
Reviewed Papers

inroads – The SIGCSE Bulletin 89 Volume 37, Number 2, 2005 June

A Design-First Curriculum for Teaching Java in a CS1 Course

Sally H. Moritz and Glenn D. Blank
Computer Science and Engineering Department

Lehigh University
Bethlehem, Pennsylvania 18015 USA
sgh2@lehigh.edu, gdb0@lehigh.edu

Abstract

Pedagogies for teaching object-oriented programming in an introductory course are still under much debate.
We present a design-first approach, which teaches problem-solving techniques using elements of UML.
Objects are still introduced early in the curriculum. We also present two tools to support our curriculum:
multimedia courseware to help students learn the basic concepts of objects and classes, and an IDE that
includes both a UML interface and interactive tools to allow easy experimentation.

Keywords: CS1, Java, object-oriented, pedagogy, objects-first

1. Introduction
Even though object-oriented programming has been with us
for more than a dozen years, there is still much debate on
how and when to teach it, as discussed on the SIGCSE
mailing list and summarized by Kim Bruce in the
December 2004 inroads[4]. Bruce suggested three basic
approaches for instructors to try in a CS1 course: teach
objects later, after students learn procedural constructs
including loops and arrays; teach objects first, using
pedagogical tools such as BlueJ, DrJava, or microworlds;
or use a procedural or functional language for the first
course and save object orientation for CS2.

We believe that a solid understanding of object
orientation is crucial to a student’s continued success in
computer science, and that students learn best what they
learn first. The curricula and tools that have been
developed to support an objects-first approach offer many
ways to help students visualize the abstract concepts of
objects and classes. But they place little emphasis on
teaching problem solving skills. Students who learn
procedures for identifying a problem’s requirements,
breaking it into manageable pieces, and designing a
solution are better equipped to apply the concepts they
learn, and may better understand those concepts through
their application.

We present a design-first curriculum, which adds to an
objects first approach instruction in problem solving
techniques using elements of UML. We support our
curriculum with two tools. The first is CIMEL[3],
multimedia courseware which presents object-oriented
concepts through text, audio, graphics, and interactive
exercises. The second is the Eclipse IDE for Java
augmented with two plug-ins: DrJava, which provides an
interactive environment for demonstrating Java code, and

Omondo UML, which supports entry of class diagrams and
generates Java code from designs. The first author
developed and taught the curriculum at a local high school
(in connection with the Lehigh Valley Partnership for
Teaching Fellows, an NSF GK-12 project; see
www.lehigh.edu/STEM), while the second author
incorporated parts of it in a first semester CS course at
Lehigh University.

2. The Curriculum
The curriculum is comprised of six units covering: use
cases and class diagrams from UML; the concepts of
objects, classes, and instances; identifying attributes and
methods and designing a class; procedural concepts
including if statements, loops, and basic character-based
I/O; and graphical user interfaces using Swing. Students are
also introduced to event handling and using Sun’s online
Java documentation. Many lessons are project-based; that
is, new concepts are introduced in the context of a larger
project in which they are immediately applied. Much of the
class time is devoted to hands-on learning, with students
working on an assignment or following a handout to carry
out an exercise in Eclipse.

Pair programming is also used throughout the course.
Each student is assigned a partner with whom she works
for the semester. They alternate daily who types and who
observes. Because all work in the high school class was
done in the lab with the instructor present, the instructor
was able to observe that students collaborated on problem
solving, and both partners contributed equally.

A detailed description of each unit follows:
Unit 1 introduces the idea of software engineering. The

process of building a software system is compared to
building a house. Students list the steps in building a house,

Reviewed Papers

inroads – The SIGCSE Bulletin 90 Volume 37, Number 2, 2005 June

from a customer’s first conception, through gathering
requirements, looking at existing plans, creating a
blueprint, and so on. Analogous steps in software
development are discussed.

This unit also introduces students to objects as an
abstract concept, and to classes as descriptions of
categories of objects. These lessons are supplemented by
the CIMEL multimedia, and by several hands-on exercises
in Eclipse. The exercises use the Shapes classes delivered
with BlueJ and referenced in Objects First with Java[2].
Whereas BlueJ gives students a birds-eye view with a class
diagram of the Shapes classes in an idiosyncratic notation,
our setup immediately introduces students to a class
diagram in UML. Interacting with this class diagram and
DrJava, students create instances of Square and call
methods to change their locations or colors, and see the
results immediately. Students also examine the attributes of
each Shape and learn about datatypes. A final exercise
invites students to add their own code to an existing
method and view the results.

Unit 2 teaches use cases and class diagrams in the
context of developing a small application: a movie ticket
machine (adapted from the idea of a train TicketMachine
class in Objects First with Java). The instructor plays the
role of the theater manager, whom the students interview to
determine the system requirements. Working in pairs, they
develop use cases, including a detailed description of the
actions performed and the actors involved. They go on to
design a Ticket Machine class. The class, including
attributes and method signatures, is entered into the Eclipse
UML interface. Students also develop a test plan to be
executed after the code for each method is written.

In Unit 3, students learn procedural language concepts,
starting with variables, assignment and arithmetic
operations, followed by character-based printing and if
statements. They complete exercises that give them
practice in each new concept, then immediately apply what
they’ve learned in coding the Ticket Machine’s methods.
They execute their test plans by creating a Ticket Machine
instance and calling methods from DrJava’s Interactions
Pane.

Students learn how to build a character-based interface
for the Ticket Machine in Unit 4. A class called
“EasyReader” is provided to simplify reading character
input. (We plan to replace EasyReader with the Scanner
class when Eclipse supports JDK version 1.5.) Students
also learn how to convert String data to integer or double
datatypes using the parseInt and parseDouble methods from
the Integer and Double classes. They code a simple
interface that presents a menu of options to the user, and
based on the user’s input, performs the requested function,
such as displaying the movie title and price, accepting
money for tickets, or printing tickets.

Unit 5 introduces loops. Students apply while-loop
logic to allow the user to enter a series of requests to the
Ticket Machine. Students also learn about scope of

variables and how the concept applies to a program with
nested blocks, such as theirs. All students end the unit by
completing a fully-tested character-based version of the
Ticket Machine.

At this point, students are ready to create a similar
project on their own, following the same steps they used to
build the Ticket Machine. The high school students created
a calculator (also with a character-based interface).
Deliverables turned in and graded at each step of the
process include a set of use cases, a UML class diagram, a
fully coded and tested Calculator class, and a complete
working program.

Unit 6 teaches students how to create a graphical
interface using Swing. Students first learn how to display
simple dialog boxes with JOptionPane. Next, they create a
frame with simple graphical elements: text boxes, labels,
and buttons. Through analyzing the code for a simple
application, they learn about multi-threaded processes and
how a listener works. They apply their knowledge in
creating a graphical interface for their Calculator. The
benefits of well-designed classes are stressed in showing
the students how they can reuse the same Calculator class
used in the character-based version for the graphical
version of the program. They also learn how to add features
to their calculator while learning how to use the Sun online
Java documentation through an exercise that adds a square
root function.

Unit 7 introduces applets by stepping through the
process of converting the graphical Calculator application
to an applet.

The complete curriculum outline, with worksheets, the
Eclipse/UML/DrJava IDE, and other supporting materials,
is available at www.lehigh.edu/stem/teams/dieruff. The
curriculum does not refer to a textbook or recommend any
particular texts. The worksheets include explanations of
concepts and practical examples. In the high school course,
they were used in lieu of a textbook.

3. CIMEL multimedia
CIMEL, Constructive and collaborative, Inquiry-based
Multimedia E-Learning, is courseware designed to
supplement a CS0 or CS1 course. By offering content on a
breadth of topics in computer science, it presents a
balanced view of the field to students who may think that
computer science is only about programming. (Most of the
multimedia complements The Universal Computer:
Introducing Computer Science with Multimedia. See
www.cse.lehigh.edu/~glennb/um for details.) A screen
from the Objects and Classes chapter is shown in Figure 1.
Documents and a demo are available at
www.cse.lehigh.edu/~cimel.

CIMEL reaches out to students from a variety of
backgrounds and with many different learning styles
through these features:
 Multimedia personae model a diverse community of

teachers and learners. The personae include two

Reviewed Papers

inroads – The SIGCSE Bulletin 91 Volume 37, Number 2, 2005 June

professors (one shown on the lower left), a teaching
assistant, a reference librarian, and three students. In
addition to graphical images, they speak in audio and/or
text boxes. Personae model students and instructors
studying the material together by working through
interactive exercises and suggesting exploratory
research on relevant topics using online information.

Figure 1: Screen Capture from CIMEL multimedia

 The icons at the bottom give learners access to various
tools, including EXPLORE (which links to resources
on the internet and a tool which helps students identify
emerging trends in the sources they find) and JUST
THE FACTS (which lets students review just the text
and graphics of the corresponding Flash content, i.e.,
without animation or interactive exercises). The
PREFERENCES icon lets the user adapt the
environment according to his or her personal learning
style, including turning text boxes or audio on/off,
toggling auto-advance or wait for next page, setting the
timing rate where there is no audio narration, volume
control, etc..

 Interactive exercises and quizzes enable the student to
test her own knowledge, and identify areas for review.
All results are stored in a database, which the instructor
can use to determine which topics the class as a whole
should review, or to identify students who are
struggling and proactively offer help.

Experimental results indicate that first year students

can learn Java “objects-first” using BlueJ, especially with

the help of interactive multimedia [3]. We have modified
CIMEL’s chapter on Objects and Classes to introduce the
Eclipse environment instead of BlueJ. The chapter uses
real-world examples like car, house, and person to describe
the basic concepts of object orientation. Attributes,
methods, and primitive data types are also covered.
Students are quizzed on these concepts through interactive
exercises, with additional explanation or hints given when

an incorrect response is entered.
The multimedia then introduces
the student to Eclipse and steps
through some simple experiments
using the Shapes classes. These
exercises lead up to the student’s
assignment to add functionality to
an existing method.

4. The Eclipse/UML/DrJava
IDE
An integrated development
environment that supports the
aims of the curriculum is an
important tool for successful
learning. We needed these three
capabilities in an IDE: 1.
Inspection and entry of basic
UML components (at minimum
class diagrams). 2. Generation of
basic code structures so students
are shielded from some of the

complexities of syntax. 3. Interactive capabilities, such as
allowing entry and execution of a single line of code, to
help students visualize what each statement does. Finally,
many students would prefer to use a real world, practical
IDE from the start, which they can continue using as they
progress to more advanced courses and beyond academia.
No one IDE we considered had all these features, but we
were able put one together based on Eclipse.

Eclipse (www.eclipse.org) is an open-source
development environment created and supported by a
consortium of technology companies, including IBM, HP,
and Oracle. It is freely available and widely used by
professional developers in both industry and academia. Its
capabilities can easily be extended through the creation of
plug-ins, allowing us to add functionality by selecting from
many existing plug-ins or by creating our own. We found
an implementation of our first and second requirements in
Omondo UML, and our third requirement in DrJava.

Omondo UML (www.omondo.com) provides a
window in which to create and save class diagrams. Panels
to add attributes and methods to a class allow entry of all
essential elements of each: datatype for attributes and
parameters and return value for methods. Options such as
public, private or protected, and static are given default
values so students don’t have to fully understand them at

Reviewed Papers

inroads – The SIGCSE Bulletin 92 Volume 37, Number 2, 2005 June

first, let alone remember to code them. Method panels also
let developers enter method-specific body code as well as
Javadoc-style comments. The interface is easy enough for a
beginner to learn, and also offers features useful to
experienced developers. Thus students are learning an
environment they can continue to use in subsequent
courses.

Students learn how to use the UML window before
they are shown any code. The first exercise in Unit 1
introduces the Shapes classes via a class diagram. In the
diagram, students can view the attributes and methods of a
class, determine the parameters and return value of a
method, and look at the documentation for each, all without
reading a line of code. This allows students to concentrate
on the concepts before learning the syntax of Java.

Every project assigned in the course enters Eclipse
through the UML window. Because students develop use
cases and a class diagram before writing any code, the class
diagram is the first information they enter into Eclipse.
From the class diagram, the code for the class header,
attributes, and method stubs (including return value and
parameters) is generated. Students may then enter the code
for each method in Eclipse’s standard code window
(opened automatically when the student double-clicks on a
class in the UML diagram), or through the UML interface
(in the Implementation tab for each method). Using the
code window is preferred because compiler messages and
help are not yet available in the UML interface.

DrJava is a popular standalone IDE for beginners. Its
goals include providing a simple, easy to use environment
which nevertheless scales up to handle larger programming
projects typically assigned in advanced courses. It also
allows for quick and easy testing of portions of code[1]. Its
Interactions Pane, separate from the code window, allows
students to enter code snippets that create instances or call
methods, interactively. Thus, a student can quickly test a
method she just wrote, view the contents of a variable at a
given point in time, or simply see the results of creating an
instance of a class. The Eclipse plug-in version of DrJava
provides the Interactions Pane within Eclipse.

Our curriculum makes use of the Interactions Pane in
Unit 1, using the Shapes project. The four classes let
students create and manipulate simple shapes drawn on a
panel. The student enters one Java statement at a time in
the Interactions Pane and observes the results. She creates
an instance of Square and sees a square immediately appear
in a window; she enters a call to the changeColor method
for that instance, and watches the square change color.
Creating and manipulating multiple instances at the same
time reinforces student understanding of the ties between
the Java statement, the concepts it represents, and the actual
actions it performs.

5. Evaluation and Future Work
Six students recently completed the curriculum in a half-
year inner-city high school course, and their performance is
encouraging. Lecture comprised only about one-quarter of
the class time; the rest was spent working on project
assignments or completing scripted exercises or small
standalone assignments within Eclipse. Students worked in
pairs, at their own pace. All students indicated that they had
no programming experience prior to the course; all were
able to complete the assigned work. One student completed
all assignments early, with almost no assistance from the
instructor. That student had worked independently for half
the semester, due to the frequent absence of his partner.
The other students worked at a roughly uniform pace, with
assistance from the instructor when they got stuck.

Students were graded on each step of the Calculator
project, from use cases and class design, to the completed
graphical interface. As the students worked, the instructor
recorded the type and frequency of assistance requested,
and verbally quizzed them on concepts and terminology.
The students needed a refresher on terminology late in the
semester. They seemed to forget some of the basic concepts
of attributes and methods after spending several weeks
focused on learning procedural code. Two students in
particular needed reminders on creating instances and
calling methods several times while working on the project.

No tests or quizzes were given during the semester, but
five students took a final exam at the end of the course.
Three scored 90% or higher. One student ran out of time,
but did well on all but the last problem. Interestingly, for all
students, most of the errors were on procedural code. They
all did very well on the portion of the exam that covered
object-oriented concepts.

The students also completed course evaluations. They
said they liked that most of the class time was spent
working in Eclipse. They liked using the handouts for
reference. Although they said they didn’t miss having a
textbook, they did recommend adding material to some
handouts. They also requested more class time be spent
reviewing some of the more difficult concepts.

The course will be taught at the high school again with
a few changes based on these observations. More emphasis
will be placed on critical terminology, especially variables,
methods, attributes, and instances. Review exercises will be
added throughout the semester, and graded quizzes will be
administered to give students a greater incentive to retain
all the material. Specific material for new handouts and
additional content for existing handouts have been
identified.

We are also developing additional content for the
CIMEL multimedia to provide alternative explanations to
which students can refer. A new chapter on requirements
gathering and design using the Movie Ticket Machine
example is currently being scripted. It will step the student
through the process of documenting use cases, identifying
objects and designing classes. Like the Objects and Classes

Reviewed Papers

inroads – The SIGCSE Bulletin 93 Volume 37, Number 2, 2005 June

chapter, the new chapter will include the activities
incorporated in the existing worksheets and exercises.

The Eclipse environment offers much assistance to
students as they develop code within the IDE. Clear,
accurate error messages replace many of the cryptic
messages generated by the Java interpreter. As a student
types in code, Eclipse finds matches on method names and
makes suggestions in a pop-up window. And code stubs are
generated by the UML interface. But these improvements
are superficial. Error messages do not explain the concepts
a student might be violating in a particular error, and code
that is generated is not commented with explanations of
why it was created or what it does. No help is available to
the student creating his initial design in the UML window.

To address this shortcoming, three PhD students at
Lehigh are developing an intelligent tutoring system that
will interface with both Eclipse and CIMEL[5]. CIMEL
ITS will have three functional components: an Expert
Evaluator that compares a student’s solution to one or more
recommended designs for a problem and identifies errors
within the student’s design; a Student Model that represents
the student’s current knowledge state based on information

from the student’s performance on exercises and quizzes in
the CIMEL multimedia, and on the student’s work within
Eclipse; and one or more Pedagogical Agents that choose a
tutoring strategy tailored to the student’s own learning style
and present feedback and explanations of the concepts
needing reinforcement.

Our goal in both refining the curriculum and providing
additional online resources is to make computer science
more accessible and appealing to a wider range of students.
The new multimedia content and individualized tutoring
will both supplement an instructor’s presentation of the
curriculum, and provide additional resources to students
who need extra help but have limited access to a human
tutor.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grants No. EIA-0087977 and
0231768 and PITA (Pennsylvania Infrastructure
Technology Association).

References
[1] Allen, Eric, Cartwright, Robert, and Stoler, Brian. DrJava: A Lightweight Pedagogic Environment for Java. In Proceedings of the

SIGSCE Conference on Computer Science Education, March, 2002.
[2] Barnes, D. & Kölling M. Objects First With Java: A Practical Introduction Using BlueJ, Englewood Cliffs, NJ: Prentice Hall, 2002.
[3] Blank, G. D., Pottenger, W. M., Sahasrabudhe, S. A., Li, S., Wei, F., and Odi, H. Multimedia for computer science: from CS0 to

grades 7-12, EdMedia, Honolulu, HI, June 2003. Online at www.cse.lehigh.edu/~cimel/papers/EdMedia03.pdf.
[4] Bruce, Kim. Controversy on How to Teach CS1: A Discussion on the SIGCSE-members Mailing List. In inroads – The SIGCSE

Bulletin, December, 2004.
[5] Wei, F., Moritz, S., Parvez, S., and Blank, G. D., A Student Model for Object-Oriented Design and Programming, CCSCNE,

Providence, RI, April 2005. Online at www.cse.lehigh.edu/~cimel/papers/CCSCNE05.pdf.

Explore Computing History

The Charles Babbage Institute

www.cbi.umn.edu

