
Taming Java for the Classroom∗

James I. Hsia Elspeth Simpson Daniel Smith Robert Cartwright
jhsia@alumni.rice.edu elspeth@rice.edu dlsmith@rice.edu cork@rice.edu

Rice University
6100 S. Main St.

Houston TX 77005

ABSTRACT
Java is the canonical language for teaching introductory pro-
gramming, but its complex syntax and abundance of con-
structs are difficult for beginners to learn. This paper shows
how object-oriented programming in Java can be made more
accessible to beginners through the use of “language levels”,
a hierarchy of progressively richer subsets of Java. This hi-
erarchy is implemented as an extension of the DrJava ped-
agogic programming environment.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

Keywords
DrJava, language levels, object-oriented programming

1. INTRODUCTION
Programming technology is in the midst of a paradigm

shift. Object-oriented programming (OOP) in safe, object-

oriented (OO) languages like Java and C# is gradually sup-
planting object-based programming in C++ for mainstream
applications. Many colleges have recently revised their in-
troductory programming sequence (CS1/CS2) to use Java
instead of Pascal or C++. High school courses in AP Com-
puter Science made the transition from C++ to Java last year.
In the wake of this paradigm shift, computing educators
face a dilemma about what concepts to teach in introduc-
tory courses using Java. Should they continue to teach the
object-based perspective that has dominated programming
curricula for the past decade? Or should they embrace a
truly OO approach to program design for which there is
little precedent? There is a growing consensus that OOP
concepts should be taught in Java as early as possible [9].

Despite the growing consensus in favor of an “objects-
first” curriculum, the implementation of this pedagogy has
proven to be a challenge. The ACM Education Board re-
cently formed a Java Task Force “to develop a stable col-
lection of pedagogical resources that will make it easier to

∗
This research has been partially supported by the Texas Advanced

Technology Program and the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/11/0002 ...$5.00.

teach Java to first-year computing students without hav-
ing those students overwhelmed by its complexity [emphasis
added]” [1]. Java’s complex syntax and plethora of language
features are a serious obstacle to learning OOP and interfere
with an early focus on OO concepts. Even the traditional
first program, “Hello World”, seems daunting to a beginner.
To run “Hello World” from the command line, the student
must write a main method whose declaration looks like this:

public static void main(String[] args)

In this one declaration, the student is confronted with visi-
bility modifiers, static methods, return types, and arrays—
none of which are central to OOP. The instructor faces a
choice between taking the time to explain what these com-
plex, unrelated pieces of the language mean or telling the
students to blindly cut and paste the code. Neither of these
choices is very attractive.

To make Java more accessible to beginners, educators
have developed pedagogic programming environments such
as BlueJ [8] and DrJava [2] that support simpler, more intu-
itive programming interfaces. BlueJ provides a graphically
based workbench where students can create objects and ap-
ply methods to them, while DrJava provides users with
an Interactions Pane that transforms Java from a batch-
oriented language to an interactive one with a read-eval-
print-loop. Both of these interfaces completely eliminate
the need to define a main method.

While these pedagogic environments are a major step for-
ward over conventional Java environments, they do not fully
shield students from the complexities of Java syntax or nec-
essarily encourage OO design. Nearly all Java texts, in-
cluding those that presume the support of a pedagogic en-
vironment like BlueJ or DrJava, cover the major syntactic
elements of procedural programming—namely assignment,
conditionals, and looping constructs—plus Java language
features like static, final and visibility modifiers, before
discussing the essence of OOP: polymorphism (dynamic dis-
patch). The detour through the mechanics of procedural
programming is time-consuming and distracting, making it
difficult to teach an OO perspective on program design.

What is needed is a hierarchy of Java language levels—
progressively richer subsets of the Java language that facili-
tate a focus on OO design rather than the mechanics of the
Java language. The idea of partitioning a language into a
hierarchy of language levels dates back to at least the 1970’s
when Richard Holt et al developed the SP/k framework for
teaching structured programming in PL/I [7] at the Univer-
sity of Toronto. More recently, the DrScheme environment
developed by Matthias Felleisen and his students at Rice

University pioneered the idea of partitioning a language into
a semantic hierarchy of language levels. In DrScheme, the
language level hierarchy supports a corresponding hierarchy
of computational models, each with a richer data model and
more complex semantics than its predecessor. As a result,
the progression of language levels in DrScheme directly cor-
responds to a progression of programming abstractions suit-
able for teaching. The pedagogy underlying this progres-
sion is explained in the textbook How to Design Programs

(HTDP)[4].
Although HTDP focuses on “mostly” functional program-

ming in Scheme, the underlying pedagogy is largely lan-
guage independent. In fact, the same programming concepts
and principles can be articulated in the context of OOP in
Java. In HTDP, program design is data-directed, primarily
using inductively-defined algebraic types like lists and trees.1

Given the inductive definition for a data domain, there is a
corresponding, mechanically generated template for writing
a function to process that form of data. In addition, the
program development process is test-driven; test cases are
written for each program function before it is coded.

In an OO context, the design concepts in HTDP corre-
spond to progressively more sophisticated uses of polymor-
phism that have been codified as design patterns in the well-
known “Gang of Four” tome [5] on the subject. It is remark-
able that two largely disjoint programming cultures have
distilled essentially the same principles of program design.
The programming methodology from HTDP looks equally
familiar when it is translated to an OO context: it is simply
Extreme Programming (XP) [10] in-the-small: test-driven
development using JUnit.

In this paper, we describe a language levels framework
that we have developed for the DrJava programming envi-
ronment. This framework supports our translation of the
programming pedagogy from HTDP into an OO context.
With this framework, OO programming in Java is easily ac-
cessible to beginners, as demonstrated by the simplicity of
the OO program written at the Elementary level in Figure
1.

2. AN OVERVIEW OF DRJAVA
DrJava [2] is a free, open-source, lightweight IDE devel-

oped at Rice University by undergraduate and graduate stu-
dents under the direction of Prof. Robert Cartwright. The
user interface is designed to be simple and highly interactive.
There are only three panes: a Navigator Pane lists all open
documents, a Definitions Pane displays the selected docu-
ment (typically a file defining a Java class), and an Inter-
actions Pane allows the user to evaluate arbitrary Java pro-
gram text. The Definitions Pane supports the “intelligent”
editing of Java program text through syntax highlighting,
brace matching, and uniform indenting to help beginners ad-
just to Java syntax. The Interactions Pane encourages stu-
dents to experiment with both their code and Java libraries
by accepting an arbitrary series of program statements and
expressions and evaluating them cumulatively “on-the-fly”.
The value of each top-level expression is printed using the
toString() representation of that value.

A small collection of menus on the title bar provides com-
mands for basic actions, including:

• creating, opening, saving, and closing documents;
1A data type is algebraic if it can be defined by a tree grammar [3].
In OOP, algebraic types are defined by the composite pattern [5].

Figure 1: DrJava at Elementary Level

• compiling and unit testing open document(s);
• enabling a source level debugger integrated with the

Interactions Pane;
• running javadoc on all of the source files to generate

HTML output;
• changing the configuration options for DrJava; and

• selecting a language level.
The most common commands are bound to buttons on a
tool bar just below the title bar.

Although DrJava is targeted primarily at supporting be-
ginning and intermediate programming courses taught in
Java, it is also particularly well-suited to small production
programming projects that use test-driven development. In
fact, for the past two years, DrJava has been developed us-
ing DrJava. The combination of a general read-eval-print-
loop (the Interactions pane) with tightly integrated support
for unit testing and source level debugging provides an un-
usually responsive and productive environment for software
development. To our knowledge, DrJava is the only IDE,
commercial or open-source, that supports a full read-eval-
print loop capable of evaluating arbitrary program text in
the context of a debugger breakpoint environment.

The most recent release of DrJava fully supports Java 1.5
including generic types and the “Tiger” (JSR-201) language
extensions (autoboxing and auto-unboxing, foreach, enum

types, and varargs). It also includes a lightweight project
facility capable of building projects like DrJava itself. CVS
(the most widely used open source version control package)
support has not yet been integrated in DrJava, but will soon
be forthcoming. The primary features offered by profes-
sional IDE’s (like Eclipse and JBuilder) that are missing
in DrJava are code completion and refactoring transforma-
tions.

3. PEDAGOGY AND LANGUAGE LEVELS
Before describing the design of our language levels frame-

work for DrJava, we must explain an important aspect of
our pedagogy that has shaped its design.

In our introductory programming curriculum, we follow
the progression of programming concepts in HTDP, adapted
to the context of OOP. As a result, we initially focus on
programming with immutable data objects—objects where
all fields are final. We impose this restriction for two rea-
sons. First, programming with immutable data is easy for
beginners because it is a natural extension of concepts from
arithmetic and algebra learned in grammar school. Familiar
laws such as the “substitution of equals for equals” hold in
the context of immutable data, but break when mutation is
added. Second, many computations depend on maintaining
the immutability of data as an invariant. Mutating a data
object is dangerous because it changes the state of every
object that refers directly or indirectly to the mutated ob-
ject. The integrity of some commonly used classes in the
standard Java libraries depends on using immutable data.
For example, only immutable objects can safely be used as
keys in the HashMap and HashTable classes in java.util. The
String class in java.lang is immutable for this reason.

In our experience as software developers, programming
with immutable data confers so many advantages that we
teach our students to scrupulously avoid mutation unless
there is a specific justification for doing so. Two good rea-
sons for using mutation are:

• Faithful modeling. When the entity modeled by a
data object can change state, its data representation
should be mutable. For example, the document objects
that are edited in DrJava are mutable.

• Application efficiency. If data values are immutable,
new values can only be created by explicitly construct-
ing them. In contrast, mutation allows existing values
to be updated to form new values. In some appli-
cations, the efficiency of the application critically de-
pends on modifying existing values rather than allo-
cating new ones. Consider a compiler that makes mul-
tiple passes over the AST representation for a source
program. Each pass adds new attributes to the nodes
of the AST. Building a new immutable AST on each
pass is conceptually elegant, but is often not worth the
overhead incurred.

In our framework, the first two language language lev-
els enforce the immutability of data. This restriction guar-
antees that data structures do not contain cycles, enabling
the language levels framework to automatically generate de-
scriptive toString() methods for program classes.

4. LANGUAGE LEVELS DESIGN
Designing a language levels framework for Java is a more

challenging problem than simply identifying an appropriate
hierarchy of language subsets. Full Java requires program-
mers to write boilerplate methods such as constructors, se-
lectors, and the equals(...) and toString() methods for
simple algebraic data types like the Empty and NonEmpty list
classes in Figure 1. To make programming with algebraic
types accessible to beginners, two of our language levels au-
tomatically generate these boilerplate methods. Note that
immutability plays a critical role in making this process
tractable.

Our framework consists of three levels: Elementary, Inter-
mediate, and Advanced, plus the full Java language (which
DrJava already supports). Each successive level embodies a
richer, more complex collection of abstractions for defining

data and performing computation over that data. Nearly all
of these abstractions are embodied as design patterns.

The following subsections briefly describe each language
level and the associated programming concepts.

4.1 Elementary Level
The Elementary level focuses on computation over im-

mutable algebraic data types such as booleans, integers,
lists, and trees. As a result, executing programs is anal-
ogous to performing algebraic simplification. In an OO con-
text, the natural representation of algebraic data follows the
Composite design pattern where each clause of the inductive
definition is represented as a concrete class extending an ab-
stract class at the root of the composite hierarchy. Several
other basic design patterns can also be taught at this level,
including the Union2, Interpreter, and Factory Method pat-
terns.

Even though many important design concepts can be taught
here, only a small subset of the Java language is allowed.
Most importantly, data mutation is prohibited, discourag-
ing the use of flags instead of dynamic dispatch. Loops and
arrays are also prohibited since their normal usage requires
mutation.

To reduce the number of keywords beginners must learn,
the only keywords allowed other than the essential four (class,
if, else, and return) are this, abstract, and extends. The
explicit use of this naturally arises in some of our early
uses of polymorphism, so we include it here. Since abstract

methods, abstract classes, and the extends keyword are es-
sential for polymorphism, the abstract and extends key-
words must be supported. However, since beginning stu-
dents often have difficulty understanding the distinctions
between interfaces and abstract classes, we ban interfaces
and the implements keyword at this level.3 Many constructs
that are not relevant to basic OOP are also prohibited, as
shown in the table in Figure 3. Since import statements and
fully-qualified class names are excluded, no libraries are ac-
cessible other than java.lang or those placed in the default
package.

Significant code augmentation is done at the Elementary
level. All fields and variables are made private and final

to enforce the immutability of data, and all methods and
classes are made public. For the sake of JUnit testing, if
a class extends “TestCase”, the necessary JUnit framework
is automatically imported. Finally, all of the boilerplate
methods supporting an algebraic view of data are automati-
cally generated. This code includes accessor methods for all
fields; method overridings for toString(), equals(...), and
hashCode() that produce results consistent with an algebraic
view of data;4 and a default constructor that takes in a value
for each field of the class. This code augmentation signif-
icantly reduces the clerical burden on beginning students.
Note the difference between code written at the Elementary
level and the corresponding augmented code in Figure 2.

2We use the term Union to refer to a degenerate version of the Com-

posite pattern in which there is no recursion in the definition.
3We arguably could use interfaces instead of abstract classes, but
this precludes teaching method hoisting at this level since interfaces
cannot include concrete methods.
4The toString() method returns a string giving the class name of
this followed by the toString() representations of the fields enclosed
in parentheses and separated by commas. The equals(...) method
returns true if the argument is an instance of the same class as this
and all respective fields are equals(...); it returns false otherwise
(assuming termination). The hashCode() method is overridden to be

Figure 2: Augmentation at Elementary Level

4.2 Intermediate Level
The primary language additions at the Intermediate Level

are interfaces, static fields, visibility modifiers, package dec-
larations, exceptions including try-catch, throw statements
and throws clauses, anonymous classes, and explicit casts.
Of these features, anonymous classes are the most important
because they enable methods to pass “functions” (behavior)
as data. In Java, anonymous classes play the same role as
lambda expressions in functional languages.

The Intermediate level is designed to support the Com-

mand, Strategy, Visitor, and Singleton patterns, as well as
the use of exceptions to signal program errors. Since multi-
ple interface inheritance simplifies the coding of many com-
mon uses of some of these patterns, we include interfaces at
this level. Since casts are often required to narrow the the
output types of Visitor and Strategy classes, explicit casts
are also allowed. We permit static fields because they are
required for the Singleton pattern.

The inclusion of package and import statements gives stu-
dents access to all the Java libraries, so the null constant
(which can be returned by library methods) is allowed. Be-
cause students can place classes in named packages, this
level requires explicit visibility modifiers for methods and
classes so students can learn to distinguish between private,
package and public constructs.

Since all program data is still immutable at this level,
code augmentation is identical to that done at the Elemen-
tary Level, with three exceptions: static fields are automat-
ically made public and final; default visibility modifiers are
not generated for methods and classes; and the user must
explicitly import junit.framework.TestCase to reference the
JUnit TestCase class.

4.3 Advanced Level
Data mutation (re-assignment) is finally introduced at the

Advanced Level. At this level, we teach students how to use
procedural programming constructs such as loops, switch
statements, and arrays. In addition, named inner classes
and interfaces are allowed at this level.

consistent with equals(...). See Figure 2 for an example.

The Advanced Level consists of full Java with the excep-
tion of synchronization, bitwise operators, and a few other
constructs. Nearly all design patterns can be taught here,
including the State, Decorator, and Model View Controller

patterns. No code augmentation is done at this level.

4.4 Summary
Figures 3 and 4 summarize the language features and code

augmentation for each level.

Language Construct L1 L2 L3 Full

Classes X X X X
Non-void methods X X X X
fields, local variables X X X X
abstract modifier X X X X
int, double, char, boolean types X X X X
Core operators X X X X
if statement X X X X
Explicit constructors X X X
package and import statements X X X
static fields X X X
Anonymous inner classes X X X
Casts X X X
Visibility modifiers for classes and methods X X X
null value X X X
Exceptions and try-catch statements X X X
Interfaces X X X
Visibility modifiers for fields X X
Assignment to fields, variables X X
Explicit use of final modifier X X
Nested classes, interfaces X X
while, for, and do loops X X
switch statement X X
void methods X X
Arrays X X
break and continue statements X X
instanceof operator X X
All other primitive types X
Initialization blocks X
native methods X
synchronized, volatile, Thread classes X
Bitwise operators X
Labeled statements X
Conditional operator X

Figure 3: Features allowed at each level

Augmentation L1 L2 L3

Methods, classes automatically public X
Static fields automatically public X
Instance fields automatically private X X
Fields, variables automatically final X X
Constructor generation X X
toString(), equals(...), hashCode() X X
Accessors X X
Concrete methods automatically final X X

Figure 4: Code augmentation at each level

5. IMPLEMENTATION
DrJava translates language level source files based on the

file extensions attached to file names. The Elementary, In-
termediate, and Advanced levels are identified by the ex-
tensions .dj0, .dj1, and .dj2, respectively. This convention
enables students to continue using code written at earlier
language levels.

Implementation Architecture The translator for each
language level maps a language level file to a compilable
.java file in four stages. If the translator discovers serious
errors at any point in this process, it aborts execution of
the remaining stages and generates error diagnostics which

are displayed for the user. We have placed an emphasis on
generating understandable and relevant error messages.

In the first stage, which is identical for all language lev-
els, the translator parses the student’s source file into an
Abstract Syntax Tree (AST), containing nodes for the core
language constructs including class definitions, method invo-
cations, variable declarations, and expressions. This parsing
pass performs a coarse syntax check, looking for fundamen-
tal syntactic errors common to all language levels such as
mismatched braces. If it encounters any fundamental er-
rors, it reports them an aborts further translation. How-
ever, if the translator discovers an error embedded within
an expression, (such as an omitted operator or operand),
it encodes the error in the AST rather than immediately
reporting it so that a language-level-specific error message

can be given in the next pass. If no fundamental errors are
found, the translator proceeds to the remaining three stages
of the translation, which are performed by distinct visitors
over the AST. Each “visitor” is implemented using the OO
Visitor design pattern.

The second stage performs a language-level-specific syntax

check and constructs a symbol table with information for
all classes that are referenced directly or indirectly by the
AST. This stage is implemented by a visitor that walks the
AST, looking for illegal AST nodes (for example, the public

keyword at the Elementary level or an inner class at the
Intermediate level) and building a symbol table of referenced
classes. If any errors are found, the visitor continues its
pass over the AST to produce as many user diagnostics as
possible. When it has finished, it gives a clear diagnostic for
each error (if any) that was discovered.

The third stage performs type-checking. The type-checking
visitor insures that all expressions are typed correctly and
also performs some syntax checks that cannot be done until
program expressions are typed. If any errors are found, the
visitor finishes traversing the AST before displaying all error
messages to the user.

The final stage performs code augmentation. Source code
is copied in pieces from the student’s language level file to a
new .java file of the same name. The augmentation visitor
traverses the AST as it copies source code, using the AST
to determine where code augmentation is needed. The aug-
mentations include the added modifiers, fields, and meth-
ods discussed in Section 4. The resulting .java file can now
be passed directly to the javac compiler where it will com-
pile successfully. More advanced students can also view the
.java file to see their code’s spacing and comments perfectly
preserved, supplemented by the necessary augmentation.

Ensuring Reliability Writing and maintaining reliable
software is difficult, because bugs can creep into programs
of any size. Bugs are particularly pernicious in environ-
ments designed for beginners for two reasons. First, be-
ginners have difficulty distinguishing aberrant behavior by
the environment from mistakes in their own code or misuse
of the environment. Thus, bugs in the environment may
lead beginners to believe that they are incapable of writing
programs. Second, beginners are much more likely to use
unorthodox command sequences and strange coding conven-
tions, stressing an environment in ways that the developers
failed to anticipate and exposing hidden bugs.

Our strategy for achieving a high level of program relia-
bility is to follow the tenets of Extreme Programming (XP)
[10] with an emphasis on rigorous unit testing. Students

and faculty in our introductory programming courses have
admirably served as our on-site customers.

6. RELATED WORK
We know of only one other effort to support language

levels for Java. Kathy Gray and Matthew Flatt at the Uni-
versity of Utah have developed ProfessorJ [6], a plugin for
the DrScheme programming environment supporting a hier-
archy of three Java language levels. ProfessorJ supports a
more conventional Java pedagogy than we do. Mutation is
allowed at all levels and no code augmentation is performed.
Anonymous and local classes are not supported at any lan-
guage level which makes it impossible to teach the Visitor,
Command, and Strategy patterns in much generality.5

From the perspective of most educators using Java, the
biggest problem with ProfessorJ is that it is implemented
on top of DrScheme rather than a Java Virtual Machine.
As a result, it is incompatible with Java binaries (class files)
and does not support any of the standard Java libraries (in-
cluding most of java.lang). For example, even the standard
wrapper classes Integer, Boolean, etc. are not supported.

7. DIRECTIONS FOR FUTURE WORK
Our immediate goal is to determine which language ex-

tensions from Java 1.5 beyond auto-boxing/unboxing (which
are already supported at all language levels) should be sup-
ported in the language levels framework. Later, we plan to
develop a configuration facility for language levels, which
will empower instructors to design language levels based on
their own pedagogy rather than ours. One of the main issues
that we will have to confront is whether we can support code
augmentation in the presence of mutation because it breaks
invariants on which our current code augmentation depends.
At a minimum, we should be able to support configuration
options that do not affect the status of mutation.

8. REFERENCES
[1] ACM Java Task Force web site, September 2004.

http://www.sigcse.org/topics/javataskforce

[2] E. Allen, R. Cartwright, B. Stoler. DrJava: A
Lightweight Pedagogic Environment for Java. SIGCSE

2002, March 2002. http://drjava.org

[3] H. Comon et al. Tree Automata Techniques and

Applications. http://www.grappa.univ-lille3.fr/tata

[4] M. Felleisen, R.B. Findler, M. Flatt, S. Krishnamurthi.
How to Design Programs. MIT Press, 2001.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, 1995.

[6] K. Gray, M. Flatt. ProfessorJ; A Gradual Introduction
to Java Through Language Levels. OOPSLA

Educators Symposium 2003, October 2003.

[7] R. Holt et al. SP/k: a system for teaching computer
programming. CACM 20(5), 1977.

[8] M. Kölling et al. The BlueJ system and its pedagogy,
Journal of Computer Science Education 13(4), 2003.

[9] B. Meyer. Teaching Object Technology. TOOLS 11,
1993.

[10] XProgramming.com web site. http://xprogramming.com

5Because all three patterns require forming closures in many cases,
which are only supported in Java by local and anonymous inner
classes.

