Taming a Professional IDE for the Classroom

Charles Reis

Rice University

6100 S. Main St.
Houston TX 77005

creis@alumni.rice.edu

Abstract

An important question that must be addressed in a coher-
ent computing curriculum is which programming environ-
ments to use across the curriculum. For Java, currently
the most widely used language in computing education, a
wide variety of professional integrated development environ-
ments (IDEs) are available—including the increasingly pop-
ular, open-source Eclipse environment. Professional IDEs
for Java work well in advanced courses, but they are poorly
matched to introductory courses because they deluge begin-
ning students with a complex array of features. In addi-
tion, professional IDEs fail to shield students from distract-
ing complications like the Java command line interface and
Java console I/O. For this reason, many educators favor us-
ing a “pedagogic” IDE such as BlueJ or DrJava to provide a
gentle introduction to the mechanics of Java programming.

To eliminate the gap between pedagogic and professional
IDEs for Java, we have developed a plug-in for Eclipse that
supports exactly the same programming interface as Dr-
Java. It features an Interactions pane for evaluating pro-
gram statements and expressions “on the fly” as in DrJava.
With this plug-in, Eclipse is accessible to beginning pro-
grammers. In this configuration, Eclipse is a suitable vehicle
for teaching introductory programming—enabling Eclipse to
be used across the entire spectrum of the computing cur-
riculum.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments

Keywords

DrJava, Eclipse, plug-in, Interactions pane

1. Introduction

Despite the growing popularity of Java as an instructional
language [3], it has some characteristics that make teach-
ing programming concepts unnecessarily difficult. Although

*This research has been partially supported by IBM Corpo-
ration, the Texas Advanced Technology Program, the Na-
tional Science Foundation, and Sun Microsystems, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Robert Cartwright
Rice University
6100 S. Main St.
Houston TX 77005

cork@cs.rice.edu

Java syntax is familiar territory for experienced C/C++ pro-
grammers, it can be quite challenging for beginners to learn.
In addition, Java console I/O and the Java command line
interface are complex and intimidating for students with lit-
tle programming experience. Students who try to learn Java
using a conventional text editor and command line interface
are often overwhelmed by the mechanics of writing and run-
ning a program. As a result, they have difficulty focusing on
learning how to design object-oriented programs. For these
reasons, many instructors elect to use an integrated devel-
opment environment (IDE) for Java in an effort to relieve
students of some of the clerical burdens involved in writing
Java programs.

2. Use of IDEs in the Classroom

Professional IDEs are designed to help software develop-
ers write programs more quickly and produce better quality
code. They help reduce the incidence of clerical errors by
providing a text editor that analyzes the syntax of a pro-
gram and highlights its major syntactic features. Nearly all
IDEs support the automatic indenting of program text ac-
cording to the program’s nesting structure. Some IDEs like
Eclipse perform incremental parsing, identifying any portion
of the program text that is ungrammatical as each keystroke
is typed. IDEs also simplify the process of compiling and
executing new versions of a program as it is developed by
providing “compile” and “run” buttons in place of a con-
ventional command line interface. When a program faults
during execution, most IDEs provide an integrated source
level debugger that helps the programmer selectively trace
and interrupt the execution of the program to track down
the source of the error. With the growing emphasis on unit
testing and test-driven design, some environments have inte-
grated support for unit testing using frameworks like JUnit
[4].

All of these basic features of IDEs, with the possible ex-
ception of source level debugging, can be helpful in teaching
introductory programming. But introductory programming
courses impose three special requirements on IDEs that tend
to conflict with the requirements of professional software de-
velopers.

e First, the programming interface must be simple and
intuitive. Professional IDEs generally fail this simplic-
ity test because they are designed to provide all of the
features that might be helpful to professional develop-
ers, creating a complex interface that is bewildering
to novices. For beginning students, providing a sim-
ple, intuitive user interface is far more important than

offering every conceivable feature. Even well-designed
professional tools presume a reasonable grasp of the
language, placing their target audience well above the
introductory level.

e Second, the IDE should provide simple mechanisms
for working around complications in the Java language
that are pedagogic distractions. The two most promi-
nent such complications are the

public static void main(String[] args)

convention for starting the execution of a Java pro-
gram and the syntax required for console 1/O oper-
ations. The main convention is painful to teach to
beginners because it forces a discussion of access mod-
ifiers (e.g., public), static methods, and arrays be-
fore students can execute even the most trivial pro-
gram, e.g., “Hello World”. Similarly, console input is
a painful mechanism for specifying the input values for
a computation. The Java language does not provide
a simple external interface for creating objects and in-
voking public methods on them. Processing console
input to extract argument values for a method is far
more difficult than simply writing a Java method invo-
cation with constant arguments. Indeed, reading input
via a BufferedReader even requires an explanation of
checked exceptions, introducing undue complexity for
such simple concepts.

e Finally, a pedagogic IDE should be fairly lightweight
so that it executes responsively on older, less capable
hardware. In contrast to professional software devel-
opers, students in introductory programming courses
often do not have access to state-of-art personal com-
puters.

While professional IDEs may be a good match for inter-
mediate and advanced programming courses, they do not
satisfy the three requirements for introductory program-
ming courses listed above. To cite one example, the default
Eclipse perspective for Java programs presents students with
an interface containing no less than 10 menus, 6 visible or
available panes, and 4 poorly labeled toolbars, each with un-
conventional context menus. Professional IDEs like Eclipse
have a steep learning curve, due not only to the abundance
of panes and cryptic toolbar buttons, but also to the po-
tentially unfamiliar concepts of perspectives, plug-ins, and
projects. Moreover, on many student machines, professional
IDEs like Eclipse perform sluggishly, particularly on large
programs such as the “case studies” used in many introduc-
tory courses [17].

3. Existing Pedagogic IDEs

Pedagogic IDEs like BlueJ [12] and DrJava [1] have been
developed specifically to address the requirements for teach-
ing introductory programming identified above. They are
much smaller and simpler than professional IDEs, and they
provide an interface for performing computations and pro-
ducing output that bypasses the Java command line inter-
face and the definition of a method

public static void main(String[] args)
for beginning program execution. BlueJ provides a visually-
oriented object workbench and DrJava provides an Inter-
actions pane for evaluating statements and expressions and
printing their results.

b ListDemo - DrJava FEED
File Edit Tools Debugger Help

5 v | <1 open| | Bocose| [% m\'ua (npv‘r e e 7(nmnneAH|"RTz(‘]Tu\ |

Listhena {| abstract class List {
ListenoTest abstract public int Tength();

abstract String ToSTringHelp();

public String toSTring() { return [" + toStringHeln(y + "1 }
¥

class Empty extends List {
puklic static final Empty ONLY = new Empry();

private Enpty() {

public it Tength() { return 03 2
String toStringHelp() { return " }

class Cons extends List {
protected int first
protected List rest;

pubic Cons(int T, List r) {
irst - 5
rest = r;

¥

public Tt getFirst() { return First; ¥
public List getRest() { return rest; }

pullic int length() { return 1 + rest.length(d; }
String toStringHelp() { return first + * ' + rest.toStringHelp(}; T

Interactions [JCanSGIEN]i
Welcone to Driava.

> List mylist = new Cons(3, new Cons(S, Enpty.ONLY));
> mylist

> mylist.length()
2

>

thame fcreis ftestsrcflistdemo/ListDemo, java 233

Figure 1: DrJava

As a pedagogic IDE, DrJava’s most important benefits are
its simplicity and its interactive interface. The user inter-
face is designed to be accessible to beginners, with clearly
labeled buttons and few distractions in a simple graphical
layout. It consists of three panes: (i) a Definitions pane
used to enter program text; (i2) an OpenFiles panel listing
the open files and highlighting the one selected for display
in the Definitions pane, and (i7¢) an Interactions pane used
to evaluate arbitrary statements and expressions in the con-
text of the files listed in the OpenFiles pane. (See Figure 1
for a screenshot of DrJava.)

3.1 Interactions Pane

In essence, DrJava’s Interactions pane transforms Java
from a “batch-oriented” (command-line based) language to
a reactive one comparable in interactive flexibility to func-
tional languages like Scheme and ML. Almost all of DrJava’s
other features and integrated tools build upon the Interac-
tions pane, which is presented as a console-style “read-eval-
print loop” (REPL). This form of interface dates back at
least to early Lisp implementations [15] and has been incor-
porated in many “interactive” programming languages (e.g.,
Lisp, Scheme, ML). The particular form of REPL used in
DrJava, where the current “source program” is maintained
in a separate pane, was pioneered in an earlier pedagogic
environment for Scheme called DrScheme [6]. The DrJava
Interactions pane uses DynamicJava [10] to interpret inter-
actions, leveraging reflection and dynamic class loading for
efficiency on par with command line execution.

The Interactions pane provides students with a simple in-
terface for executing Java programs, eliminating the need for
public static void main(...). More significantly, this
interface enables students to directly observe the behavior
of individual methods in the programs that they write—
reinforcing the idea that each individual unit of a program
should be separately tested. The Interactions pane also
provides a simple framework for exploring the behavior of
the Java libraries and for conducting computational experi-
ments, even at breakpoints during debugging.

In the classroom, the Interactions pane has proven to

be a very effective teaching tool; instructors can easily ex-
plain new concepts, language features, and even common
programming pitfalls in lecture by demonstrating them in
the Interactions pane. Recent versions of DrJava also sup-
port playback of recorded Interactions pane histories so that
instructors can compose such classroom demonstrations in
advance. At any point during a DrJava session, the user can
save the interactions history to a file, which can be edited if
desired to eliminate clerical mistakes. When playing back a
history, each interaction stored in the file is loaded into the
Interactions pane and evaluated on cue from the instructor.
The Interactions pane currently plays a significant role in
demonstrations in introductory courses at several universi-
ties, including Rice University, the University of Pennsylva-
nia, and the University of Washington.

3.2 Additional Pedagogic Features

Like most Java IDEs, DrJava also helps students learn
the syntax of the language through various forms of syntax
highlighting. To keep the implementation lightweight, Dr-
Java does not perform complete incremental parsing of pro-
gram text; it uses a very simple incremental parsing scheme
sufficient to recognize the major syntactic features of a pro-
gram: keywords, strings, comments, and various forms of
brackets. In contrast to some other lightweight IDEs, the
DrJava editor always displays accurate syntax highlighting.

DrJava integrates all of the tools that are essential to Java
software development: Java compilers (which are plug-ins)
including Generic Java [5, 18], the widely used JUnit test-
ing framework [4], a source-level debugger, and the stan-
dard Javadoc documentation tool. The DrJava debugger is
closely integrated with the Interactions pane [14], so that
users can set breakpoints in source code to suspend the
evaluation of any method call from the Interactions pane.
Hence, individual program units (methods) can be debugged
in isolation from the rest of the program. During a break-
point pause in program execution, users can interact with
the state of the program directly in the Interactions pane,
calling any methods and accessing or modifying any fields
or local variables that are in scope. In short, DrJava sup-
ports a very powerful but intuitively familiar interface for
understanding and debugging Java code.

Unlike other pedagogic IDEs, which are typically limited
to small programs, DrJava scales to developing large produc-
tion programs, including itself. For the past year, DrJava
has been maintained and extended by a team of students us-
ing DrJava almost exclusively. On such a code base, consist-
ing of over 40,000 lines of source code (excluding comments)
plus the DynamicJava interpreter, DrJava performs very re-
sponsively on machines of modest capability, such as a 500
MHz G3 Apple iBook, that are too slow to run professional
IDEs like Eclipse. In addition, its code base is sufficiently
compact and accessible that junior and senior undergradu-
ates can easily extend and modify it. We use DrJava as the
principal source of student projects in the undergraduate
course that we teach on production programming [2].

3.3 Potential Drawbacks

In contrast to professional IDEs, DrJava is restricted in
scope to keep its interface simple and uniform and to ensure
that it runs on slower machines. It does not support a com-
prehensive plug-in architecture, making it more difficult for
other educators to add new pedagogic features to the envi-

E DrJava - Eclipse Platform e
File Edit Source Refactor Navigate Search Project Run Window Help

SelEEE B[] v e||FFF]| e |[Blr 8

% 14 Package mxpiorr ~ | ICTNEERIET

Byl » @ abstract class List { =

abstract public int length();
~ B Listbemo abstract String t0StringHelp();
~ {8 (default package)

public String toString() { return ' " + toStringHelp() + 'T"; }
i

b Ml JRE System Library]

class Empty extends List {
public static final Empty ONLY = new Empty();

private Empty() { }

public int length() { return 0; }
String toStringHelp() { return " }
}

class Cons extends List {
protected int first;
protected List rest;

public Cons(int f, Listr) {
first=f;
rest=r;

}

Kl Z I L 3]

T Interactions Pane - %
felcome to Drjava.

= List myList = new Cons(3, new Cons(S, Empty.ONLY));

> myList

>

[3s]
> myListlength()
2

>

s

Interactions Pane Tasks

|Writable Insert 17:23

Figure 2: The DrJava Plug-in for Eclipse

ronment, such as an automated project turn-in mechanism
or lecture content dissemination. Despite the effectiveness
of DrJava on sizable projects, it lacks several important fea-
tures commonly supported in professional IDEs, including
code completion, navigation tools, and program refactoring
tools.

4. A DrJava Plug-in For Eclipse

In principle, a professional IDE could be configured to
provide a simple and interactive interface like that of Dr-
Java. As such, it would be suitable for use in introductory
programming classes.! Moreover, as students grew more
sophisticated, the course could progressively expose more
of the features of the environment. Fortunately, the re-
cent development of the open-source Eclipse environment
has placed this scenario within practical reach. Eclipse sup-
ports a plug-in and configuration architecture that makes it
possible to add new tools like DrJava’s Interactions pane and
reconfigure the environment to present a simpler interface.

During the past year, we have written a “DrJava plug-in”
for Eclipse supporting a simplified user interface that closely
resembles the interface provided by DrJava. The DrJava
plug-in for Eclipse creates an Interactions pane supporting
exactly the same form of incremental program interaction
as DrJava. After installing the plug-in, users can config-
ure Eclipse to use the “DrJava Perspective,” producing a
graphical layout and user interface very similar to DrJava,
consisting of a Definitions pane (the Eclipse editor) and an
Interactions pane. Figure 2 shows a screenshot of the Dr-
Java perspective that looks quite similar to the correspond-
ing screenshot for DrJava in Figure 1.

Just as DrJava’s Interactions pane is integrated with the
source files open in DrJava, the plug-in’s Interactions pane is
closely integrated with the projects that are open in Eclipse.
Specifically, the classpath entries for each project are auto-
matically in scope within the Interactions pane.

! Assuming the availability of potent personal computers to
produce acceptable performance.

However, there is one notable discrepancy between the
models of compilation in DrJava and Eclipse which affects
the Interactions pane. In DrJava, the Interactions pane is
reset after each compilation, in order to load the modified
class files to make the Interactions pane’s behavior consis-
tent with the current program text. In Eclipse, source files
are compiled incrementally on a frequent basis. Resetting
the Interactions pane after each incremental compilation
would result in too many unexpected interruptions, so in-
stead, these compilations simply produce a single warning
message to the user, requesting a manual reset at the user’s
convenience.

By facilitating a simple and interactive interface for de-
velopment with most of the pedagogic strengths of DrJava,
the DrJava plug-in makes Eclipse a very attractive and ca-
pable environment for teaching Java programming skills at
any level, provided that students have access to machines
capable of running Eclipse responsively.

4.1 Target Audience

We expect the DrJava plug-in to serve three different con-
stituencies.

e First, instructional programs can use the Eclipse en-
vironment for writing Java programs at all levels of
the curriculum without adversely affecting the atmo-
sphere and content of introductory courses. With the
DrJava plug-in, Eclipse is transformed from an intim-
idating professional environment to a pedagogic IDE
with a reasonably simple interface. In addition, the
DrJava plug-in can be combined with other pedagogic
plug-ins, enabling an instructor to create an environ-
ment with the specific capabilities required for a par-
ticular course. If the computing resources available
to students in introductory courses can run Eclipse
with good response times, then Eclipse, equipped with
the DrJava plug-in, is well-suited to teaching the rudi-
ments of Java programming.

e Second, the DrJava plug-in supports a smooth, pain-
less transition from native DrJava to Eclipse. Many
students who learn to program in Java using DrJava
grow accustomed to the convenience of an Interactions
pane and resist using professional IDEs in more ad-
vanced courses because they do not provide a suitable
interactive interface. With the DrJava plug-in, Eclipse
supports precisely the same interactive behavior as Dr-
Java.

e Third, like the advocates of functional programming
environments, we believe that the ability to evalu-
ate arbitrary program text in a “read-eval-print loop”
(REPL) is a potent tool for professional software devel-
opers. As aresult, we anticipate that some professional
developers will use the DrJava plug-in for Eclipse.

4.2 Implementation Architecture

Code re-use was a major goal in the design and imple-
mentation of the DrJava plug-in for Eclipse. We wanted the
plug-in to use as much code as possible directly from the Dr-
Java code base to reduce the development time and effort,
to minimize the introduction of new errors, and to simplify
program maintenance. Indeed, this technique ensures that
any new features or bug fixes for the core code of the Inter-

actions pane in DrJava will be immediately available in the
Eclipse plug-in as well.

Our program development process emphasizes the use of
design patterns [8] and follows the central tenets of Extreme
Programming [11] including incremental, test-driven devel-
opment; comprehensive unit testing; continuous integration;
frequent refactoring; and small releases. In this context, we
found it easy to re-use the existing DrJava code base to sup-
port the plug-in. Specifically, once we performed two pri-
mary refactoring transformations to the DrJava code base
(to support a stand-alone Interactions pane and the use of
Eclipse’s SWT graphical windowing toolkit), very little new
code was required to implement the Eclipse plug-in. In fact,
only eight extra classes comprise the current pre-release of
the plug-in, which provides a fully functional Interactions
pane and a simplified user interface. Approximately 80%
of the code in the Eclipse plug-in is shared with the native
DrJava implementation.

The DrJava plug-in for Eclipse is still in active develop-
ment. The current pre-release (version 0.92) supports a sim-
plified user interface and a fully functional Interactions pane.
The full release (version 1.0) of the plug-in will also couple
the Eclipse debugger with the Interactions pane, providing
Eclipse with the same interactive debugging capabilities as
DrJava.

5. Related Work

BlueJ [12] is a pedagogic IDE that also eliminates the
dependence on Java’s main method and console I/0. BluelJ
uses class diagrams and a graphical “workbench” to allow
students to visually interact with their programs. While
this interface is effective for graphically representing some
object-oriented program designs, it does not scale to larger
projects or computations. As a result, BlueJ is limited to
developing small programs in introductory courses.

Eclipse itself provides a Java Scrapbook feature to pro-
mote interactive evaluation of Java code, but its interface is
much less intuitive and flexible than the REPL in DrJava’s
Interactions pane. The Java Scrapbook interface relies on
using the mouse to select a region of text in a document and
to evaluate it using a context menu or one of several toolbar
buttons. Any results or corresponding errors are inserted
into the document in editable form, adjacent to the state-
ments or expressions themselves. Because the same block
of text can be repeatedly modified and evaluated, the cur-
rent program state may be difficult to reconstruct at a later
point. This is a weakness shared by conventional “read-eval-
print loops” where the current program state is assembled
using “load” statements that are executed by the REPL.
DrJava maintains a separate Definitions pane to eliminate
this problem—the current program state is generated sim-
ply by compiling the defined program and executing the
sequence of statements and expressions in the interactions
history. Eclipse’s scrapbook does not provide a convenient
means for incrementally building such a history. Meanwhile,
DrJava’s Interactions pane provides sharper distinctions be-
tween interactions, results, and errors than the scrapbook.

6. Directions for Further Work

Our immediate plans for improving the Eclipse plug-in are
twofold. First, we want to provide a simpler user-interface
for beginners and offer better support for course instruction

by integrating the DrJava plug-in with plug-ins being de-
veloped by the Gild[16] and Penumbra[13] projects. These
projects are developing plug-ins to make Eclipse more suit-
able for introductory programming by eliminating unneces-
sary features from the default Java perspective (reducing the
number of panes, menu bars, and commands per menu) and
by supporting courseware integration. We also plan to port
some additional features of the native DrJava Interactions
pane, notably the logging and playback of interactions his-
tories, that are not part of the core shared with the Eclipse
plug-in.

Second, we plan to extend the DrJava plug-in to support
the language extensions in Java 1.5.2 We are in the process
of adding these extensions to the Interactions pane in na-
tive DrJava which already supports the experimental Java
1.5 compiler (versions 2.2 and 2.3). We are working on pro-
viding full static type checking—including generic types—in
the Interactions pane. The current version of the Interac-
tions pane only detects type errors dynamically during ex-
ecution. We are also working on extending the interpreter
in the Interactions pane to accept the new syntactic forms
(such as enumeration types, autoboxing and unboxing, and
foreach statement) that will be introduced in Java 1.5 [18].
We are writing a preprocessor that expands the new Java
1.5 constructs into existing constructs, eliminating the need
to revise the DynamicJava interpreter. The new features in
Java 1.5 are already accepted by the DrJava editor.

As soon as Eclipse’s editor and compiler are updated to
support Java 1.5, we will enable support for Java 1.5 in the
DrJava plug-in. The requisite code will already be in the
DrJava code base.

7. Conclusion

DrJava provides a simple, interactive user interface that
addresses the challenges involved in using an integrated de-
velopment environment for Java in introductory program-
ming courses. Eclipse, on the other hand, provides a wide
variety of sophisticated features and tools suitable for pro-
duction programming and advanced programming courses.
We have developed an Eclipse plug-in that supports the
same interactive user interface as DrJava—making Eclipse
suitable for use by beginning students with sufficiently pow-
erful machines, and providing advanced users with a better
interface for performing program interactions. In the pro-
cess, we have demonstrated how design patterns and Ex-
treme Programming practices can facilitate the re-use of a
large code base like DrJava.

8. References

[1] E. Allen, R. Cartwright, B. Stoler. DrJava: A
Lightweight Pedagogic Environment for Java. SIGCSE
2002, March 2002. (URL: drjava.org)

[2] E. Allen, R. Cartwright, C. Reis. Production
Programming in the Classroom. SIGCSE 2003,
February 2003.

[3] O. Astrachan et al. Recommendations of the AP
Computer Science Ad Hoc Committee, October 2000.
(URL: apcentral.collegeboard.com/repository/
apO01.pdf .ad_7908.pdf)

[4] K. Beck, E. Gamma. “JUnit, Testing Resources for
Extreme Programming.” (URL: www. junit.org)

2Planned for release in 2004.

[5] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler.
Making the future safe for the past: adding genericity
to the Java programming language. OOPSLA 98,
October 1998.

[6] R. Findler et al. DrScheme: A pedagogic
programming environment for Scheme. In
International Symposium on Programming Languages:
Implementations, Logics, and Programs, 1997.

[7] M. Fowler, K. Beck, J. Brant. Refactoring: Improving
the Design of Existing Code. Addison-Wesley, 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
Mass. 1995.

[9] J. Heiss. “New Language Features for Ease of
Development in the Java 2 Platform, Standard
Edition 1.5: A Conversation with Joshua Bloch.”
(URL: java.sun.com/features/2003/05/bloch ga.html).

[10] S. Hillion. “DynamicJava.” (URL: koala.ilog.fr/djava)

[11] R. Jefferies, A. Anderson, C. Hendrickson. Exztreme
Programming Installed. Addison-Wesley, 2001.

[12] M. Kolling, A. Patterson, B. Quig, J. Rosenberg.
“BlueJ, The Interactive Java Environment.”

(URL: bluej.org)

[13] F. Mueller, A. Hosking. “Penumbra: An Eclipse plugin
for introductory programming.” In Eclipse Technology
Exchange Workshop, OOPSLA 2003, October 2003.

[14] C. Reis. A Pedagogic Programming Environment for
Java that Scales to Production Programming.
Master’s thesis, Rice University, April 2003.

[15] E. Sandewall. Programming in an interactive
environment: the “Lisp” experience. In Computing
Surveys, 10(1), March 1978.

[16] M. Storey, et al. “Improving the Usability of Eclipse
for Novice Programmers.” In Eclipse Technology
Exchange Workshop, OOPSLA 2003.

[17] The College Board. “The AP Computer Science
Course Description.” (URL: www.collegeboard.com/

prod_downloads/ap/students/compsci/ap03_compsci.pdf)
[18] Sun Microsystems, Inc. Early Access Downloads page.
(URL: developer.java.sun.com/developer/earlyAccess)

