmers work abstractly at the level of

JComponent, but are actually dealing with an instance of JTextField, they may not

be aware of the invariants of that class. Furthermore, a second subclass, JTable,

could have a completely contradictory set of invariants. Trying to deal with both of

them virtually forces the programmer to deal with a class like Z above: The invariants

of the classes just cannot be met.

By analyzing the Java subtyping hierarchy and the hierarchy created by invariant

annotations, the invariant checker can statically determine these situations and direct

the attention of the programmer to areas of the program or class library that will

likely be problematic under concurrent situations.

66

4.7.1 Extended Syntax

The syntax and subtyping relation introduced here is based on Featherweight Java [43].

PD ::= Predicate declarations

@PredicateLink(value = C, method = ”m”,

arguments = {true|false}) @interface P { C m(); }

@Combine(value = {AND|OR|XOR|NOT|IMPLIES},

arguments = {true|false}) @interface P { P m(); }

A ::= @P(x) Invariant Checker annotations

@NotRunBy(x)

@OnlyRunBy(x)

CL ::= class A C extends C {C f ; K M} class declarations

K ::= A C(C f) { super(f ;) this.f = f ; } constructor declarations

M ::= A C m(C x) { return t; } method declarations

Figure 4.3 : Invariant Checker-Extended Featherweight Java (TCFJ) Syntax

The rest of the syntax is identical to that of Featherweight Java.

4.7.2 Featherweight Java Subtyping Relation

Reflexive property Transitive property

C <: C
C <: D D <: E

C <: E

CT (C) = A class C extends D{...}
C <: D

Figure 4.4 : Featherweight Java Subtyping Relation

67

4.7.3 Auxiliary Definitions

Extraction

The following rules allow the extraction of methods from a class, annotations from a

class or method, and the name of a method:

CT (C) = A class C extends D {Cf f ; K M}
extractM(C) = M

Figure 4.5 : TCFJ - Extract the Method Declarations from a Class

CT (C) = A class C extends D {Cf f ; K M}
extractA(C) = A

Figure 4.6 : TCFJ - Extract the Annotations from a Class

A R m(P x) ∈ extractM(C)

extractA(m, C) = A

Figure 4.7 : TCFJ - Extract the Annotations from a Method

M = A R m(P x)

nameM(M) = m

Figure 4.8 : TCFJ - Extract the Name from a Method Declaration

68

Get only the @P (x) predicate annotations, the @NotRunBy(x) or @OnlyRunBy(x)

annotations of an annotations list, respectively:

predAnnot(·) = ·

predAnnot(@P(x), A) = @P (x), predAnnot(A)

predAnnot(@NotRunBy(x), A) = predAnnot(A)

predAnnot(@OnlyRunBy(x), A) = predAnnot(A)

Figure 4.9 : TCFJ - Extract Only Predicate Annotations

notRunBy(·) = ·

notRunBy(@NotRunBy(x), A) = @NotRunBy(x), notRunBy(A)

notRunBy(@OnlyRunBy(x), A) = notRunBy(A)

notRunBy(@P(x), A) = notRunBy(A)

Figure 4.10 : TCFJ - Extract Only @NotRunBy Annotations

onlyRunBy(·) = ·

onlyRunBy(@OnlyRunBy(x), A) = @OnlyRunBy(x), onlyRunBy(A)

onlyRunBy(@NotRunBy(x), A) = onlyRunBy(A)

onlyRunBy(@P(x), A) = onlyRunBy(A)

Figure 4.11 : TCFJ - Extract Only @OnlyRunBy Annotations

69

Furthermore, let subAnnot(A) = predAnnot(A) ∪ notRunBy(A) be the set of

annotations to which the new subtyping relation applies.

Method Introduction

Find the class D, such that C <: D, that introduces a method m, i.e. the superclass of

C containing a declaration of m that does not have any superclasses that also contains

a declaration of m. If the method m is not defined in C or any of its superclasses, ·

is returned.

introduced(m, Object) = ·

CT (C) = A class C extends D {...}

m defined in extractM(C)

introduced(m, D) = ·
introduced(m, C) = C

CT (C) = A class C extends D {...}

introduced(m, D) = S

S 6= ·
introduced(m, C) = S

Figure 4.12 : TCFJ - Method Introduction

70

Annotation Lookup

Methods of class Object do not have any annotations.

annotM(m, Object) = ·

Figure 4.13 : TCFJ - Annotations Lookup for Object

The annotations of a method m that is introduced in class C are the union of the

class annotations on C and the annotations mentioned in the method declaration of

m in C.

introduced(m, C) = C

extractA(C) = AC

extractA(m, C) = AM

annotM(m, C) = AC ∪ AM

Figure 4.14 : TCFJ - Annotation Lookup for Introduction

The annotations of a method m that is overridden in class C, i.e. method m

was introduced in a superclass of C, are the union of the class annotations on C,

the annotations mentioned in the overriding method declaration of m in C, and the

annotations of the same method m in the superclass of C.

71

¬introduced(m, C)

CT (C) = AC class C extends D {...}

extractA(m, C) = AM

annotM(m, D) = AD

annotM(m, C) = AC ∪ AM ∪ AD

Figure 4.15 : TCFJ - Annotation Lookup for Overriding

Check for Annotation Contradictions

Check that a set of annotations does not contain contradictions.

A OK

Figure 4.16 : TCFJ - Check for Annotation Contradictions

· OK
A OK

@P(x), A OK

A OK

@OnlyRunBy(x) 6∈ A

@NotRunBy(x), A OK

A OK

@NotRunBy(x) 6∈ A

@OnlyRunBy(x), A OK

These rules check that a set of annotations does not contain any obvious contra-

dictions, i.e. an annotation that specifies a method must be run by a thread with

name "foo", but at the same time may not be run by a thread named "foo". Since

predicate annotations are distinct from primitive annotations and may execute arbi-

trary Java methods, the invariant checker cannot statically check for contradictions,

so predicate annotations of the form @P(x) are assumed to be noncontradictory.

72

4.7.4 Combined Subtyping Relation

Let <:@ be the combination of the Java subtyping relation and the invariant sub-

typing relation <@ :

Reflexive property Transitive property

C <:@ C
C <:@ D D <:@ E

C <:@ E

C <: D

extractM(D) = M

nameM(M) = m

subAnnot(extractA(m, C)) = AC

subAnnot(extractA(m, D)) = AD

for each(AC , AD) ∈ (AC , AD) : AC ⊆ AD

C <:@ D

Figure 4.17 : TCFJ - Combined Subtyping Relation

For C <:@ D, it is required that C <: D and that the sets of annotations of all

of C’s methods are subsets of the corresponding sets of D’s methods. If this were

not the case, if a method m in C contained a @NotRunBy("foo") annotation, but the

same method m in D did not, then the set of threads allowed to invoke m has been

narrowed. Code working only with D at an abstract level may expect that m can be

invoked by thread "foo", because the contract for m in D did not state otherwise.

More formally, this problem can be expressed as the equivalence in figure 4.18.

If Java compiles the source code for classes C and D, but the invariant checker

emits a static subtyping warning, then it has detected potential problems when work-

ing with an instance of C, but treating it abstractly as a D. A method in class C has

73

C <: D but C 6<:@ D ⇔ ∃ACi ∈ AC such that ACi 6⊆ ADi

⇔ ∃A ∈ ACi such that A 6∈ ADi

Figure 4.18 : TCFJ - Static Invariant Violation

an additional invariant to maintain, but the code that uses class D abstractly is not

aware that this invariant needs to be maintained.

For the classes and invariants shown in tables 4.1 and 4.2, the <: Java subtyping

relation holds for the classes, and the <@ subtyping relation holds for the invariants,

albeit in the reverse order. In both tables, the combined <:@ subtyping relation does

not hold; therefore, subtyping warnings should be emitted in both cases.∗

4.7.5 Extension of Featherweight Java Typing

To check whether a program is well-typed both using the original <: subtyping relation

and using the <:@ subtyping relation defined above, the <:@ relation should be

used instead of <:. The combined subtyping relation <:@ is more stringent and

completely subsumes <: as one if its antecedents.

Furthermore, the M OK in C and C OK rules should be extended to also

perform an A OK check.

The invariant checker uses the <:@ subtyping relation to detect potential prob-

lems with maintaining the concurrency discipline, because a violation here indicates

that a subclass has more stringent invariants than the superclass, and therefore the

superclass cannot be used abstractly. Doing so would risk breaking the invariants of

the subclass.

∗Bill Scherer named <:@ “ice cream cone”. I hope this name becomes commonly used.

74

4.7.6 Type Preservation and Progress

The changes to the Featherweight Java syntax are mostly cosmetic: This extension

adds predicate annotation declarations and annotations to the syntax, and classes

and methods can be prefixed with annotations. The substantial change is the use of

the stricter <:@ subtyping relation instead of the conventional <: subtyping relation.

Since <:@ subsumes <:, any program that is correct using the <:@ subtyping

relation is also correct using the <: subtyping relation. If P is the set of all programs

that are correct using <:@ , and Q the set of all correct programs using <:, then

P ⊂ Q.

Therefore, it is not necessary to prove type preservation and progress for the

extended version of Featherweight Java presented here, because the proofs given in

the original Featherweight Java paper [43] still hold.

4.7.7 Implementation Differences

In the current implementation, a few things differ from the syntax and typing de-

scribed above. Full Java allows overloaded types, so distinguishing methods just by

name n is not sufficient; instead, the full signature is used: C m(P x).

The class Object is treated specially in Featherweight Java and is assumed to

contain no fields or methods; in the same spirit, we decided to disallow annotations

on the class Object or its methods, even though the invariant checker implementation

allows it.

The syntax of annotation is also slightly different: As Java does not allow mul-

tiple annotations of the same type on the same class or method, @NotRunBy and

@OnlyRunBy actually contain arrays of annotations, which specify the thread. We felt

it was unnecessary to reproduce the syntactic complexity here.

75

1public class Benign {
2public void run(Object o1 , Object o2) {
3System.out.println(o1.toString ());
4System.out.println(o2.toString ());
5}
6private static String s = "foo";
7public static void main(String [] args) {
8Benign b = new Benign (); b.run(s, s);
9}
10}

Listing 4.29: Benign Program

4.8 Problems Caused By Subclassing: When Is Something

Really “Thread-Safe”?

Another invariant that programmers may want to express is that a method can be

called by any thread and does not need to meet any particular criteria, which can be

done simply by not specifying any annotation, or by a gesture such as allowing all

threads that match the regular expression ".*" to run the method.

Superficially, this is true for most methods; however, closer inspection reveals that

many apparently benign methods may still cause concurrency problems, especially in

the face of subclassing or method calls to other objects. Listing 4.29 shows such a

benign program that does not exhibit any concurrency problems.

Listings 4.30 and 4.31 show slight variations of that program that deadlock when

executed and therefore are not as benign anymore.

• Listing 4.30 demonstrates that subclassing can affect a method’s concurrency

invariants. While the code in the main method is identical except for the fact

that an instance of MalignSubClass is created instead of a Benign instance,

the implementation of the run method differs: It acquires the first parameter’s

lock and prints out the first parameter. Then it starts aux, a second thread

that acquires the second parameter’s lock and print out the parameter’s value.

76

1public class MalignSubClass extends Benign {
2public void run(final Object o1 , final Object o2) {
3synchronized(o1) {
4System.out.println(o1.toString ());
5Thread aux = new Thread(new Runnable () {
6public void run() {
7synchronized(o2) {
8System.out.println(o2.toString ());
9}
10} });
11aux.start();
12try { aux.join(); }
13catch(InterruptedException e) { }
14}
15}
16private static String s = "foo";
17public static void main(String [] args) {
18Benign b = new MalignSubClass (); b.run(s, s);
19// b.run(s, "bar"); would work
20}
21}

Listing 4.30: Modified Behavior by Subclassing

The main thread waits for aux to finish and only relinquishes its hold on the

first parameter’s lock once aux has completed.

The run function described above prints out the same results as the one in

listing 4.29 as long as the two arguments passed to the run method are distinct

objects. In listing 4.30, however, the same object s is passed for both param-

eters, resulting in a deadlock, since the aux thread cannot acquire the object’s

lock until the main thread has released it, but that only happens once aux has

completed.

The invariant that now needs to be maintained for the MalignSubClass.run

method is that both arguments are distinct objects. Listing 4.30 therefore

shows the danger of treating an object abstractly at the base class (Benign) even

though the object may actually be an instance of a subclass (MalignSubClass).

77

1public class MalignCall extends Benign {
2private static Object o = new Object () {
3public synchronized String toString () {
4return "foo";
5} };
6public static void main(String [] args) {
7final Benign b = new MalignCall ();
8synchronized(o) {
9Thread aux = new Thread(new Runnable () {
10public void run() {
11b.run(o, o);
12}
13});
14aux.start();
15try { aux.join(); }
16catch(InterruptedException e) { }
17}
18// b.run(o,o); would have worked
19}
20}

Listing 4.31: Modified Behavior by Call to Overridden Method

• In listing 4.31, the run method is left unchanged, but the arguments used impose

an invariant: When the toString method is called, the argument’s own lock

has to be acquired. The program’s main method has also been rewritten to call

the run method in a second thread, aux.

Listing 4.31 would have produced the same result as listing 4.29, but the main

thread acquires the lock of the argument o before the second thread aux is

started and does not release it until aux has finished running. Since o’s lock is

already held by the main thread, aux cannot acquire it when its run method

calls o’s toString method, and a deadlock ensues.

Due to the kind of argument passed to it, the MalignCall.run method now

needs to maintain the invariant that the locks of its arguments are not held

at the time of the call. Listing 4.31 therefore exposes the problems caused by

subclassed arguments, fields or return values.

78

The software described in this chapter is able to disarm the situation, though, as

long as invariants are consistently annotated. If a method in a subclass introduces

an invariant, but the method in a superclass does not, then the invariant checker can

statically determine that a subtyping violation has been found. The invariant of the

subclass method is stricter than the invariant of the superclass, and this violates the

contravariance of preconditions. Such a subtyping violation typically indicates that

the class hierarchy is used in an invalid way.

These static checks can help expose many concurrency problems, but overrid-

den methods in subclasses or subclassed arguments remain problematic unless the

subclasses and the classes of the arguments are properly annotated as well. If, for ex-

ample, the MalignSubClass.run method in listing 4.30 expresses the invariant that

the two arguments must be distinct, then the deadlock can be detected before it

occurs.

If the overridden toString method in listing 4.31 expressed the invariant that

the object’s lock may not be owned by any thread yet, because the method itself

will need to acquire it, the impending deadlock can also be detected. Listings 4.32

and 4.33 show the necessary annotations to express the aforementioned invariants.

Listings 4.34 and 4.35 show the output produced by the software described in this

chapter. The reports allow the programmer to pinpoint the location and nature of

the violation.

This section established how dangerous it is to label a method as “thread-safe”:

If the method makes any calls to other methods that may have been overridden, or

if the method itself is overridden in a subclass, the assumptions that lead to the

determination of safety may be invalid. Instead of labeling a method as “thread-

safe”, it is better to turn the assumptions into annotations that specify the actual

invariants.

79

2@DistinctArguments ({0 ,1})
3public void run(final Object o1 , final Object o2) { ... }

Listing 4.32: Listing 4.30 with Annotation (Excerpt)

3@NoneSynchronizedThis
4public synchronized String toString () { return "foo"; }

Listing 4.33: Listing 4.31 with Annotation (Excerpt)

The only time a developer is really justified in calling a method “thread-safe” is

when the method is final, and therefore prohibits overriding, and does not make any

calls to methods that are not final as well.

4.9 Results

To evaluate how effective and easy to use the invariant checker and the annotations

are, we annotated two different versions of DrJava [4], a version from March 26,

2004, and a version from September 2, 2006. These versions were chosen because

they marked two stable releases of DrJava. Since the DrJava development team had

recently made many changes to improve concurrent behavior of the application, we

expected that the older version would have more invariant violations than the more

recent version.

Thread Predicate Violation: (1 check , 1 violation)
Current thread ’main’, id 1, group ’main’
Violated predicate @edu.rice.cs.cunit.threadCheck.

predicates.DistinctArguments
Method arguments

’foo’ : java.lang.String
’foo’ : java.lang.String

at BenignSubClass.run (BenignSubClass.java :7)
at BenignSubClass.main (BenignSubClass.java :22)

Listing 4.34: Invariant Checker Output for Listing 4.32

80

Thread Predicate Violation: (1 check , 1 violation)
Current thread ’Thread -0’, id 7, group ’main’
Violated predicate @edu.rice.cs.cunit.threadCheck.

predicates.NoneSynchronizedThis
at BenignCall$1.toString (BenignCall.java:-1)
at Benign.run (Benign.java :3)
at BenignCall$2.run (BenignCall.java :14)
at java.lang.Thread.run (Thread.java :613)

Listing 4.35: Invariant Checker Output for Listing 4.33

The process of annotating existing code was primarily guided by source code

comments and Javadoc comments present in the source code. It should be noted that

we probably missed some opportunities for annotation and only expressed a subset of

the invariants actually present in the program. We also faced some problems building

and running the 2004 version of DrJava, which was written before the final version

of Java 5.0 was released; as a result, some unit tests could not be run.

Table 4.3 shows the number of unit tests for the two versions that passed suc-

cessfully, failed, or could not be run because of problems with Java 5.0, as well as

the total number of unit tests. It is evident that many tests were added to the unit

testing suite of DrJava between the two versions.

3/26/2004 Version 9/2/2006 Version

Unit Tests Passed 610 881

Unit Test Failures 36 0

Could Not Run 90 0

Total Unit Tests 736 881

Table 4.3 : Unit Tests

81

Table 4.4 shows the total number of invariant checks, the number of passed and

failed checks, and the percentage of failed checks during the execution of the entire

test suite. While there were more check failures in the 2006 version in absolute terms,

the percentage of failed invariant checks was significantly lower in the newer version,

reflecting the development team’s perception that concurrent behavior had improved.

The number of invariant checks was lower in the 2004 version, though, since there

were fewer comments that dealt with concurrency. This made the annotation process

for the 2004 version more difficult.

3/26/2004 Version 9/2/2006 Version

Invariant Checks Failed 965 3796

Invariant Checks Passed 4161 30616

Total Invariant Checks 5116 34412

Percentage Failed 18.83 11.03

Table 4.4 : Invariant Checks and Violations

This is corroborated by the information in table 4.5: On the one hand, the source

base and the number of unit tests grew substantially, and on the other hand, the

term “event thread”, a concept central to Java AWT/Swing threading disciplines,

was mentioned hardly at all in the 2004 version, but frequently in the 2006 version.

It should also be noted that the 34,412 invariant checks passed in the 2006 version

did not prolong the testing process measurably. In general, as long as there was

sufficient information available to establish concurrency invariants, it was easy to add

annotations and have them checked. It was also simple to annotate only a part of

the codebase without annotating the whole codebase, and it was easy to carry out

82

3/26/2004 Version 9/2/2006 Version

KLOC 107 129

Total Unit Tests 736 881

Mentions “event thread” 1 99

Table 4.5 : Other Information

the invariant checking in addition to running the unit testing suite. We expect that

it will be much easier to annotate a program at the same time it is written, when the

programmers are actually the most aware of the required invariants.

To compare the performance of reflection-based invariant checker and the bytecode-

rewriting checker, we ran several benchmarks. The programs all made 2000 calls to a

method that sleeps for 100 ms. The method was annotated with different invariants,

and then run without the invariant checker, with the checker using bytecode rewriting,

and with the checker using reflection. The invariants chosen for these benchmarks

are guaranteed to succeed, since an invariant violation would cause an undesirable

write to a log file.

The invariants are listed in the first column of table 4.6. A, B, C and D are place-

holders for invariants of the form “not executed by thread with name...”. The second

column indicates whether an instrumentation was performed, whether primitive or

predicate annotations were used, and whether reflection was used as opposed to byte-

code rewriting. The third column contains the time for 2000 method calls, generated

on an Intel Core 2 Duo E6600 CPU (2.4 GHz, 1066 MHz FSB) with 2 GB of DDR2

SD RAM (667 MHz). The last column shows the normalized execution times, where

the factor of 1.0 corresponds to the execution time without instrumentation, listed

first in each group.

83

The factors show that the invariant checker that uses bytecode rewriting has

negligible impact; the overhead caused by the reflection-based invariant checker is

more noticeable. As the invariants become more complex, the advantage of bytecode

rewriting increases. We also found that there was no performance penalty for using

the more powerful predicate annotations instead of the primitive annotations.

The invariant checker presented in this chapter works on all three major platforms:

Windows, Linux, and Mac OS X.

All source code is open source and available at: http://www.concutest.org/ [38].

http://www.concutest.org/

84

Invariant Description Time (ms) Factor

A primitive, not instrumented 201172 1.00000

primitive, instrumented 201203 1.00015

A predicate, not instrumented 201172 1.00000

predicate, instrumented bytecode 201187 1.00007

predicate, instrumented, reflection 201281 1.00054

A ∧B primitive, not instrumented 201172 1.00000

primitive, instrumented 201203 1.00015

A ∧B predicate, not instrumented 201172 1.00000

predicate, instrumented, bytecode 201187 1.00007

predicate, instrumented, reflection 201297 1.00062

((A ∧B) ∧ (C ∧D)) predicate, not instrumented 201187 1.00000

predicate, instrumented, bytecode 201188 1.00000

predicate, instrumented, reflection 201328 1.00078

Table 4.6 : Invariant Checker Benchmarks

85

Chapter 5

Bytecode Rewriting Framework

Except for the improvements to JUnit described in chapter 3, all of the pieces of the

framework use bytecode rewriting: Java source files are compiled with the regular

Java compiler, if possible with debug information, and then analyzed and rewritten.

The alternative would have been to rewrite Java source code, but this approach

has several disadvantages:

• It is more difficult to parse a Java source file due to all the variations that are

allowed.

• Some of the instrumentations that are performed do not have a corresponding

Java source equivalent. For example, it is impossible in Java to just emit a

monitorenter instruction without a matching monitorexit instruction.

• Sometimes, the Java source simply is not available or it is not advisable to

recompile it, for example the classes of the Java API.

• Performing the instrumentation on-the-fly, using a custom class loader, would

have been much more difficult if the changes were made to Java source and not

to class files.

Another option would have been to modify the Java compiler and runtime envi-

ronment, but this was ruled out early on so the project could target as many platforms

as possible and therefore maximize the potential user base.

What is analyzed and how the class files are changed depends on the required

task. In general, though, class files are rewritten one at a time; the actual process has

86

1public interface IInstrumentationStrategy {
2public void instrument(ClassFile cf);
3public void done();
4}

Listing 5.1: IInstrumentationStrategy Source

been abstracted out using several object-oriented design patterns, namely strategy,

decorator and composite [44], so that each instrumentation can implement the nec-

essary changes as it sees fit. Very often, the instrumentation strategy cycles through

all the methods in a class and changes them.

IInstrumentationStrategy is the base interface, and all instrumentation strate-

gies need to implement its two methods shown in listing 5.1. instrument will be

called once per class file; done is called only once, at the end of the instrumentation,

when all classes have been processed.

There are several helpful classes and interfaces that allow better code reuse:

CompoundStrategy bundles several IInstrumentationStrategy instances and

runs them one after the other. A ConditionalStrategy, shown in listing 5.2 also

contains another IInstrumentationStrategy, but it will only execute the strategy

if the ConditionalStrategy.apply method returns true.

Using a ConditionalStrategy, a developer can apply an instrumentation only to

class files that, for example, reside in the java.lang package. There is also an addi-

tional interface that instrumentation strategies can implement, IScannerStrategy,

which adds another method that needs to be implemented and whose purpose it is to

return data gathered during the instrumentation. The interface’s definition is shown

in listing 5.3.

The classes implementing IScannerStratey typically cache data from the instru-

mentation of one class to the next, and possibly process it when the done method is

called. Another common use of the IScannerStrategy is storing minor errors that

87

1public abstract class ConditionalStrategy
2implements IInstrumentationStrategy {
3IInstrumentationStrategy _decoree;
4public ConditionalStrategy(IInstrumentationStrategy decoree) {
5_decoree = decoree;
6}
7public void instrument(ClassFile cf) {
8// ...
9if (apply(cf)) {
10// ..
11_decoree.instrument(cf);
12}
13}
14public void done() { _decoree.done(); }
15public abstract boolean apply(ClassFile cf);
16}

Listing 5.2: ConditionalStrategy Source

1public interface IScannerStrategy extends
IInstrumentationStrategy {

2public interface IScanResult {
3public String getPropertyName ();
4}
5public List <? extends IScanResult > getScanResults ();
6}

Listing 5.3: IScannerStrategy Interface

88

should be relayed to the user but that should not entirely terminate the instrumen-

tation, as an exception would.

Most instrumentation strategies also take a List<String> as parameter in their

constructors: This list allows the user to pass values to the instrumentation strategies

and, for example, determine whether backup files should be created before a class file

is changed.

To parse, analyze and modify Java class files, we decided to write our own library,

even though alternatives existed: BCEL [45] was already very well developed and

could have been considered the product of choice when this project started; however,

BCEL seemed to force us into a certain development mold that felt too rigid and

unnecessarily complicated. ASM [46], a newer, lighter-weight library, puts more of

emphasis on speed, but when the Concutest project was started, ASM was still too

incomplete to use.

Our framework consists of a mixture of high-level classes that employ object-

oriented design patterns like strategies, compounds and visitors, as well as low-level

constructs for the compact representation of intructions, methods and classes. All

features of Java 5.0 and 6.0 are fully supported by the library.

It took some time to write the library, but we believe this effort was necessary to

get acquainted with all parts of the Java class file format and the intricacies of the

JVM.

5.1 Offline and On-the-Fly Instrumentation

Regardless of which instrumentation strategy is used, instrumentation can be done

either offline, after compile time but before runtime, or at runtime using a custom

class loader that rewrites the classes just as they are needed.

To instrument classes offline, a set of class files, directories, and jar files is passed

as argument to the FileInstrumentor program, together with the name of the

IInstrumentationStrategy that should be applied. The FileInstrumentor then

89

processes all class files that were specified and replaces the originals with instru-

mented copies. After the instrumentation, the classes can be used just as if nothing

had changed.

Offline instrumentation is faster, safer, more accurate and more general than on-

the-fly instrumentation: It is faster because caching changes is easier, and because

the JVM does nothing else besides instrumenting class files.

Performing the instrumentation offline is safer and more accurate than changing

the class files on-the-fly because the instrumentation cannot have any side effects

on computations that happen concurrently. With on-the-fly instrumentation, care

must be taken to minimize the impact the custom class loader has on the rest of

the program. If the custom class loader affected the behavior of the program being

instrumented and changed the outcome of a particular unit test, that would negate

the effort of the framework.

Finally, several classes in the Java API are considered “protected” and cannot be

changed on-the-fly. In order to change them, the instrumentation has to be performed

offline. For all of these reasons, it is recommended to instrument the Java API (usually

called rt.jar on Windows and Linux, or classes.jar and ui.jar on Mac OS X)

offline and create instrumented copies to be used instead of the original API files. To

use the instrumented copies, they have to be placed at the beginning of Java’s boot

classpath using the -Xbootclasspath/p option. Our framework provides GUI tools

to assist the user with this.

5.2 Local and Global Instrumentation

Each instrumentation strategy, each change of the program, can be classified as either

local or global, depending on what parts of the program need to be modified to achieve

the desired effect.

The changes from chapter 4 to check whether the program has violated the thread-

ing discipline are an example of local instrumentation. Bytecode is inserted in one

90

place, at the beginning of a method, but the results are observable throughout the

entire program, at every call site of the method. Converting synchronized methods

to methods with a synchronized block is another example of local instrumentation.

A change is made in one method only, the rest of the program does not have to be

modified.

Not all changes can be made in this way, though. In order to record all synchro-

nization events of a program, for example, it is necessary to know when a program

calls the Object.wait, Object.notify, and Object.notifyAll methods. The easi-

est way to achieve this would be to insert the bytecode doing the recording into these

methods; in the current Java API, however, these methods are native and therefore

do not contain bytecode.

The next easiest way to be notified of every call to the methods above would be

to rename the original methods, for example Object.wait to Object.waitOriginal,

and then put a method with the original name in its place, a method that records

the invocation and then forwards the call to the renamed method. That way, the

changes would still be localized to the Object class alone; all other classes could

remain unchanged and would nonetheless call the method we put in place. This

works for some methods, but it does not help in the case of Object.wait, Object.

notify, and Object.notifyAll. These methods are native, and linking the native

code to the methods requires the methods to always have the original name.

To still be notified of calls to these methods, an instrumentation strategy has to

create forwarding methods, for example Object.waitForward, that do the recording

and then call the native methods. Unfortunately, all the other classes still call the

original method, so now all call sites in all classes need to be changed to call the added

forwarding method. That makes this kind of instrumentation global; the changes are

not localized to a single class anymore, but affect every class that uses the changed

method. Local instrumentation is preferable to global instrumentation since it reduces

the number of times code has to be rewritten.

91

5.3 Marker Methods for Instrumentation

In some occasions, it may be necessary to place a specific bytecode or a sequence of

instructions at a certain place in a Java method, but the Java language forbids this.

One prime example is the strictly enforced pairing of monitorenter-monitorexit

instructions. Even though they are individual bytecode instructions, they always

appear together because they express one Java construct, the synchronized block.

In certain circumstances, we have found it desirable to emit only a monitorenter

instruction without a following monitorexit opcode, or vice versa. An easy way of

achieving this while working with high-level Java code is the use of marker methods.

These marker methods are empty public static void marker(Object o) meth-

ods and not meant to be executed. When the MarkerInlineStrategy instrumenta-

tion strategy encounters the call to such a method, the bytecode making the call is

replaced by the instructions that the programmer wants to be to be inserted at that

location, the lone monitorenter instruction for example.

Marker methods and an inlining instrumentation strategy allow the developer to

work at a conceptionally high level with Java methods and classes, but violate the

Java model by using features only available to programs written directly in bytecode.

5.4 Other Uses of Bytecode Rewriting

In addition to using bytecode rewriting for the annotation language to specify concur-

rency invariants in chapter 4, we have applied the same techniques to other problems:

Recording a program’s schedule, monitoring for deadlocks, and modifying a program’s

schedule using random delays and yields.

All of these tools are in one way or another tied to the schedule of a program

and either monitor, record or attempt to change it. In order to prevent tampering

with the schedule, the main algorithms are executed in a second JVM, called “master

JVM”, that is connected to the program’s JVM, called “client JVM”, using the Java

92

Debug Interface (JDI). The program’s JVM is only required to handle an array of

primitive data, a buffer in which the schedule is encoded.

5.4.1 Recording Schedules

To record a program’s schedule, the program and the entire Java API are instrumented

to add values to the buffer. Table 5.1 shows the codes used for the different events.

This table should be extended for other operations that can influence concurrent

behavior, such as access to volatile variables or remote method invocation (RMI).

The smallest amount of data that must be recorded to allow scheduled replay, the

next phase of this project, is the type of event and the thread that encountered the

event. Therefore, at a bare minimum, the schedule consists of “thread ID”-“code”

pairs.

In order to keep threads apart, the constructor of the Thread class is modified to

keep a hidden counter that is incremented every time a new thread is created. As

discussed before, the increment operation is a compound operation and thus prone

to race conditions. To avoid those and ensure that thread IDs are assigned in a de-

terministic fashion, assigning and incrementing the counter is done in a synchronized

block. Since that block did not exist in the original program but is nonetheless im-

portant for accurately representing the schedule, the codes 9 through 11 are used for

this synchronized block, not 1 through 3 as in the rest of the program.

To fit into the pattern of using 1 through 3 for acquiring, releasing, and attempt-

ing to acquire regular locks, synchronized methods are rewritten to be normal un-

synchronized methods with a synchronized block inside, as has been explained be-

fore. Another benefit of rewriting synchronized methods is that the instrumentation

remains local: Only the method with the synchronized block needs to be rewritten.

If synchronized methods were not converted to regular methods with a synchronized

block, then the event that represents the attempt to acquire a lock (code 3) would

have to be emitted before the call to the synchronized method is made; this would

93

Code Event

1 after monitorenter, lock obtained

2 before monitorexit, about to release lock

3 before monitorenter, lock not yet obtained

4 thread started

5 thread terminated

6 after monitorenter when assigning a unique object ID

7 before monitorexit when assigning a unique object ID

8 before monitorenter when assigning a unique object ID

9 after monitorenter when assigning a unique thread ID

10 before monitorexit when assigning a unique thread ID

11 before monitorenter when assigning a unique thread ID

12 end of schedule

Table 5.1 : Schedule Codes

mean changing every call site, in every method, in every class, representing an instru-

mentation with global effects.

If the user desires, additional data can be added to the schedule buffer as well: a

unique object ID, created in a similar way as the unique thread ID described above,

a number indicating the class in which the event occurred, a number to point out

94

the method in the class, and the value of the program counter (PC) when the event

occurred. When this debug information is included, the buffer contains “thread ID”-

“code”-“class index”-“method-and-PC”-“object ID” quintuples.

When the buffer is full, the program’s VM enters a special method that resets the

index to 0 so the old data is overwritten. The master JVM that is running the analysis

has set a breakpoint at the beginning of that method, though, and can therefore copy

the contents of the buffer before they are overwritten. This way of transferring the

buffer data is called “client push”, because the client program initiates the transfer.

The master JVM may also transfer the data any time in what is called a “master

pull”, except when the client JVM is manipulating the array, as that would create a

race condition; therefore, the master JVM checks if the lock protecting the buffer is

owned in the client JVM, and if that is the case, delays the access until the lock is

released.

The schedule is formatted to be useful in a future tool that replays a program

using the recorded schedule. But even without the replay tool, looking at a program’s

schedule can be insightful.

5.4.2 Deadlock Monitor

An additional benefit of creating the tool for recording schedules was the possibility

of creating a deadlock monitor. As long as the schedule provides information about

what thread is trying to acquire which lock, this information can be used to create a

wait-for graph in the master JVM, search for cycles and detect deadlocks.

The unique object ID is added to objects in a way similar to the unique thread

ID explained above; however, for a unique object ID, there were several additional

complications:

• While methods can be added to java.lang.Object, it is impossible to add fields

to the class, because an Object has a fixed representation inside the JVM.

• Similar problems were encountered with String, Number, and Class.

95

To circumvent this problem and still get the most accurate results possible, the

instrumentor adds a new hidden method to the java.lang.Object class that returns

the object’s identity hashcode. The identity hashcode can be used as an approxima-

tion and it is unlikely that two distinct objects have the same hashcode, but unique-

ness is not guaranteed (contrary to the common belief that equal identity hashcodes

imply uniqueness; see Java bug report 6321873 [47]). All subclasses of Object, except

for the problematic classes String, Number, and Class, then override the method to

provide a real unique object ID controlled by bytecode that was added during the

instrumentation. These real object IDs are always negative, while identity hashcodes

are always positive. They are therefore easy to distinguish, and 0 can be used to

indicate an object has not been assigned an ID yet.

The deadlock detector in the master JVM monitors the incoming schedule data

and adjusts the wait-for graph whenever a thread attempts to enter a synchronized

block, manages to obtain a lock and enter a synchronized block, or releases a lock

and leaves a synchronized block. If the deadlock detector ever finds a cycle in the

wait-for graph, the involved threads are displayed, together with debug information

such as class, method, program counter and, if debug information is available, source

file and line number. If the DrJava IDE is available, the source can be loaded with a

single mouse click.

Using the object ID numbers of objects involved in a deadlock, it is even possible

to find out where the object was created since the assignment of the unique ID number

was accompanied by event codes 6 through 8.

The program is not aborted, and the threads not involved in the deadlock continue

to run. The deadlock detector is fully equipped to handle even multiple deadlocks.

5.4.3 Random Delays and Yields

Since we have not yet implemented an algorithm to replay a program according to

a specific schedule, we have experimented with an alternative approach: Inserting

96

random delays or yields before or after certain critical operations that can influence

the behavior of the concurrent program.

Calls to Thread.sleep or Thread.yield can be inserted before any monitorenter

opcode or call to Object.wait, Object.notify, Object.notifyAll, Thread.join,

and Thread.exit. They can be inserted after any monitorenter opcode or call to

Object.wait, Thread.join, Thread.start, and Thread.run.

It is important that both Thread.start and Thread.run are instrumented, since

the former is still called by the parent thread, while the latter is the first method

called by the child thread.

The length and probability that a delay or yield will be inserted can be changed,

but so far it is not known what probabilities and durations are most likely to uncover

concurrency issues. With certain test programs, we can demonstrate that random

delays and yields have the potential to expose concurrency problems, but we cannot

yet make an educated guess what values would work on real applications.

Listing 5.4 shows a program with a concurrency flaw that the random delay strat-

egy detected. It uses two threads, and one thread assumes that the other thread has

finished its work, but this dependency is not expressed in code, for example using a

Thread.join.

The two threads share a variable int sharedInt that starts out at 0. Access to

it is protected by the field lock, so there are no race conditions. The worker thread

spends some time doing something (simulated by the lengthyProcessing method),

then increments sharedInt, and finishes.

The main thread starts the worker thread, also spends some time doing something,

and then decrements sharedInt. The amount of work is set up so that under normal

conditions, the worker thread will have finished and the value of sharedInt will be

1. The main thread asserts that after decrementing sharedInt, its value is back at

0.

97

1public class SyncProblem2 extends TestCase {
2Character lock = new Character (1);
3volatile int sharedInt = 0;
4public void testUnexpressedDependency () {
5Thread worker = new Thread(new Runnable () {
6public void run() { synchronized(lock) {
7sharedInt = sharedInt + 1;
8} } });
9worker.start();
10lengthyProcessing(Main thread , 10000);
11synchronized(lock) {
12sharedInt = sharedInt - 1;
13assertEquals(The shared integer should be back to 0,
140, sharedInt);
15}
16}
17private void lengthyProcessing(String threadName , int

iterations) {
18for(int i=0; i<iterations; ++i) { }
19}
20}

Listing 5.4: “Too Late” Faulty Program

When this test is run after the random delay instrumentation has been performed,

delays have been inserted, in particular at the beginning of the worker thread’s run

method. This postpones incrementing sharedInt long enough so that the main

thread can decrement it first, resulting in a value of -1 and a failed assertion as seen

in listing 5.5. The assertion did not fail without the random delay instrumentation.

This is just a simple example, but it demonstrates that problems in the category

“concurrent task had not finished when it was expected” can be detected with random

delays and the right settings.

What if the main thread expects that thread 2 has not finished performing some

task, but it actually has? This is another common problem, and it is particularly

important if the code involves calls to Object.wait and Object.notify or Object.

notifyAll. One thread may be waiting for another thread’s notification, but that

98

[junit] Testcase: testUnexpressedDependency(SyncProblem2):
FAILED

[junit] The shared integer should be back to 0 expected:<0> but
was:<-1>

[junit] junit.framework.AssertionFailedError: The shared integer
should be back to 0

expected:<0> but was:<-1>
[junit] at SyncProblem2.testUnexpressedDependency(

SyncProblem2.java :33)
BUILD FAILED
/Users/mgricken/Documents/Research/Concutest/ClassLoader/build.

xml :708: Test SyncProblem2 failed

Listing 5.5: Fault Detected by Random Wait

notification had already occurred before the first thread was ready to receive it.

Listing 5.6 contains an example.

In this listing, the calls to Thread.sleep simulate performing some computation.

Under normal circumstances, the worker thread will call signal.notify long after

the main thread has reached signal.wait, so the main thread is woken up.

If, however, the main thread for some reason takes longer than usual to get to

signal.wait, then the notification may be lost. The correct way of doing this is to

include a flag that is protected by the lock of the same object being used for signaling:

The flag is initially false, gets set to true before the call to Object.notify, and

Object.wait is only called if the flag is still false.

Note that if the Object.notify is reached first and the notification is lost, then

this unit test does not fail but hangs indefinitely. For this reason, any unit test should

have a timeout set, and if the test has not finished executing after the specified time

has run out, the test should be considered a failure. An examination of the thread

stacks would then show that one of the threads had made a call to Object.wait.

There are two yet unverified suggestions how this situation could be improved

further:

99

1public class SyncProblem3 extends TestCase {
2public void testNotifyTooEarly () {
3Thread worker = new Thread(new Runnable () {
4public void run() {
5try { Thread.sleep (2000); }
6catch(InterruptedException e) { }
7synchronized(signal) { signal.notify (); }
8try { Thread.sleep (3000); }
9catch(InterruptedException e) { }
10}
11});
12worker.start();
13try {
14synchronized(signal) {
15signal.wait();
16}
17}
18catch(InterruptedException e) { / ignore */ }
19}
20}

Listing 5.6: “Too Early” Faulty Program

• The test could be run with a different version of Object.wait that always

includes a timeout. If the time is exceeded, the method throws an exception,

forcing the test to fail. The problem again is the choice of the timeout length.

Some tests could potentially run for a very long time and then succeed, and

that is the expected behavior.

• In some cases, it may be possible to detect that a thread cannot be woken up

again, either because there are no other user threads left alive, or because there

is a deadlock. The first case is easy to check just before the call to Object.

notify; the second case would require the deadlock detector. Preliminary tests

indicate that the execution of an Object.wait call without timeout should be

broken down into a series of Object.wait calls with timeouts and interspersed

checks of the number of living threads.

100

1public synchronized int getLength () { ... }
2public synchronized void remove(int offs , int len) { ... }
3// ...
4remove(getLength () -1, 1);

Listing 5.7: Possible Atomicity Hazard

If the program kept track of the number of live, waiting, and dead threads, then it

could easily prevent a thread from making a call to Object.wait that the framework

knows is doomed, because no other thread is alive.

The random sleeps and yields are expected to also help with compound actions

that really should perform atomically, like the example from DrJava’s source code,

summarized in listing 5.7.

If the two methods that should execute atomically are synchronized, then there is a

reasonably high probability that a delay will be inserted in between them, uncovering

an atomicity violation that can be detected in a unit test.

Aside from these conceptual proofs that random yields and random sleeps can help

detect concurrency problems, and aside from providing the means for changing the

probabilities and durations of the individual delays, we have not studied the efficacy

of these techniques on large programs like DrJava or other applications with unit

testing suites.

We also believe that a purely random trial can be improved upon. There exist

certain relationships among the list of places where delays and yields can be inserted,

and adding a delay or yield in one location could destructively interfere with another

delay or yield added somewhere else.

Here are some of the relationships that we believe exist:

• Object.wait vs. Object.notify vs. Object.nofityAll

• Thread.run vs. Thread.join

• Thread.run vs. Thread.start

101

• Thread.exit vs. Thread.start

These instrumentation points form a graph of relationships from which certain

non-interfering subsets of insertion points can be constructed. The program is then

run several times with each subset, which should minimize destructive interference

and increase the probability that the random delays or yields change the schedule in

a detectable way.

A closer inspection of the effects of one delay or yield on another has not been

done yet, and no complete graph has been constructed.

5.5 Results

Bytecode rewriting has proved to be tremendously flexible and has helped create the

low-overhead invariant checker from chapter 4. It has spawned a number of tools that

read and analyze the schedule being executed, and it is even being used in attempts

to exert control over the schedule. Ultimately, the recorded schedule will serve as

input for a scheduler implemented using bytecode rewriting that will replay existing

schedules as well as schedules derived from them.

Work on a replay algorithm has already begun, and a Promela/SPIN [48] model

has been created, but we have not yet ported the Promela program back to Java and

into the confines of the JVM.

Currently, all the tools discussed in this section use a two-JVM model to separate

the code being analyzed from the slow portions of the code that analyze, decide, and

rewrite. The buffer of primitives definitely has several advantages over the initial

implementation using “fat” object instances that were immediately transferred:

• As the graph in figure 5.1 shows, buffered transfers perform a lot better than

immediate transfers, although the benefit obtained by an increase of the buffer

size diminishes as its size increases. This implies that a major cost of a transfer

is the initiation of the transfer itself and not the amount of data transferred.

102

• The buffer with primitive values encoding the threads and objects involved in

an event is much more effective than the immediate transfer of the thread object

and lock object at the time the event occurs.

• By encoding the events as primitive data, the real objects are not referenced

anymore, and they are not prevented from being garbage-collected.

After the success of the invariant checker, we will take another look at one-JVM

debugging tools, which would eliminate the inter-JVM transfers entirely. Creating

a tool that can accurately reproduce a previously recorded input schedule will be a

crucial and urgently awaited step.

Figure 5.1 : Time for n Synchronized Blocks

The graph shows the time it takes to execute n tight synchronized(o) { } blocks.

103

Chapter 6

Conclusion

This thesis has provided an enhanced version of JUnit that is able to handle uncaught

exceptions and failed assertions in all threads, not just the main thread. Addition-

ally, an annotation language has been created that allows the developers of a library

to express the concurrency invariants that programmers using the library need to

maintain. Most checks occur at runtime, but a large number of checks can also be

performed statically, just after compile time. The software that accompanies this

thesis therefore provides a solid foundation for testing the correctness of a program in

a single schedule, the schedule that was nondeterministically chosen by the platform.

The thesis also explored tools for recording a program’s schedule, detecting dead-

locks, and inserting random delays and yields to modify the schedule chosen to execute

a program.

All these tools provide many of the necessities of a future testing framework that

can generate and replay schedules. The annotation language may also be extended to

check data invariants or postconditions, and additional static analysis may be added

to automatically generate some of the invariants, for example that code executed in a

program’s main method is run by the main thread. An extended listing of invariants

gathered from the Concutest Community Project [39] is expected to be of tremendous

use as well.

The tools described in this thesis work on all three major platforms: Windows, Linux,

and Mac OS X.

All source code is open source and available at: http://www.concutest.org/ [38].

http://www.concutest.org/

104

Bibliography

[1] Ron Jefferies and et al, Extreme Programming Installed (Addison-Wesley, Boston,

MA, USA, 2001).

[2] Ron Jefferies, XProgramming.com, http://www.xprogramming.com.

[3] The Apache Ant Project, Apache Ant, http://ant.apache.org/.

[4] Rice JavaPLT, DrJava Web Site, http://drjava.org.

[5] Thomas J. LeBlanc and John M. Mellor-Crummey, Debugging Parallel Programs

with Instant Replay (in IEEE Trans. Comput., 36, IEEE Computer Society,

Washington, DC, USA, 1987), No. 4, pp. 471–482.

[6] Jong-Deok Choi and Harini Srinivasan, Deterministic Replay of Java Multi-

threaded Applications (in SPDT ’98: Proceedings of the SIGMETRICS sym-

posium on Parallel and distributed tools, ACM Press, New York, NY, USA,

1998), pp. 48–59.

[7] A. Georges, M. Christiaens, M. Ronsse, and K. D. Bosschere, JaRec: a Portable

Record/Replay Environment for Multi-Threaded Java Applications (in Software—

Practice & Experience, 34, John Wiley & Sons, Inc., New York, NY, USA, 2004),

No. 6, pp. 523–547.

[8] Andy Schneider, JUnit Best Practices, http://www.javaworld.com/

javaworld/jw-12-2000/jw-1221-junit.html, 2000.

[9] Robert W. Nettleton, JUnit Best Practices, http://www.ftponline.com/

javapro/2003_11/online/rnettleton_11_26_03/, 2003.

http://www.xprogramming.com
http://ant.apache.org/
http://drjava.org
http://www.javaworld.com/javaworld/jw-12-2000/jw-1221-junit.html
http://www.javaworld.com/javaworld/jw-12-2000/jw-1221-junit.html
http://www.ftponline.com/javapro/2003_11/online/rnettleton_11_26_03/
http://www.ftponline.com/javapro/2003_11/online/rnettleton_11_26_03/

105

[10] Eric Allen, Diagnosing Java Code: Recorders test for proper method invocation,

http://www.ibm.com/developerworks/java/library/j-diag0612.html.

[11] N. Alex Rupp, Multithreaded Tests with JUnit, http://today.java.net/pub/

a/today/2003/08/06/multithreadedTests.html, 2003.

[12] Derek L. Bruening, Systematic Testing for Multithreaded Programs (Master’s

thesis, MIT, Cambridge, MA, USA, 1999).

[13] Derek Bruening and John Chapin, Systematic Testing for Multithreaded Pro-

grams (MIT/LCS, Cambridge, MA, USA, 2000), No. LCS-TM-607.

[14] Stefan Savage et al, Eraser: A Dynamic Data Race Detector for Multithreaded

Programs (in ACM Trans. Comput. Syst., 15, ACM Press, New York, NY, USA,

1997), No. 4, pp. 391–411.

[15] JUnit Project, JUnit Website, http://www.junit.org.

[16] TestNG Project, TestNG Website, http://testng.org.

[17] David Evans, Static Detection of Dynamic Memory Errors (in Proceedings of

the 1996 ACM SIGPLAN Conference on Programming Language Design and

Implementation, ACM Press, New York, NY, USA, 1996), pp. 44–53.

[18] William R. Bush, Jonathan D. Pincus, and David J. Sielaff, A Static Analyzer

for Finding Dynamic Programming Errors (in Software—Practice & Experience,

30, John Wiley & Sons, Inc., New York, NY, USA, 2000), No. 7, pp. 775–802.

[19] Sun Microsystems, Inc., JSR 305: Annotations for Software Defect Detection,

http://www.jcp.org/en/jsr/detail?id=305.

[20] Cormac Flanagan and Mart́ın Abadi, Types for Safe Locking (in Proceedings of

the Eighth European Symposium on Programming, Springer, Berlin, 1999), pp.

91–108.

http://www.ibm.com/developerworks/java/library/j-diag0612.html
http://today.java.net/pub/a/today/2003/08/06/multithreadedTests.html
http://today.java.net/pub/a/today/2003/08/06/multithreadedTests.html
http://www.junit.org
http://testng.org
http://www.jcp.org/en/jsr/detail?id=305

106

[21] Cormac Flanagan and Stephen N. Freund, Type-Based Race Detection for Java

(in ACM SIGPLAN Notices, 35, ACM Press, New York, NY, USA, 2000),

Vol. 35, pp. 219–232.

[22] Christian Skalka and Scott Smith, Static Enforcement of Security with Types (in

ACM SIGPLAN Notices, ACM Press, New York, NY, USA, 2000), pp. 34–45.

[23] Robert DeLine and Manuel Fähndrich, Enforcing high-level protocols in low-level

software (in PLDI ’01: Proceedings of the ACM SIGPLAN 2001 Conference on

Programming Language Design and Implementation, ACM Press, New York,

NY, USA, 2001), pp. 59–69.

[24] Maurice Herlihy, Wait-free synchronization (in ACM Transactions on Program-

ming Languages and Systems, 13, ACM Press, New York, NY, USA, 1991),

No. 1, pp. 124–149.

[25] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir, Dynamic-

sized lock-free data structures (in PODC ’02: Proceedings of the 21st Annual

Symposium on Principles of Distributed Computing, ACM Press, New York,

NY, USA, 2002), pp. 131–131.

[26] H̊akan Sundell, Efficient and Practical Non-Blocking Data Structures (Ph.D. the-

sis, Chalmers University of Technology and Goteburg University, Goteburg, Swe-

den, 2004).

[27] Keir Fraser and Tim Harris, Concurrent programming without locks (in ACM

Trans. Comput. Syst., 25, ACM Press, New York, NY, USA, 2007), No. 2, p. 5.

[28] University of Cambridge Systems Research Group, Practical lock-free data struc-

tures, http://www.cl.cam.ac.uk/research/srg/netos/lock-free/.

[29] Atlassian Software Systems Pty Ltd., Clover Code Coverage for Java, http:

//www.cenqua.com/clover/.

http://www.cl.cam.ac.uk/research/srg/netos/lock-free/
http://www.cenqua.com/clover/
http://www.cenqua.com/clover/

107

[30] JUnit Project, GroboUtils, http://groboutils.sourceforge.net/.

[31] Kohsuke Kawaguchi, Parallel JUnit, https://parallel-junit.dev.java.

net/.

[32] Sun Microsystems, Inc., JSR 133: Java Memory Model and Thread Specification

Revision, http://jcp.org/en/jsr/detail?id=133.

[33] Jeremy Manson, The Java Memory Model (Ph.D. thesis, University of Maryland,

College Park, MD, USA, 2004).

[34] Jeremy Manson, William Pugh and Sarita V. Adve, The Java Memory Model

(in Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL 2005), ACM Press, New York, NY, USA,

2005), pp. 378–391.

[35] Sun Microsystems, Inc., Java Language Specification, http://java.sun.com/

docs/books/jls/third_edition/html/j3TOC.html.

[36] Sun Microsystems, Inc., Javadoc for Thread.UncaughtExceptionHandler,

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.

UncaughtExceptionHandler.html.

[37] Koders, Inc., Koders.com, http://www.koders.com.

[38] Mathias Ricken, Concutest Project Website, http://www.concutest.org.

[39] Mathias Ricken, Concutest Community Project, http://community.

concutest.org.

[40] Aspect Research, Associates, Contract4J, http://www.contract4j.org/

contract4j.

[41] The Eclipse Foundation, AspectJ, http://www.eclipse.org/aspectj/.

http://groboutils.sourceforge.net/
https://parallel-junit.dev.java.net/
https://parallel-junit.dev.java.net/
http://jcp.org/en/jsr/detail?id=133
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.UncaughtExceptionHandler.html
http://www.koders.com
http://www.concutest.org
http://community.concutest.org
http://community.concutest.org
http://www.contract4j.org/contract4j
http://www.contract4j.org/contract4j
http://www.eclipse.org/aspectj/

108

[42] Benjamin C. Pierce, Types and Programming Languages (MIT Press, Cambridge,

MA, USA, 2002).

[43] B. Atshushi Igarashi and Philip Wadler, Featherweight Java: A Minimal Core

Calculus for Java and GJ (in Proceedings of the 1999 ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages & Applications

(OOPSLA‘99), 34, ACM Press, New York, NY, USA, 1999), No. 10, pp. 132–146.

[44] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Pat-

terns: Elements of Reusable Object-Oriented Software (Addison-Wesley, New

York, NY, USA, 1994).

[45] Apache Jakarta Project, BCEL Byte Code Engineering Library Website, http:

//jakarta.apache.org/bcel/.

[46] Object Web, ASM Java Bytecode Manipulation Framework, http://asm.

objectweb.org/.

[47] Sun Microsystems, Inc., Java Bug 6321873, http://bugs.sun.com/

bugdatabase/view_bug.do?bug_id=6321873.

[48] G. J. Holzmann, SPIN Website, http://spinroot.com/.

[49] Sun Microsystems, Inc., JSR 308: Annotations on Java Types, http://www.

jcp.org/en/jsr/detail?id=308.

[50] Mathias Ricken, LAPT-javac, http://www.cs.rice.edu/~mgricken/

research/laptjavac/index.shtml.

[51] Sun Microsystems, Inc., Java Virtual Machine Specification, http://java.sun.

com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html.

[52] Sun Microsystems, Inc., Java Virtual Machine Specification, Changes

for JDK 1.5, http://java.sun.com/docs/books/jvms/second_edition/

jvms-clarify.html.

http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/
http://asm.objectweb.org/
http://asm.objectweb.org/
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6321873
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6321873
http://spinroot.com/
http://www.jcp.org/en/jsr/detail?id=308
http://www.jcp.org/en/jsr/detail?id=308
http://www.cs.rice.edu/~mgricken/research/laptjavac/index.shtml
http://www.cs.rice.edu/~mgricken/research/laptjavac/index.shtml
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/jvms/second_edition/jvms-clarify.html
http://java.sun.com/docs/books/jvms/second_edition/jvms-clarify.html

109

Appendix A

Pre-Defined Predicate Annotations

The library associated with the invariant checker provides a rich assortment of pre-

written annotations. The tables in this appendix provide a brief overview. All of

the predicate annotations can be found in the package edu.rice.cs.cunit.thread

Check.predicates.

Table A.1 : Predicate Annotation Library: AnySynchronized*

• @AnySynchronizedThis:

Method only allowed to run if some thread, regardless which one, owns the this

lock.

• @AnySynchronizedField(Class fieldClass, String fieldName):

Method only allowed to run if some thread, regardless which one, owns the lock

specified by class and field name.

• @AnySynchronizedField.Any(AnySynchronizedField[] value):

Method only allowed to run if some thread, regardless which one, owns at least

one lock of the fields specified.

• @AnySynchronizedField.All(AnySynchronizedField[] value):

Method only allowed to run if the locks of all fields specified are owned by some

thread, regardless which one.

110

• @AnySynchronizedField.ByName(

String fieldClassName, String fieldName):

Method only allowed to run if some thread, regardless which one, owns the lock

specified by class name and field name.

• @AnySynchronizedField.ByName.Any(

AnySynchronizedField.ByName[] value):

Method only allowed to run if some thread, regardless which one, owns at least

one lock of the fields specified.

• @AnySynchronizedField.ByName.All(

AnySynchronizedField.ByName[] value):

Method only allowed to run if the locks of all fields specified are owned by some

thread, regardless which one.

• @AnySynchronizedArgument(int value):

Method only allowed to run if some thread, regardless which one, owns the lock

of method argument specified by the zero-based index.

• @AnySynchronizedArgument.Any(AnySynchronizedArgument[] value):

Method only allowed to run if some thread, regardless which one, owns at least

one lock of the arguments specified.

• @AnySynchronizedArgument.All(AnySynchronizedArgument[] value):

Method only allowed to run if the locks of all arguments specified are owned by

some thread, regardless which one.

111

Table A.2 : Predicate Annotation Library: NoneSynchronized*

• @NoneSynchronizedThis:

Method only allowed to run if no thread, regardless which one, owns the this

lock.

• @NoneSynchronizedField(Class fieldClass, String fieldName):

Method only allowed to run if no thread, regardless which one, owns the lock

specified by class and field name.

• @NoneSynchronizedField.None(NoneSynchronizedField[] value):

Method only allowed to run if no thread, regardless which one, owns any of the

locks of the fields specified.

• @NoneSynchronizedField.ByName(

String fieldClassName, String fieldName):

Method only allowed to run if no thread, regardless which one, owns the lock

specified by class name and field name.

• @NoneSynchronizedField.ByName.None(

NoneSynchronizedField.ByName[] value):

Method only allowed to run if no thread, regardless which one, owns any of the

locks of the fields specified.

• @NoneSynchronizedArgument(int value):

Method only allowed to run if no thread, regardless which one, owns the lock

of method argument specified by the zero-based index.

• @NoneSynchronizedArgument.None(NoneSynchronizedArgument[] value):

Method only allowed to run if no thread, regardless which one, owns any of the

locks of the arguments specified.

112

Table A.3 : Predicate Annotation Library: OnlySynchronized*

• @OnlySynchronizedThis:

Method only allowed to run if the current thread owns the this lock.

• @OnlySynchronizedField(Class fieldClass, String fieldName):

Method only allowed to run if the current thread owns the lock specified by

class and field name.

• @OnlySynchronizedField.Any(OnlySynchronizedField[] value):

Method only allowed to run if the current thread owns at least one lock of the

fields specified.

• @OnlySynchronizedField.All(OnlySynchronizedField[] value):

Method only allowed to run if the locks of all fields specified are owned by the

current thread

• @OnlySynchronizedField.ByName(

Class fieldClassName, String fieldName):

Method only allowed to run if the current thread owns the lock specified by

class name and field name.

• @OnlySynchronizedField.ByName.Any(

OnlySynchronizedField.ByName[] value):

Method only allowed to run if the current thread owns at least one lock of the

fields specified.

• @OnlySynchronizedField.ByName.All(

OnlySynchronizedField.ByName[] value):

Method only allowed to run if the locks of all fields specified are owned by the

current thread.

113

• @OnlySynchronizedArgument(int value):

Method only allowed to run if the current thread owns the lock of method

argument specified by the zero-based index.

• @OnlySynchronizedArgument.Any(OnlySynchronizedArgument[] value):

Method only allowed to run if the current thread owns at least one lock of the

arguments specified.

• @OnlySynchronizedArgument.All(OnlySynchronizedArgument[] value):

Method only allowed to run if the locks of all arguments specified are owned by

the current thread.

Table A.4 : Predicate Annotation Library: NotSynchronized*

• @NotSynchronizedThis:

Method only allowed to run if the current thread does not own the this lock.

• @NotSynchronizedField(Class fieldClass, String fieldName):

Method only allowed to run if the current thread does not own the lock specified

by class and field name.

• @NotSynchronizedField.None(NotSynchronizedField[] value):

Method only allowed to run if the current thread does not own any of the locks

of the fields specified.

• @NotSynchronizedField.ByName(

Class fieldClassName, String fieldName):

Method only allowed to run if the current thread does not own the lock specified

by class name and field name.

114

• @NotSynchronizedField.ByName.None(

NotSynchronizedField.ByName[] value):

Method only allowed to run if the current thread does not own any of the locks

of the fields specified.

• @NotSynchronizedArgument(int value):

Method only allowed to run if the current thread does not own the lock of

method argument specified by the zero-based index.

• @NotSynchronizedArgument.None(NotSynchronizedArgument[] value):

Method only allowed to run if the current thread does not own any of the locks

of the arguments specified.

Table A.5 : Predicate Annotation Library: *EventThread

• @OnlyEventThread:

Method only allowed to run if the current thread is the AWT event thread.

• @OnlyEventThread.AfterRealized:

Method only allowed to run if the current thread is the AWT event thread, or

by any thread, as long as this refers to an AWT or Swing component that has

not been realized.

• @NotEventThread:

Method only allowed to run if the current thread is not the AWT event thread.

115

Table A.6 : Predicate Annotation Library: OnlyThreadWithName*

• @OnlyThreadWithName(String value, boolean regex):

Method only allowed to run if the current thread has the specified name. If

regex is true (default: false), then the name is treated as a regular expression.

• @OnlyThreadWithName.Any(OnlyThreadWithName[] value):

Method only allowed to run if the current thread has one of the specified names.

• @OnlyThreadWithName.InField(Class fieldClass, String fieldName):

Method only allowed to run if the current thread has the name stored in the

field specified by class and field name.

• @OnlyThreadWithName.InField.Any(

OnlyThreadWithName.InField[] value):

Method only allowed to run if the current thread has the name stored in one of

the specified fields.

• @OnlyThreadWithName.InField.ByName(

String fieldClassName, String fieldName):

Method only allowed to run if the current thread has the name stored in the

field specified by class name and field name.

• @OnlyThreadWithName.InField.ByName.Any(

OnlyThreadWithName.InField.ByName[] value):

Method only allowed to run if the current thread has the name stored in one of

the specified fields.

116

Table A.7 : Predicate Annotation Library: NotThreadWithName*

• @NotThreadWithName(String value, boolean regex):

Method only allowed to run if the current thread does not have the specified

name. If regex is true (default: false), then the name is treated as a regular

expression.

• @NotThreadWithName.None(NotThreadWithName[] value):

Method only allowed to run if the current thread does not have any one of the

specified names.

• @NotThreadWithName.InField(Class fieldClass, String fieldName):

Method only allowed to run if the current thread does not have the name stored

in the field specified by class and field name.

• @NotThreadWithName.InField.None(

NotThreadWithName.InField[] value):

Method only allowed to run if the current thread does not have any of the names

stored in the specified fields.

• @NotThreadWithName.InField.ByName(

String fieldClassName, String fieldName):

Method only allowed to run if the current thread does not have the name stored

in the field specified by class name and field name.

• @NotThreadWithName.InField.ByName.None(

NotThreadWithName.InField.ByName[] value):

Method only allowed to run if the current thread does not have any of the name

stored in one of the specified fields.

117

Table A.8 : Predicate Annotation Library: OnlyThreadWithGroupName*

• @OnlyEventThreadWithGroupName(String value, boolean regex):

the specified group name. If regex is true (default: false), then the group

name is treated as a regular expression.

• @OnlyEventThreadWithGroupName.Any(

OnlyEventThreadWithGroupName[] value):

Method only allowed to run if the current thread has one of the specified group

names.

• @OnlyEventThreadWithGroupName.InField(

Class fieldClass, String fieldName):

Method only allowed to run if the current thread has the group name stored in

the field specified by class and field name.

• @OnlyEventThreadWithGroupName.InField.Any(

OnlyEventThreadWithGroupName.InField[] value):

Method only allowed to run if the current thread has the group name stored in

one of the specified fields.

• @OnlyEventThreadWithGroupName.InField.ByName(

String fieldClassName, String fieldName):

Method only allowed to run if the current thread has the group name stored in

the field specified by class name and field name.

• @OnlyEventThreadWithGroupName.InField.ByName.Any(

OnlyEventThreadWithGroupName.InField.ByName[] value):

Method only allowed to run if the current thread has the group name stored in

one of the specified fields.

118

Table A.9 : Predicate Annotation Library: NotThreadWithGroupName*

• @NotEventThreadWithGroupName(String value, boolean regex):

not have the specified group name. If regex is true (default: false), then the

group name is treated as a regular expression.

• @NotEventThreadWithGroupName.None(

NotEventThreadWithGroupName[] value):

Method only allowed to run if the current thread does not have any one of the

specified group names.

• @NotEventThreadWithGroupName.InField(

Class fieldClass, String fieldName):

Method only allowed to run if the current thread does not have the group name

stored in the field specified by class and field name.

• @NotEventThreadWithGroupName.InField.None(

NotEventThreadWithGroupName.InField[] value):

Method only allowed to run if the current thread does not have any of the group

names stored in the specified fields.

• @NotEventThreadWithGroupName.InField.ByName(

String fieldClassName, String fieldName):

Method only allowed to run if the current thread does not have the group name

stored in the field specified by class name and field name.

• @NotEventThreadWithGroupName.InField.ByName.None(

NotEventThreadWithGroupName.InField.ByName[] value):

Method only allowed to run if the current thread does not have any of the group

name stored in one of the specified fields.

119

Table A.10 : Predicate Annotation Library: Miscellaneous

• @OnlyNullArgument(int value):

Method only allowed to run if the argument specified by the zero-based index

is null.

• @OnlyNullArgument.Any(OnlyNullArgument[] value):

Method only allowed to run if at least one of the argument specified is null.

• @OnlyNullArgument.All(OnlyNullArgument[] value):

Method only allowed to run if all of the argument specified are null.

• @NotNullArgument(int value):

Method only allowed to run if the argument specified by the zero-based index

is not null.

• @NotNullArgument.None(NotNullArgument[] value):

Method only allowed to run if none of the argument specified are null.

• @SameArgument(int[] value):

Method only allowed to run if all the arguments specified by the zero-based

indices are equal to each other.

• @SameArgument.Any(SameArgument[] value):

Method only allowed to run if at least one of the arrays of arguments specified

is equal.

• @SameArgument.All(SameArgument[] value):

Method only allowed to run if all of the arrays of arguments specified are equal.

120

• @SameArgument.None(SameArgument[] value):

Method only allowed to run if none of the arrays of arguments specified are

equal.

• @DistinctArgument(int[] value):

Method only allowed to run if none the arguments specified by the zero-based

indices are not equal to each other.

• @DistinctArgument.Any(DistinctArgument[] value):

Method only allowed to run if at least one of the arrays of arguments specified

does not contain equal values.

• @DistinctArgument.All(DistinctArgument[] value):

Method only allowed to run if all of the arrays of arguments specified does not

contain equal values.

• @DistinctArgument.None(DistinctArgument[] value):

Method only allowed to run if none of the arrays of arguments specified does

not contain equal values.

• @NumberBoundedArgument(Mode mode, int index,double bound,

double upperBound):

Method only allowed to run if the argument specified by the zero-based index

is a Number and in the specified bounds. mode can be one of LESS, LESS EQ,

GREATER, GREATER EQ, IN EQ, IN, OUT EQ, and OUT. Except for the last four,

ony the bound parameter is used. For the last four, bound specifies the lower

bound and upperBound the upper bound. IN EQ means “inside the bounds,

inclusive”, IN means “strictly inside the bounds, excluding the boundaries”.

OUT EQ and OUT mean the “outside the bounds, inclusive” and “outside the

bounds, excluding the boundaries”, respectively.

121

• @NumberBoundedArgument.Any(NumberBoundedArgument[] value):

Method only allowed to run if at least one of the arguments is within its given

bounds.

• @NumberBoundedArgument.All(NumberBoundedArgument[] value):

Method only allowed to run if all of the arguments is within its given bounds.

• @NumberBoundedArgument.None(NumberBoundedArgument[] value):

Method only allowed to run if none of the arguments is within its given bounds.

122

Appendix B

XML Annotation Syntax

B.1 Class-Based XML Format

The class-based XML format was developed first and uses a representation that is

very natural for the instrumentation strategies that rewrite class files. It contains

a header, a middle section representing packages and classes, and a footer. The

header in figure B.1 designates the file as XML file and opens the <concutest> and

<threadcheck> nodes. The footer in figure B.2 closes those two nodes. There may

only be one <threadcheck> node per XML file. Class-based data can be mixed with

invariant-based data in the same XML file, though.

1<?xml version="1.0" encoding="UTF -8"?>
2<concutest >
3<threadcheck >

Listing B.1: Class-Based XML Header

1</threadcheck >
2</concutest >

Listing B.2: Class-Based XML Footer

In the middle section, packages, classes and methods are represented by nested

nodes. For example, to specify the java.lang.Integer class, the following nested

nodes in figure B.3. The <class> node is necessary to designate Integer as a class

and make sure it is not interpreted as package name; it cannot be misinterpreted

as an identifier since class is a reserved word in Java. Inside the <class> node,

the developer can list invariants (see B.3 below) and methods, which in turn can list

invariants. To specify the String Integer.toString() method, the nodes shown in

figure B.4 are used.

123

1...
2<java >
3<lang >
4<Integer >
5<class >
6<!-- invariants and methods -->
7</class >
8</Integer >
9</lang >
10</java >
11...

Listing B.3: Class-Based XML Body: Class

1...
2<Integer >
3<class >
4<!-- invariants and methods -->
5<method sig="toString () Ljava/lang/String;">
6<!-- invariants -->
7</method >
8</class >
9</Integer >
10...

Listing B.4: Class-Based XML Body: Methods

B.2 Invariant-Based XML Format

The invariant-based XML format approaches the specification of invariants for classes

and methods from a different angle: It specifies the particular invariant first, and then

lists all methods which must adhere to that invariant. Just like the class-based format,

invariant-based XML files contain a header, a middle section representing invariants

and their methods, and a footer. The header in figure B.5 designates the file as XML

file and opens the <concutest> node. The footer in figure B.6 closes that node.

1<?xml version="1.0" encoding="UTF -8"?>
2<concutest >

Listing B.5: Invariant-Based XML Header

1</concutest >

Listing B.6: Invariant-Based XML Footer

124

In the middle section, invariants and methods are listed, nested inside <thread

desc:def> nodes. For example, to specify an invariant for the String Integer.

toString() method, the nodes shown in figure B.7 are used. There can be an arbi-

trary number of <threaddesc:def> nodes in an XML file. Additionally, they can be

mixed with class-based data in the same file.

1...
2<threadcheck:def >
3<invariant >
4<!-- invariant -->
5</invariant >
6<method name="java.lang.Integer"
7sig="toString () Ljava/lang/String;"/>
8<!-- more methods -->
9</threadcheck:def >
10...

Listing B.7: Invariant-Based XML Body: Method

B.3 XML Invariant Notation

In the appropriate places in XML files, XML nodes representing invariants may be in-

serted: For class-based XML files, they may appear either inside <class> or <method>

nodes; for invariant-based XML files, they may appear only inside <invariant>

nodes.

The following nodes specify primitive invariants:

• <eventThread type="only"/>: Only the event thread may execute the method.

• <eventThread type="only after realized"/>: Only the event thread may

execute the method after it has been realized; before that, any thread may

execute the method.

• <eventThread type="no"/>: The event thread may not execute the method.

• <name type="not" value="threadname"/>: The method may not be exe-

cuted by threads named threadname.

125

• <name type="only" value="threadname"/>: The method may be executed

by threads named threadname. Since primitive “only” annotations are treated

as alternatives, the method may be executed if at least one of the “only” in-

variants is met.

• <group type="not" value="threadgroupname"/>: The method may not be

executed by threads named threadgroupname.

• <group type="only" value="threadgroupname"/>: The method may be ex-

ecuted by threads named threadgroupname.

• <id type="not" value="threadid"/>: The method may not be executed by

the thread with threadid as thread identification number.

• <id type="only" value="threadid"/>: The method may not be executed by

the thread with threadid as thread identification number.

B.3.1 XML @PredicateLink Notation

The syntax shown in listing B.8 is required for @PredicateLink annotations:

1...
2<predicate type="classname" arguments="true|false">
3<!-- <arg > and <values > nodes -->
4</predicate >
5...

Listing B.8: @PredicateLink Annotation in XML

A <predicate> node may contain at most one <values> node and an arbitrary

number of <arg> nodes. They both represent data from inside an annotation: <arg>

nodes contain only the data that was actually specified in the annotation at the us-

age site. <values> nodes, on the other hand, contain more <arg> nodes that include

default values as well. Take the @OnlyThreadWithName annotation, for example,

which has a default value for the regex member. If it is used as @OnlyThreadWith

Name("foo"), then nested inside the <values> node, the XML file will specify both

126

the thread name, value=="foo" and the default value regex==false; however, there

will only be one <arg> node for the value member since the value of regex was not

specified.

The arguments attribute determines whether the method arguments should be

passed to the predicate method.

B.3.2 XML @Combine Notation

The syntax shown in listing B.9 is required for @CombineLink annotations:

1...
2<predicate type="classname" arguments="true|false">
3<!-- <arg > and <values > nodes -->
4</predicate >
5...

Listing B.9: @Combine Annotation in XML

The meaning of <values> and <arg> nodes nested inside a <combine> node is

exactly the same as for <predicate> nodes. Additionally, however, the values node

has an attribute mode that can be set to "AND", "OR", "XOR", "NOT" and "IMPLIES".

The arguments attribute determines whether the method arguments should be

passed to the predicate method.

B.3.3 XML Argument Notation

The format of an <arg>, except if it is describing an array, is shown in figure B.10.

1...
2<arg name="membername" type="membertype"
3value="membervalue/>
4...

Listing B.10: Non-Array <arg> XML Node

membername corresponds to the name of the member in the annotation. member-

value contains the data in the member specified by membername. membertype,

finally, is a one-letter code that describes the type of data. Possible values for

membertype are shown in table B.1.

127

Code Description Code Descrption

B byte S short

C char Z boolean

D double s java.lang.String

F float e enumeration

I int c class object

J long [array

@ annotation

Table B.1 : XML @PredicateLink Member Type Codes

If the member in the annotation is an array, then membertype contains an open

square bracket [as code. For arrays, membervalue contains the array size, and

exactly that many <element> nodes are nested inside the <arg> node, as shown in

listing B.11.

128

1...
2<arg name="membername" type="membertype"
3value="membervalue desc="arraytype">
4<element type="elementtype" value="elementvalue"/>
5</arg >
6...

Listing B.11: Array <arg> XML Node

Here, arraytype contains the full type of the array. An array of Strings would, for

example, have desc="[Ljava/lang/String;". elementtype again contains a onelet-

ter code of the kind of data stored in this element, and elementvalue contains the

value.

In case elementtype is [(square bracket, i.e. array) or @ (at sign, i.e. annotation),

then the <element> tag may have nested <arg>, <value> or <element> nodes nested

inside.

129

Appendix C

Suggestions for Improving Java Annotations

While working with Java annotations, we have discovered several shortcomings in the

way the annotations are implemented in the Java compiler, the Java runtime, and

the Java Language Specification [35]:

• Local variables may be annotated, but the annotations are ignored.

• It is illegal to use the same annotation more than once per target.

• There is no subtyping for annotations.

• Generics are not allowed for annotations.

These shortcomings are described in greater detail in the sections below.

It should be noted that there is a Java Specification Request, JSR 308 [49], that

attempts to improve Java annotations. It still is in an early stage.

C.1 Annotations of Data

Currently, the annotations are limited to classes, methods and constructors and the

invariants are only checked at the beginning of a method or constructor. It would be

useful to extend annotations so they can also describe data: Fields, parameters, and

local variables.

If these parts of a Java program were annotated, then concurrency invariants could

be checked every time a piece of data is accessed. On the extreme side, this would

allow a programmer to re-create a full lock-set algorithm, such as the one explained

in [14], to ensure that a proper locking discipline is maintained. Most likely, though,

130

a much leaner, more efficient set of invariants could be created to achieve the same

effect.

According to the grammar found in the Java Language Specification, 3rd Edi-

tion [35] in chapter 18.1, annotations can be attached to other annotations, types

(classes and interfaces), packages, constructors, methods, fields, parameters, and lo-

cal variables. Unfortunately, the utilities and APIs part of Java 5.0 and 6.0 do not

support annotations on local variables: They are accepted as valid Java code, but

they are not accessible at either the source, class or runtime retention level.

When studying the possibilities of annotating data for checking concurrency in-

variants, we created a modified version of the javac compiler, LAPT-javac [50], that

at least supports local variable annotations at the class level, which is sufficient for

the way the invariant checker operates when using bytecode rewriting. apt, the An-

notation Processing Tool, which operates at source level, can probably be modified

just as easily. Supporting local variable annotations at runtime, necessary for the

reflection-based invariant checker, is considerably more difficult.

With the abilities Java 5.0 or higher provides, concurrency invariant checking for

fields and parameters could be done, although our software currently does not support

this. Some simple data checks can still be performed using a hack: The data is passed

to an empty dummy method, which has been annotated to perform the desired check

on the argument. Listing C.1 shows an example of calling such a dummy method

to check data. The method checks whether the object passed to it equals the string

"foo". The necessary annotation is shown in listing C.2, the predicate in listing C.3,

and the invariant checker’s output in listing C.4.

131

1public class DummyDataCheck {
2@CheckDummyData
3public static void dummy(Object o) { }
4public static void main(String [] args) {
5String s = "foo"; // local variable
6dummy(s); // perform check , succeeds
7s = "bar";
8dummy(s); // fails
9}
10}

Listing C.1: Using a Dummy Method to Check Data

1@PredicateLink(value = CheckDummyDataPredicate.class ,
2arguments = true)
3public @interface CheckDummyData { }

Listing C.2: Annotation for Listing C.1

C.2 Repeated Annotations

In Java 5.0 and 6.0 it is illegal to attach the same annotation more than once to a

target. Allowing repeated annotations would make specifying several similar invari-

ants much easier. Listing C.5 shows the most intuitive way to specify that a method

may not be executed by threads named "foo" or "bar", but the Java compiler will

reject the repeated annotation.

The invariant checker library provides two remedies to this problem: Listing C.6

shows how the desired invariant from listing C.5 can be achieved using regular ex-

1public class CheckDummyDataPredicate {
2public static boolean check(Object this0 ,
3Object [] args) {
4if (args.length !=1) return false;
5return args [0]. equals("foo");
6}
7}

Listing C.3: Predicate for Listing C.2

132

1Thread Predicate Violation: (2 checks , 1 violation)
2Current thread ’main’, id 1, group ’main’
3Violated predicate @CheckDummyData
4Method arguments
5’bar’ : java.lang.String
6at DummyDataCheck.dummy (DummyDataCheck.java :3)
7at DummyDataCheck.main (DummyDataCheck.java :8)

Listing C.4: Invariant Checker Output for Listing C.1

1@NotThreadWithName("foo")
2@NotThreadWithName("bar")
3void someMethod () { /* ... */ }

Listing C.5: Repeated Annotations

pressions, and C.7 does the same using an array of annotations. Specifying multiple

invariants that use the same annotation is therefore possible, but not as convenient

as it could be.

After studying the Java Language Specification [35] and the Java Virtual Machine

Specification [51, 52], we do not see a compelling reason against allowing repeated

annotations. To allow more than one annotation per type, only the getAnnotation

method in java.lang.reflect.AccessibleObject would have to be changed from

its current form

public <T extends Annotation> T

getAnnotation(Class<T> annotationClass)

to one returning an array:

public <T extends Annotation> T[]

getAnnotation(Class<T> annotationClass)

To maintain backward compatibility, the method returning an array could be given

a different name, getAnnotations, and the semantics of the original getAnnotation

133

1@NotThreadWithName(value="(foo)|(bar)", regex=true)
2void someMethod () { /* ... */ }

Listing C.6: Regular Expressions as Alternative

1@NotThreadWithName.None({
2@NotThreadWithName("foo"),
3@NotThreadWithName("bar")})
4void someMethod () { /* ... */ }

Listing C.7: Annotation Array as Alternative

changed to return the first annotation if more than one exists. Allowing repeated

annotations could have made @Combine-style predicate annotations much less verbose.

C.3 Subtyping for Annotations

In Java 5.0 and 6.0, an annotation cannot extend another annotation, even though

annotations are handled in a very similar way as interfaces. It could often be useful

to extend one annotation and add additional elements, as listing C.8 shows.

The extends clause is not allowed in annotation declarations, even though allow-

ing it could often increase code reuse. The most unfortunate result of the lack of

subtyping for annotations is that two annotations do not have a common base class

and therefore cannot be treated abstractly. All annotations implement the interface

1@interface Named {
2String value();
3boolean regex() default false;
4}
5@interface NotThreadWithName extends Named { }
6@interface NotThreadWithGroupName extends Named { }

Listing C.8: Extending Annotations

134

1@Combine(Mode.AND)
2@interface And extends ThreadCheckerAnnotation {
3ThreadCheckerAnnotation [] value();
4}
5@Combine(Mode.OR)
6@interface Or extends ThreadCheckerAnnotation {
7ThreadCheckerAnnotation [] value();
8}
9@Combine(Mode.NOT)
10@interface Not extends ThreadCheckerAnnotation {
11ThreadCheckerAnnotation value();
12}

Listing C.9: Subtyping for Annotations

1// common superclass
2@interface ThreadCheckerAnnotation { }
3// simple ThreadChecker annotations
4@interface Named extends ThreadCheckerAnnotation {
5String value();
6boolean regex() default false;
7}
8@interface NotThreadWithName extends Named { }
9@interface NotThreadWithGroupName extends Named { }
10@interface NotThreadWithID extends ThreadCheckerAnnotation {
11int value();
12}

Listing C.10: Annotation Definitions for Listing C.9

java.lang.annotation.Annotation, but that interface itself is not an annotation

and therefore cannot be used in an annotation.

If subtyping were allowed for annotations, we could have written very simple anno-

tations that perform the Boolean operations “and”, “or”, “xor”, “not” and “implies”

to completely replace the current @Combine-style annotations. Listing C.9 shows how

simple “and”, “or” and “not” could have been implemented if annotations had an

extends clause and supported subtyping. Listings C.10 and C.11 contain a few an-

notation declarations and a usage example. Since the Boolean operators are invariant

checker annotations themselves, they could have been nested arbitrarily as well.

135

1@And({
2@Or({
3@NotThreadWithName("foo"),
4@NotThreadWithName("bar")}),
5@Not(@NotThreadWithGroupName("main")),
6@NotThreadWithID (5)})
7void someMethod () { /* ... */ }

Listing C.11: Usage Example for Listing C.9

C.4 Generics for Annotations

Just like subtyping, generics are not allowed for annotations in Java 5.0 and 6.0.

To a certain degree, this is understandable, because annotations are limited to a

small subset of data types (primitive data, strings, enumerations, class objects, other

annotations, and arrays of these types). It would nonetheless be convenient if generics

could at least be used for those types. While inferior to the subtyping solution

presented above, generic annotations also would have allowed us to write a concise

solution for Boolean operations, as shown in listings C.12 and ??.

1@Combine(Mode.AND)
2@interface And <T> {
3T[] value ();
4}
5@Combine(Mode.OR)
6@interface Or<T> {
7T[] value ();
8}
9@Combine(Mode.NOT)
10@interface Not <T> {
11T[] value ();
12}

Listing C.12: Generics for Annotations

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Review of Prior Work
	Motivation
	Organization

	Problems Testing Concurrent Programs
	Inadequacies of Existing Frameworks
	Enforcement of Threading Disciplines
	Tractability of Schedule-Based Testing
	Common Problems in Concurrent Software

	Improvements to JUnit
	Default Exception Handler
	Enforcement of Thread Joins
	Results

	Annotations for Concurrency Invariants
	Examples of Invariants
	Annotations and Inheritance
	Primitive Annotations
	Predicate Annotations
	Predicate Link Annotations
	Combine Annotations
	Predicate Annotations Using Reflection

	External Annotations in XML Format
	Comparison to Assertions
	Subtyping Relation for Annotations
	Extended Syntax
	Featherweight Java Subtyping Relation
	Auxiliary Definitions
	Combined Subtyping Relation
	Extension of Featherweight Java Typing
	Type Preservation and Progress
	Implementation Differences

	Problems Caused By Subclassing: When Is Something Really ``Thread-Safe''?
	Results

	Bytecode Rewriting Framework
	Offline and On-the-Fly Instrumentation
	Local and Global Instrumentation
	Marker Methods for Instrumentation
	Other Uses of Bytecode Rewriting
	Recording Schedules
	Deadlock Monitor
	Random Delays and Yields

	Results

	Conclusion
	Bibliography
	Pre-Defined Predicate Annotations
	XML Annotation Syntax
	Class-Based XML Format
	Invariant-Based XML Format
	XML Invariant Notation
	XML @PredicateLink Notation
	XML @Combine Notation
	XML Argument Notation

	Suggestions for Improving Java Annotations
	Annotations of Data
	Repeated Annotations
	Subtyping for Annotations
	Generics for Annotations

