001    /*
002     * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
003     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
004     *
005     * This code is free software; you can redistribute it and/or modify it
006     * under the terms of the GNU General Public License version 2 only, as
007     * published by the Free Software Foundation.  Sun designates this
008     * particular file as subject to the "Classpath" exception as provided
009     * by Sun in the LICENSE file that accompanied this code.
010     *
011     * This code is distributed in the hope that it will be useful, but WITHOUT
012     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
013     * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
014     * version 2 for more details (a copy is included in the LICENSE file that
015     * accompanied this code).
016     *
017     * You should have received a copy of the GNU General Public License version
018     * 2 along with this work; if not, write to the Free Software Foundation,
019     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
020     *
021     * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
022     * CA 95054 USA or visit www.sun.com if you need additional information or
023     * have any questions.
024     */
025    
026    package com.sun.tools.javac.comp;
027    
028    import java.util.*;
029    import java.util.Set;
030    
031    import com.sun.tools.javac.code.*;
032    import com.sun.tools.javac.jvm.*;
033    import com.sun.tools.javac.tree.*;
034    import com.sun.tools.javac.util.*;
035    import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
036    import com.sun.tools.javac.util.List;
037    
038    import com.sun.tools.javac.tree.JCTree.*;
039    import com.sun.tools.javac.code.Lint;
040    import com.sun.tools.javac.code.Lint.LintCategory;
041    import com.sun.tools.javac.code.Type.*;
042    import com.sun.tools.javac.code.Symbol.*;
043    
044    import static com.sun.tools.javac.code.Flags.*;
045    import static com.sun.tools.javac.code.Kinds.*;
046    import static com.sun.tools.javac.code.TypeTags.*;
047    
048    /** Type checking helper class for the attribution phase.
049     *
050     *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
051     *  you write code that depends on this, you do so at your own risk.
052     *  This code and its internal interfaces are subject to change or
053     *  deletion without notice.</b>
054     */
055    public class Check {
056        protected static final Context.Key<Check> checkKey =
057            new Context.Key<Check>();
058    
059        private final Names names;
060        private final Log log;
061        private final Symtab syms;
062        private final Infer infer;
063        private final Target target;
064        private final Source source;
065        private final Types types;
066        private final JCDiagnostic.Factory diags;
067        private final boolean skipAnnotations;
068        private final TreeInfo treeinfo;
069    
070        // The set of lint options currently in effect. It is initialized
071        // from the context, and then is set/reset as needed by Attr as it
072        // visits all the various parts of the trees during attribution.
073        private Lint lint;
074    
075        public static Check instance(Context context) {
076            Check instance = context.get(checkKey);
077            if (instance == null)
078                instance = new Check(context);
079            return instance;
080        }
081    
082        protected Check(Context context) {
083            context.put(checkKey, this);
084    
085            names = Names.instance(context);
086            log = Log.instance(context);
087            syms = Symtab.instance(context);
088            infer = Infer.instance(context);
089            this.types = Types.instance(context);
090            diags = JCDiagnostic.Factory.instance(context);
091            Options options = Options.instance(context);
092            target = Target.instance(context);
093            source = Source.instance(context);
094            lint = Lint.instance(context);
095            treeinfo = TreeInfo.instance(context);
096    
097            Source source = Source.instance(context);
098            allowGenerics = source.allowGenerics();
099            allowAnnotations = source.allowAnnotations();
100            complexInference = options.get("-complexinference") != null;
101            skipAnnotations = options.get("skipAnnotations") != null;
102    
103            boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
104            boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
105            boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
106    
107            deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
108                    enforceMandatoryWarnings, "deprecated");
109            uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
110                    enforceMandatoryWarnings, "unchecked");
111        }
112    
113        /** Switch: generics enabled?
114         */
115        boolean allowGenerics;
116    
117        /** Switch: annotations enabled?
118         */
119        boolean allowAnnotations;
120    
121        /** Switch: -complexinference option set?
122         */
123        boolean complexInference;
124    
125        /** A table mapping flat names of all compiled classes in this run to their
126         *  symbols; maintained from outside.
127         */
128        public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
129    
130        /** A handler for messages about deprecated usage.
131         */
132        private MandatoryWarningHandler deprecationHandler;
133    
134        /** A handler for messages about unchecked or unsafe usage.
135         */
136        private MandatoryWarningHandler uncheckedHandler;
137    
138    
139    /* *************************************************************************
140     * Errors and Warnings
141     **************************************************************************/
142    
143        Lint setLint(Lint newLint) {
144            Lint prev = lint;
145            lint = newLint;
146            return prev;
147        }
148    
149        /** Warn about deprecated symbol.
150         *  @param pos        Position to be used for error reporting.
151         *  @param sym        The deprecated symbol.
152         */
153        void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
154            if (!lint.isSuppressed(LintCategory.DEPRECATION))
155                deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
156        }
157    
158        /** Warn about unchecked operation.
159         *  @param pos        Position to be used for error reporting.
160         *  @param msg        A string describing the problem.
161         */
162        public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
163            if (!lint.isSuppressed(LintCategory.UNCHECKED))
164                uncheckedHandler.report(pos, msg, args);
165        }
166    
167        /**
168         * Report any deferred diagnostics.
169         */
170        public void reportDeferredDiagnostics() {
171            deprecationHandler.reportDeferredDiagnostic();
172            uncheckedHandler.reportDeferredDiagnostic();
173        }
174    
175    
176        /** Report a failure to complete a class.
177         *  @param pos        Position to be used for error reporting.
178         *  @param ex         The failure to report.
179         */
180        public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
181            log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
182            if (ex instanceof ClassReader.BadClassFile) throw new Abort();
183            else return syms.errType;
184        }
185    
186        /** Report a type error.
187         *  @param pos        Position to be used for error reporting.
188         *  @param problem    A string describing the error.
189         *  @param found      The type that was found.
190         *  @param req        The type that was required.
191         */
192        Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
193            log.error(pos, "prob.found.req",
194                      problem, found, req);
195            return types.createErrorType(found);
196        }
197    
198        Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
199            log.error(pos, "prob.found.req.1", problem, found, req, explanation);
200            return types.createErrorType(found);
201        }
202    
203        /** Report an error that wrong type tag was found.
204         *  @param pos        Position to be used for error reporting.
205         *  @param required   An internationalized string describing the type tag
206         *                    required.
207         *  @param found      The type that was found.
208         */
209        Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
210            log.error(pos, "type.found.req", found, required);
211            return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
212        }
213    
214        /** Report an error that symbol cannot be referenced before super
215         *  has been called.
216         *  @param pos        Position to be used for error reporting.
217         *  @param sym        The referenced symbol.
218         */
219        void earlyRefError(DiagnosticPosition pos, Symbol sym) {
220            log.error(pos, "cant.ref.before.ctor.called", sym);
221        }
222    
223        /** Report duplicate declaration error.
224         */
225        void duplicateError(DiagnosticPosition pos, Symbol sym) {
226            if (!sym.type.isErroneous()) {
227                log.error(pos, "already.defined", sym, sym.location());
228            }
229        }
230    
231        /** Report array/varargs duplicate declaration
232         */
233        void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
234            if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
235                log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
236            }
237        }
238    
239    /* ************************************************************************
240     * duplicate declaration checking
241     *************************************************************************/
242    
243        /** Check that variable does not hide variable with same name in
244         *  immediately enclosing local scope.
245         *  @param pos           Position for error reporting.
246         *  @param v             The symbol.
247         *  @param s             The scope.
248         */
249        void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
250            if (s.next != null) {
251                for (Scope.Entry e = s.next.lookup(v.name);
252                     e.scope != null && e.sym.owner == v.owner;
253                     e = e.next()) {
254                    if (e.sym.kind == VAR &&
255                        (e.sym.owner.kind & (VAR | MTH)) != 0 &&
256                        v.name != names.error) {
257                        duplicateError(pos, e.sym);
258                        return;
259                    }
260                }
261            }
262        }
263    
264        /** Check that a class or interface does not hide a class or
265         *  interface with same name in immediately enclosing local scope.
266         *  @param pos           Position for error reporting.
267         *  @param c             The symbol.
268         *  @param s             The scope.
269         */
270        void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
271            if (s.next != null) {
272                for (Scope.Entry e = s.next.lookup(c.name);
273                     e.scope != null && e.sym.owner == c.owner;
274                     e = e.next()) {
275                    if (e.sym.kind == TYP &&
276                        (e.sym.owner.kind & (VAR | MTH)) != 0 &&
277                        c.name != names.error) {
278                        duplicateError(pos, e.sym);
279                        return;
280                    }
281                }
282            }
283        }
284    
285        /** Check that class does not have the same name as one of
286         *  its enclosing classes, or as a class defined in its enclosing scope.
287         *  return true if class is unique in its enclosing scope.
288         *  @param pos           Position for error reporting.
289         *  @param name          The class name.
290         *  @param s             The enclosing scope.
291         */
292        boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
293            for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
294                if (e.sym.kind == TYP && e.sym.name != names.error) {
295                    duplicateError(pos, e.sym);
296                    return false;
297                }
298            }
299            for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
300                if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
301                    duplicateError(pos, sym);
302                    return true;
303                }
304            }
305            return true;
306        }
307    
308    /* *************************************************************************
309     * Class name generation
310     **************************************************************************/
311    
312        /** Return name of local class.
313         *  This is of the form    <enclClass> $ n <classname>
314         *  where
315         *    enclClass is the flat name of the enclosing class,
316         *    classname is the simple name of the local class
317         */
318        Name localClassName(ClassSymbol c) {
319            for (int i=1; ; i++) {
320                Name flatname = names.
321                    fromString("" + c.owner.enclClass().flatname +
322                               target.syntheticNameChar() + i +
323                               c.name);
324                if (compiled.get(flatname) == null) return flatname;
325            }
326        }
327    
328    /* *************************************************************************
329     * Type Checking
330     **************************************************************************/
331    
332        /** Check that a given type is assignable to a given proto-type.
333         *  If it is, return the type, otherwise return errType.
334         *  @param pos        Position to be used for error reporting.
335         *  @param found      The type that was found.
336         *  @param req        The type that was required.
337         */
338        Type checkType(DiagnosticPosition pos, Type found, Type req) {
339            if (req.tag == ERROR)
340                return req;
341            if (found.tag == FORALL)
342                return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
343            if (req.tag == NONE)
344                return found;
345            if (types.isAssignable(found, req, convertWarner(pos, found, req)))
346                return found;
347            if (found.tag <= DOUBLE && req.tag <= DOUBLE)
348                return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
349            if (found.isSuperBound()) {
350                log.error(pos, "assignment.from.super-bound", found);
351                return types.createErrorType(found);
352            }
353            if (req.isExtendsBound()) {
354                log.error(pos, "assignment.to.extends-bound", req);
355                return types.createErrorType(found);
356            }
357            return typeError(pos, diags.fragment("incompatible.types"), found, req);
358        }
359    
360        /** Instantiate polymorphic type to some prototype, unless
361         *  prototype is `anyPoly' in which case polymorphic type
362         *  is returned unchanged.
363         */
364        Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
365            if (pt == Infer.anyPoly && complexInference) {
366                return t;
367            } else if (pt == Infer.anyPoly || pt.tag == NONE) {
368                Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
369                return instantiatePoly(pos, t, newpt, warn);
370            } else if (pt.tag == ERROR) {
371                return pt;
372            } else {
373                try {
374                    return infer.instantiateExpr(t, pt, warn);
375                } catch (Infer.NoInstanceException ex) {
376                    if (ex.isAmbiguous) {
377                        JCDiagnostic d = ex.getDiagnostic();
378                        log.error(pos,
379                                  "undetermined.type" + (d!=null ? ".1" : ""),
380                                  t, d);
381                        return types.createErrorType(pt);
382                    } else {
383                        JCDiagnostic d = ex.getDiagnostic();
384                        return typeError(pos,
385                                         diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
386                                         t, pt);
387                    }
388                }
389            }
390        }
391    
392        /** Check that a given type can be cast to a given target type.
393         *  Return the result of the cast.
394         *  @param pos        Position to be used for error reporting.
395         *  @param found      The type that is being cast.
396         *  @param req        The target type of the cast.
397         */
398        Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
399            if (found.tag == FORALL) {
400                instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
401                return req;
402            } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
403                return req;
404            } else {
405                return typeError(pos,
406                                 diags.fragment("inconvertible.types"),
407                                 found, req);
408            }
409        }
410    //where
411            /** Is type a type variable, or a (possibly multi-dimensional) array of
412             *  type variables?
413             */
414            boolean isTypeVar(Type t) {
415                return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
416            }
417    
418        /** Check that a type is within some bounds.
419         *
420         *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
421         *  type argument.
422         *  @param pos           Position to be used for error reporting.
423         *  @param a             The type that should be bounded by bs.
424         *  @param bs            The bound.
425         */
426        private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
427             if (a.isUnbound()) {
428                 return;
429             } else if (a.tag != WILDCARD) {
430                 a = types.upperBound(a);
431                 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
432                     if (!types.isSubtype(a, l.head)) {
433                         log.error(pos, "not.within.bounds", a);
434                         return;
435                     }
436                 }
437             } else if (a.isExtendsBound()) {
438                 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
439                     log.error(pos, "not.within.bounds", a);
440             } else if (a.isSuperBound()) {
441                 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
442                     log.error(pos, "not.within.bounds", a);
443             }
444         }
445    
446        /** Check that a type is within some bounds.
447         *
448         *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
449         *  type argument.
450         *  @param pos           Position to be used for error reporting.
451         *  @param a             The type that should be bounded by bs.
452         *  @param bs            The bound.
453         */
454        private void checkCapture(JCTypeApply tree) {
455            List<JCExpression> args = tree.getTypeArguments();
456            for (Type arg : types.capture(tree.type).getTypeArguments()) {
457                if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
458                    log.error(args.head.pos, "not.within.bounds", args.head.type);
459                    break;
460                }
461                args = args.tail;
462            }
463         }
464    
465        /** Check that type is different from 'void'.
466         *  @param pos           Position to be used for error reporting.
467         *  @param t             The type to be checked.
468         */
469        Type checkNonVoid(DiagnosticPosition pos, Type t) {
470            if (t.tag == VOID) {
471                log.error(pos, "void.not.allowed.here");
472                return types.createErrorType(t);
473            } else {
474                return t;
475            }
476        }
477    
478        /** Check that type is a class or interface type.
479         *  @param pos           Position to be used for error reporting.
480         *  @param t             The type to be checked.
481         */
482        Type checkClassType(DiagnosticPosition pos, Type t) {
483            if (t.tag != CLASS && t.tag != ERROR)
484                return typeTagError(pos,
485                                    diags.fragment("type.req.class"),
486                                    (t.tag == TYPEVAR)
487                                    ? diags.fragment("type.parameter", t)
488                                    : t);
489            else
490                return t;
491        }
492    
493        /** Check that type is a class or interface type.
494         *  @param pos           Position to be used for error reporting.
495         *  @param t             The type to be checked.
496         *  @param noBounds    True if type bounds are illegal here.
497         */
498        Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
499            t = checkClassType(pos, t);
500            if (noBounds && t.isParameterized()) {
501                List<Type> args = t.getTypeArguments();
502                while (args.nonEmpty()) {
503                    if (args.head.tag == WILDCARD)
504                        return typeTagError(pos,
505                                            log.getLocalizedString("type.req.exact"),
506                                            args.head);
507                    args = args.tail;
508                }
509            }
510            return t;
511        }
512    
513        /** Check that type is a reifiable class, interface or array type.
514         *  @param pos           Position to be used for error reporting.
515         *  @param t             The type to be checked.
516         */
517        Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
518            if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
519                return typeTagError(pos,
520                                    diags.fragment("type.req.class.array"),
521                                    t);
522            } else if (!types.isReifiable(t)) {
523                log.error(pos, "illegal.generic.type.for.instof");
524                return types.createErrorType(t);
525            } else {
526                return t;
527            }
528        }
529    
530        /** Check that type is a reference type, i.e. a class, interface or array type
531         *  or a type variable.
532         *  @param pos           Position to be used for error reporting.
533         *  @param t             The type to be checked.
534         */
535        Type checkRefType(DiagnosticPosition pos, Type t) {
536            switch (t.tag) {
537            case CLASS:
538            case ARRAY:
539            case TYPEVAR:
540            case WILDCARD:
541            case ERROR:
542                return t;
543            default:
544                return typeTagError(pos,
545                                    diags.fragment("type.req.ref"),
546                                    t);
547            }
548        }
549    
550        /** Check that type is a null or reference type.
551         *  @param pos           Position to be used for error reporting.
552         *  @param t             The type to be checked.
553         */
554        Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
555            switch (t.tag) {
556            case CLASS:
557            case ARRAY:
558            case TYPEVAR:
559            case WILDCARD:
560            case BOT:
561            case ERROR:
562                return t;
563            default:
564                return typeTagError(pos,
565                                    diags.fragment("type.req.ref"),
566                                    t);
567            }
568        }
569    
570        /** Check that flag set does not contain elements of two conflicting sets. s
571         *  Return true if it doesn't.
572         *  @param pos           Position to be used for error reporting.
573         *  @param flags         The set of flags to be checked.
574         *  @param set1          Conflicting flags set #1.
575         *  @param set2          Conflicting flags set #2.
576         */
577        boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
578            if ((flags & set1) != 0 && (flags & set2) != 0) {
579                log.error(pos,
580                          "illegal.combination.of.modifiers",
581                          asFlagSet(TreeInfo.firstFlag(flags & set1)),
582                          asFlagSet(TreeInfo.firstFlag(flags & set2)));
583                return false;
584            } else
585                return true;
586        }
587    
588        /** Check that given modifiers are legal for given symbol and
589         *  return modifiers together with any implicit modififiers for that symbol.
590         *  Warning: we can't use flags() here since this method
591         *  is called during class enter, when flags() would cause a premature
592         *  completion.
593         *  @param pos           Position to be used for error reporting.
594         *  @param flags         The set of modifiers given in a definition.
595         *  @param sym           The defined symbol.
596         */
597        long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
598            long mask;
599            long implicit = 0;
600            switch (sym.kind) {
601            case VAR:
602                if (sym.owner.kind != TYP)
603                    mask = LocalVarFlags;
604                else if ((sym.owner.flags_field & INTERFACE) != 0)
605                    mask = implicit = InterfaceVarFlags;
606                else
607                    mask = VarFlags;
608                break;
609            case MTH:
610                if (sym.name == names.init) {
611                    if ((sym.owner.flags_field & ENUM) != 0) {
612                        // enum constructors cannot be declared public or
613                        // protected and must be implicitly or explicitly
614                        // private
615                        implicit = PRIVATE;
616                        mask = PRIVATE;
617                    } else
618                        mask = ConstructorFlags;
619                }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
620                    // mgr: methods in interfaces can have public abstract separable modifiers
621                    mask = AllowedInterfaceMethodFlags;
622                    // mgr: but only public abstract are implicit
623                    implicit = ImplicitInterfaceMethodFlags;
624                } else {
625                    mask = MethodFlags;
626                }
627                // Imply STRICTFP if owner has STRICTFP set.
628                if (((flags|implicit) & Flags.ABSTRACT) == 0)
629                  implicit |= sym.owner.flags_field & STRICTFP;
630                break;
631            case TYP:
632                if (sym.isLocal()) {
633                    mask = LocalClassFlags;
634                    if (sym.name.isEmpty()) { // Anonymous class
635                        // Anonymous classes in static methods are themselves static;
636                        // that's why we admit STATIC here.
637                        mask |= STATIC;
638                        // JLS: Anonymous classes are final.
639                        implicit |= FINAL;
640                    }
641                    if ((sym.owner.flags_field & STATIC) == 0 &&
642                        (flags & ENUM) != 0)
643                        log.error(pos, "enums.must.be.static");
644                } else if (sym.owner.kind == TYP) {
645                    mask = MemberClassFlags;
646                    if (sym.owner.owner.kind == PCK ||
647                        (sym.owner.flags_field & STATIC) != 0)
648                        mask |= STATIC;
649                    else if ((flags & ENUM) != 0)
650                        log.error(pos, "enums.must.be.static");
651                    // Nested interfaces and enums are always STATIC (Spec ???)
652                    if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
653                } else {
654                    mask = ClassFlags;
655                }
656                // Interfaces are always ABSTRACT
657                if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
658    
659                if ((flags & ENUM) != 0) {
660                    // enums can't be declared abstract or final
661                    mask &= ~(ABSTRACT | FINAL);
662                    implicit |= implicitEnumFinalFlag(tree);
663                }
664                // Imply STRICTFP if owner has STRICTFP set.
665                implicit |= sym.owner.flags_field & STRICTFP;
666                break;
667            default:
668                throw new AssertionError();
669            }
670            long illegal = flags & StandardFlags & ~mask;
671            if (illegal != 0) {
672                if ((illegal & INTERFACE) != 0) {
673                    log.error(pos, "intf.not.allowed.here");
674                    mask |= INTERFACE;
675                }
676                else {
677                    log.error(pos,
678                              "mod.not.allowed.here", asFlagSet(illegal));
679                }
680            }
681            else if ((sym.kind == TYP ||
682                      // ISSUE: Disallowing abstract&private is no longer appropriate
683                      // in the presence of inner classes. Should it be deleted here?
684                      checkDisjoint(pos, flags,
685                                    ABSTRACT,
686                                    PRIVATE | STATIC))
687                     &&
688                     checkDisjoint(pos, flags,
689                                   ABSTRACT | INTERFACE,
690                                   FINAL | NATIVE | SYNCHRONIZED)
691                     &&
692                     checkDisjoint(pos, flags,
693                                   PUBLIC,
694                                   PRIVATE | PROTECTED)
695                     &&
696                     checkDisjoint(pos, flags,
697                                   PRIVATE,
698                                   PUBLIC | PROTECTED)
699                     &&
700                     checkDisjoint(pos, flags,
701                                   FINAL,
702                                   VOLATILE)
703                     &&
704                     (sym.kind == TYP ||
705                      checkDisjoint(pos, flags,
706                                    ABSTRACT | NATIVE,
707                                    STRICTFP))) {
708                // skip
709            }
710            return flags & (mask | ~StandardFlags) | implicit;
711        }
712    
713    
714        /** Determine if this enum should be implicitly final.
715         *
716         *  If the enum has no specialized enum contants, it is final.
717         *
718         *  If the enum does have specialized enum contants, it is
719         *  <i>not</i> final.
720         */
721        private long implicitEnumFinalFlag(JCTree tree) {
722            if (tree.getTag() != JCTree.CLASSDEF) return 0;
723            class SpecialTreeVisitor extends JCTree.Visitor {
724                boolean specialized;
725                SpecialTreeVisitor() {
726                    this.specialized = false;
727                };
728    
729                public void visitTree(JCTree tree) { /* no-op */ }
730    
731                public void visitVarDef(JCVariableDecl tree) {
732                    if ((tree.mods.flags & ENUM) != 0) {
733                        if (tree.init instanceof JCNewClass &&
734                            ((JCNewClass) tree.init).def != null) {
735                            specialized = true;
736                        }
737                    }
738                }
739            }
740    
741            SpecialTreeVisitor sts = new SpecialTreeVisitor();
742            JCClassDecl cdef = (JCClassDecl) tree;
743            for (JCTree defs: cdef.defs) {
744                defs.accept(sts);
745                if (sts.specialized) return 0;
746            }
747            return FINAL;
748        }
749    
750    /* *************************************************************************
751     * Type Validation
752     **************************************************************************/
753    
754        /** Validate a type expression. That is,
755         *  check that all type arguments of a parametric type are within
756         *  their bounds. This must be done in a second phase after type attributon
757         *  since a class might have a subclass as type parameter bound. E.g:
758         *
759         *  class B<A extends C> { ... }
760         *  class C extends B<C> { ... }
761         *
762         *  and we can't make sure that the bound is already attributed because
763         *  of possible cycles.
764         */
765        private Validator validator = new Validator();
766    
767        /** Visitor method: Validate a type expression, if it is not null, catching
768         *  and reporting any completion failures.
769         */
770        void validate(JCTree tree, Env<AttrContext> env) {
771            try {
772                if (tree != null) {
773                    validator.env = env;
774                    tree.accept(validator);
775                    checkRaw(tree, env);
776                }
777            } catch (CompletionFailure ex) {
778                completionError(tree.pos(), ex);
779            }
780        }
781        //where
782        void checkRaw(JCTree tree, Env<AttrContext> env) {
783            if (lint.isEnabled(Lint.LintCategory.RAW) &&
784                tree.type.tag == CLASS &&
785                !env.enclClass.name.isEmpty() &&  //anonymous or intersection
786                tree.type.isRaw()) {
787                log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
788            }
789        }
790    
791        /** Visitor method: Validate a list of type expressions.
792         */
793        void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
794            for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
795                validate(l.head, env);
796        }
797    
798        /** A visitor class for type validation.
799         */
800        class Validator extends JCTree.Visitor {
801    
802            public void visitTypeArray(JCArrayTypeTree tree) {
803                validate(tree.elemtype, env);
804            }
805    
806            public void visitTypeApply(JCTypeApply tree) {
807                if (tree.type.tag == CLASS) {
808                    List<Type> formals = tree.type.tsym.type.allparams();
809                    List<Type> actuals = tree.type.allparams();
810                    List<JCExpression> args = tree.arguments;
811                    List<Type> forms = tree.type.tsym.type.getTypeArguments();
812                    ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
813    
814                    // For matching pairs of actual argument types `a' and
815                    // formal type parameters with declared bound `b' ...
816                    while (args.nonEmpty() && forms.nonEmpty()) {
817                        validate(args.head, env);
818    
819                        // exact type arguments needs to know their
820                        // bounds (for upper and lower bound
821                        // calculations).  So we create new TypeVars with
822                        // bounds substed with actuals.
823                        tvars_buf.append(types.substBound(((TypeVar)forms.head),
824                                                          formals,
825                                                          actuals));
826    
827                        args = args.tail;
828                        forms = forms.tail;
829                    }
830    
831                    args = tree.arguments;
832                    List<Type> tvars_cap = types.substBounds(formals,
833                                              formals,
834                                              types.capture(tree.type).allparams());
835                    while (args.nonEmpty() && tvars_cap.nonEmpty()) {
836                        // Let the actual arguments know their bound
837                        args.head.type.withTypeVar((TypeVar)tvars_cap.head);
838                        args = args.tail;
839                        tvars_cap = tvars_cap.tail;
840                    }
841    
842                    args = tree.arguments;
843                    List<TypeVar> tvars = tvars_buf.toList();
844    
845                    while (args.nonEmpty() && tvars.nonEmpty()) {
846                        checkExtends(args.head.pos(),
847                                     args.head.type,
848                                     tvars.head);
849                        args = args.tail;
850                        tvars = tvars.tail;
851                    }
852    
853                    checkCapture(tree);
854    
855                    // Check that this type is either fully parameterized, or
856                    // not parameterized at all.
857                    if (tree.type.getEnclosingType().isRaw())
858                        log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
859                    if (tree.clazz.getTag() == JCTree.SELECT)
860                        visitSelectInternal((JCFieldAccess)tree.clazz);
861                }
862            }
863    
864            public void visitTypeParameter(JCTypeParameter tree) {
865                validate(tree.bounds, env);
866                checkClassBounds(tree.pos(), tree.type);
867            }
868    
869            @Override
870            public void visitWildcard(JCWildcard tree) {
871                if (tree.inner != null)
872                    validate(tree.inner, env);
873            }
874    
875            public void visitSelect(JCFieldAccess tree) {
876                if (tree.type.tag == CLASS) {
877                    visitSelectInternal(tree);
878    
879                    // Check that this type is either fully parameterized, or
880                    // not parameterized at all.
881                    if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
882                        log.error(tree.pos(), "improperly.formed.type.param.missing");
883                }
884            }
885            public void visitSelectInternal(JCFieldAccess tree) {
886                if (tree.type.tsym.isStatic() &&
887                    tree.selected.type.isParameterized()) {
888                    // The enclosing type is not a class, so we are
889                    // looking at a static member type.  However, the
890                    // qualifying expression is parameterized.
891                    log.error(tree.pos(), "cant.select.static.class.from.param.type");
892                } else {
893                    // otherwise validate the rest of the expression
894                    tree.selected.accept(this);
895                }
896            }
897    
898            /** Default visitor method: do nothing.
899             */
900            public void visitTree(JCTree tree) {
901            }
902    
903            Env<AttrContext> env;
904        }
905    
906    /* *************************************************************************
907     * Exception checking
908     **************************************************************************/
909    
910        /* The following methods treat classes as sets that contain
911         * the class itself and all their subclasses
912         */
913    
914        /** Is given type a subtype of some of the types in given list?
915         */
916        boolean subset(Type t, List<Type> ts) {
917            for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
918                if (types.isSubtype(t, l.head)) return true;
919            return false;
920        }
921    
922        /** Is given type a subtype or supertype of
923         *  some of the types in given list?
924         */
925        boolean intersects(Type t, List<Type> ts) {
926            for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
927                if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
928            return false;
929        }
930    
931        /** Add type set to given type list, unless it is a subclass of some class
932         *  in the list.
933         */
934        List<Type> incl(Type t, List<Type> ts) {
935            return subset(t, ts) ? ts : excl(t, ts).prepend(t);
936        }
937    
938        /** Remove type set from type set list.
939         */
940        List<Type> excl(Type t, List<Type> ts) {
941            if (ts.isEmpty()) {
942                return ts;
943            } else {
944                List<Type> ts1 = excl(t, ts.tail);
945                if (types.isSubtype(ts.head, t)) return ts1;
946                else if (ts1 == ts.tail) return ts;
947                else return ts1.prepend(ts.head);
948            }
949        }
950    
951        /** Form the union of two type set lists.
952         */
953        List<Type> union(List<Type> ts1, List<Type> ts2) {
954            List<Type> ts = ts1;
955            for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
956                ts = incl(l.head, ts);
957            return ts;
958        }
959    
960        /** Form the difference of two type lists.
961         */
962        List<Type> diff(List<Type> ts1, List<Type> ts2) {
963            List<Type> ts = ts1;
964            for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
965                ts = excl(l.head, ts);
966            return ts;
967        }
968    
969        /** Form the intersection of two type lists.
970         */
971        public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
972            List<Type> ts = List.nil();
973            for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
974                if (subset(l.head, ts2)) ts = incl(l.head, ts);
975            for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
976                if (subset(l.head, ts1)) ts = incl(l.head, ts);
977            return ts;
978        }
979    
980        /** Is exc an exception symbol that need not be declared?
981         */
982        boolean isUnchecked(ClassSymbol exc) {
983            return
984                exc.kind == ERR ||
985                exc.isSubClass(syms.errorType.tsym, types) ||
986                exc.isSubClass(syms.runtimeExceptionType.tsym, types);
987        }
988    
989        /** Is exc an exception type that need not be declared?
990         */
991        boolean isUnchecked(Type exc) {
992            return
993                (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
994                (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
995                exc.tag == BOT;
996        }
997    
998        /** Same, but handling completion failures.
999         */
1000        boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1001            try {
1002                return isUnchecked(exc);
1003            } catch (CompletionFailure ex) {
1004                completionError(pos, ex);
1005                return true;
1006            }
1007        }
1008    
1009        /** Is exc handled by given exception list?
1010         */
1011        boolean isHandled(Type exc, List<Type> handled) {
1012            return isUnchecked(exc) || subset(exc, handled);
1013        }
1014    
1015        /** Return all exceptions in thrown list that are not in handled list.
1016         *  @param thrown     The list of thrown exceptions.
1017         *  @param handled    The list of handled exceptions.
1018         */
1019        List<Type> unHandled(List<Type> thrown, List<Type> handled) {
1020            List<Type> unhandled = List.nil();
1021            for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1022                if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1023            return unhandled;
1024        }
1025    
1026    /* *************************************************************************
1027     * Overriding/Implementation checking
1028     **************************************************************************/
1029    
1030        /** The level of access protection given by a flag set,
1031         *  where PRIVATE is highest and PUBLIC is lowest.
1032         */
1033        static int protection(long flags) {
1034            switch ((short)(flags & AccessFlags)) {
1035            case PRIVATE: return 3;
1036            case PROTECTED: return 1;
1037            default:
1038            case PUBLIC: return 0;
1039            case 0: return 2;
1040            }
1041        }
1042    
1043        /** A customized "cannot override" error message.
1044         *  @param m      The overriding method.
1045         *  @param other  The overridden method.
1046         *  @return       An internationalized string.
1047         */
1048        Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1049            String key;
1050            if ((other.owner.flags() & INTERFACE) == 0)
1051                key = "cant.override";
1052            else if ((m.owner.flags() & INTERFACE) == 0)
1053                key = "cant.implement";
1054            else
1055                key = "clashes.with";
1056            return diags.fragment(key, m, m.location(), other, other.location());
1057        }
1058    
1059        /** A customized "override" warning message.
1060         *  @param m      The overriding method.
1061         *  @param other  The overridden method.
1062         *  @return       An internationalized string.
1063         */
1064        Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1065            String key;
1066            if ((other.owner.flags() & INTERFACE) == 0)
1067                key = "unchecked.override";
1068            else if ((m.owner.flags() & INTERFACE) == 0)
1069                key = "unchecked.implement";
1070            else
1071                key = "unchecked.clash.with";
1072            return diags.fragment(key, m, m.location(), other, other.location());
1073        }
1074    
1075        /** A customized "override" warning message.
1076         *  @param m      The overriding method.
1077         *  @param other  The overridden method.
1078         *  @return       An internationalized string.
1079         */
1080        Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1081            String key;
1082            if ((other.owner.flags() & INTERFACE) == 0)
1083                key = "varargs.override";
1084            else  if ((m.owner.flags() & INTERFACE) == 0)
1085                key = "varargs.implement";
1086            else
1087                key = "varargs.clash.with";
1088            return diags.fragment(key, m, m.location(), other, other.location());
1089        }
1090    
1091        /** Check that this method conforms with overridden method 'other'.
1092         *  where `origin' is the class where checking started.
1093         *  Complications:
1094         *  (1) Do not check overriding of synthetic methods
1095         *      (reason: they might be final).
1096         *      todo: check whether this is still necessary.
1097         *  (2) Admit the case where an interface proxy throws fewer exceptions
1098         *      than the method it implements. Augment the proxy methods with the
1099         *      undeclared exceptions in this case.
1100         *  (3) When generics are enabled, admit the case where an interface proxy
1101         *      has a result type
1102         *      extended by the result type of the method it implements.
1103         *      Change the proxies result type to the smaller type in this case.
1104         *
1105         *  @param tree         The tree from which positions
1106         *                      are extracted for errors.
1107         *  @param m            The overriding method.
1108         *  @param other        The overridden method.
1109         *  @param origin       The class of which the overriding method
1110         *                      is a member.
1111         */
1112        void checkOverride(JCTree tree,
1113                           MethodSymbol m,
1114                           MethodSymbol other,
1115                           ClassSymbol origin) {
1116            // Don't check overriding of synthetic methods or by bridge methods.
1117            if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1118                return;
1119            }
1120    
1121            // Error if static method overrides instance method (JLS 8.4.6.2).
1122            if ((m.flags() & STATIC) != 0 &&
1123                       (other.flags() & STATIC) == 0) {
1124                log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1125                          cannotOverride(m, other));
1126                return;
1127            }
1128    
1129            // Error if instance method overrides static or final
1130            // method (JLS 8.4.6.1).
1131            if ((other.flags() & FINAL) != 0 ||
1132                     (m.flags() & STATIC) == 0 &&
1133                     (other.flags() & STATIC) != 0) {
1134                log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1135                          cannotOverride(m, other),
1136                          asFlagSet(other.flags() & (FINAL | STATIC)));
1137                return;
1138            }
1139    
1140            if ((m.owner.flags() & ANNOTATION) != 0) {
1141                // handled in validateAnnotationMethod
1142                return;
1143            }
1144    
1145            // Error if overriding method has weaker access (JLS 8.4.6.3).
1146            if ((origin.flags() & INTERFACE) == 0 &&
1147                     protection(m.flags()) > protection(other.flags())) {
1148                log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1149                          cannotOverride(m, other),
1150                          other.flags() == 0 ?
1151                              Flag.PACKAGE :
1152                              asFlagSet(other.flags() & AccessFlags));
1153                return;
1154            }
1155    
1156            // mgr: checking that implementing and overriding methods are
1157            //      separable if the method in the superclass or interface is separable
1158            if (((other.flags() & SEPARABLE) != 0) &&
1159                ((m.flags() & SEPARABLE) == 0)) {
1160                log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.not.escapesafe",
1161                          cannotOverride(m, other));
1162                return;
1163            }
1164    
1165            Type mt = types.memberType(origin.type, m);
1166            Type ot = types.memberType(origin.type, other);
1167            // Error if overriding result type is different
1168            // (or, in the case of generics mode, not a subtype) of
1169            // overridden result type. We have to rename any type parameters
1170            // before comparing types.
1171            List<Type> mtvars = mt.getTypeArguments();
1172            List<Type> otvars = ot.getTypeArguments();
1173            Type mtres = mt.getReturnType();
1174            Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1175    
1176            overrideWarner.warned = false;
1177            boolean resultTypesOK =
1178                types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1179            if (!resultTypesOK) {
1180                if (!source.allowCovariantReturns() &&
1181                    m.owner != origin &&
1182                    m.owner.isSubClass(other.owner, types)) {
1183                    // allow limited interoperability with covariant returns
1184                } else {
1185                    typeError(TreeInfo.diagnosticPositionFor(m, tree),
1186                              diags.fragment("override.incompatible.ret",
1187                                             cannotOverride(m, other)),
1188                              mtres, otres);
1189                    return;
1190                }
1191            } else if (overrideWarner.warned) {
1192                warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1193                              "prob.found.req",
1194                              diags.fragment("override.unchecked.ret",
1195                                                  uncheckedOverrides(m, other)),
1196                              mtres, otres);
1197            }
1198    
1199            // Error if overriding method throws an exception not reported
1200            // by overridden method.
1201            List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1202            List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
1203            if (unhandled.nonEmpty()) {
1204                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1205                          "override.meth.doesnt.throw",
1206                          cannotOverride(m, other),
1207                          unhandled.head);
1208                return;
1209            }
1210    
1211            // Optional warning if varargs don't agree
1212            if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1213                && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
1214                log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1215                            ((m.flags() & Flags.VARARGS) != 0)
1216                            ? "override.varargs.missing"
1217                            : "override.varargs.extra",
1218                            varargsOverrides(m, other));
1219            }
1220    
1221            // Warn if instance method overrides bridge method (compiler spec ??)
1222            if ((other.flags() & BRIDGE) != 0) {
1223                log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1224                            uncheckedOverrides(m, other));
1225            }
1226    
1227            // Warn if a deprecated method overridden by a non-deprecated one.
1228            if ((other.flags() & DEPRECATED) != 0
1229                && (m.flags() & DEPRECATED) == 0
1230                && m.outermostClass() != other.outermostClass()
1231                && !isDeprecatedOverrideIgnorable(other, origin)) {
1232                warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
1233            }
1234        }
1235        // where
1236            private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1237                // If the method, m, is defined in an interface, then ignore the issue if the method
1238                // is only inherited via a supertype and also implemented in the supertype,
1239                // because in that case, we will rediscover the issue when examining the method
1240                // in the supertype.
1241                // If the method, m, is not defined in an interface, then the only time we need to
1242                // address the issue is when the method is the supertype implemementation: any other
1243                // case, we will have dealt with when examining the supertype classes
1244                ClassSymbol mc = m.enclClass();
1245                Type st = types.supertype(origin.type);
1246                if (st.tag != CLASS)
1247                    return true;
1248                MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1249    
1250                if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1251                    List<Type> intfs = types.interfaces(origin.type);
1252                    return (intfs.contains(mc.type) ? false : (stimpl != null));
1253                }
1254                else
1255                    return (stimpl != m);
1256            }
1257    
1258    
1259        // used to check if there were any unchecked conversions
1260        Warner overrideWarner = new Warner();
1261    
1262        /** Check that a class does not inherit two concrete methods
1263         *  with the same signature.
1264         *  @param pos          Position to be used for error reporting.
1265         *  @param site         The class type to be checked.
1266         */
1267        public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1268            Type sup = types.supertype(site);
1269            if (sup.tag != CLASS) return;
1270    
1271            for (Type t1 = sup;
1272                 t1.tsym.type.isParameterized();
1273                 t1 = types.supertype(t1)) {
1274                for (Scope.Entry e1 = t1.tsym.members().elems;
1275                     e1 != null;
1276                     e1 = e1.sibling) {
1277                    Symbol s1 = e1.sym;
1278                    if (s1.kind != MTH ||
1279                        (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1280                        !s1.isInheritedIn(site.tsym, types) ||
1281                        ((MethodSymbol)s1).implementation(site.tsym,
1282                                                          types,
1283                                                          true) != s1)
1284                        continue;
1285                    Type st1 = types.memberType(t1, s1);
1286                    int s1ArgsLength = st1.getParameterTypes().length();
1287                    if (st1 == s1.type) continue;
1288    
1289                    for (Type t2 = sup;
1290                         t2.tag == CLASS;
1291                         t2 = types.supertype(t2)) {
1292                        for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
1293                             e2.scope != null;
1294                             e2 = e2.next()) {
1295                            Symbol s2 = e2.sym;
1296                            if (s2 == s1 ||
1297                                s2.kind != MTH ||
1298                                (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1299                                s2.type.getParameterTypes().length() != s1ArgsLength ||
1300                                !s2.isInheritedIn(site.tsym, types) ||
1301                                ((MethodSymbol)s2).implementation(site.tsym,
1302                                                                  types,
1303                                                                  true) != s2)
1304                                continue;
1305                            Type st2 = types.memberType(t2, s2);
1306                            if (types.overrideEquivalent(st1, st2))
1307                                log.error(pos, "concrete.inheritance.conflict",
1308                                          s1, t1, s2, t2, sup);
1309                        }
1310                    }
1311                }
1312            }
1313        }
1314    
1315        /** Check that classes (or interfaces) do not each define an abstract
1316         *  method with same name and arguments but incompatible return types.
1317         *  @param pos          Position to be used for error reporting.
1318         *  @param t1           The first argument type.
1319         *  @param t2           The second argument type.
1320         */
1321        public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1322                                                Type t1,
1323                                                Type t2) {
1324            return checkCompatibleAbstracts(pos, t1, t2,
1325                                            types.makeCompoundType(t1, t2));
1326        }
1327    
1328        public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1329                                                Type t1,
1330                                                Type t2,
1331                                                Type site) {
1332            Symbol sym = firstIncompatibility(t1, t2, site);
1333            if (sym != null) {
1334                log.error(pos, "types.incompatible.diff.ret",
1335                          t1, t2, sym.name +
1336                          "(" + types.memberType(t2, sym).getParameterTypes() + ")");
1337                return false;
1338            }
1339            return true;
1340        }
1341    
1342        /** Return the first method which is defined with same args
1343         *  but different return types in two given interfaces, or null if none
1344         *  exists.
1345         *  @param t1     The first type.
1346         *  @param t2     The second type.
1347         *  @param site   The most derived type.
1348         *  @returns symbol from t2 that conflicts with one in t1.
1349         */
1350        private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
1351            Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
1352            closure(t1, interfaces1);
1353            Map<TypeSymbol,Type> interfaces2;
1354            if (t1 == t2)
1355                interfaces2 = interfaces1;
1356            else
1357                closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
1358    
1359            for (Type t3 : interfaces1.values()) {
1360                for (Type t4 : interfaces2.values()) {
1361                    Symbol s = firstDirectIncompatibility(t3, t4, site);
1362                    if (s != null) return s;
1363                }
1364            }
1365            return null;
1366        }
1367    
1368        /** Compute all the supertypes of t, indexed by type symbol. */
1369        private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1370            if (t.tag != CLASS) return;
1371            if (typeMap.put(t.tsym, t) == null) {
1372                closure(types.supertype(t), typeMap);
1373                for (Type i : types.interfaces(t))
1374                    closure(i, typeMap);
1375            }
1376        }
1377    
1378        /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1379        private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1380            if (t.tag != CLASS) return;
1381            if (typesSkip.get(t.tsym) != null) return;
1382            if (typeMap.put(t.tsym, t) == null) {
1383                closure(types.supertype(t), typesSkip, typeMap);
1384                for (Type i : types.interfaces(t))
1385                    closure(i, typesSkip, typeMap);
1386            }
1387        }
1388    
1389        /** Return the first method in t2 that conflicts with a method from t1. */
1390        private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
1391            for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
1392                Symbol s1 = e1.sym;
1393                Type st1 = null;
1394                if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
1395                Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1396                if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1397                for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
1398                    Symbol s2 = e2.sym;
1399                    if (s1 == s2) continue;
1400                    if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
1401                    if (st1 == null) st1 = types.memberType(t1, s1);
1402                    Type st2 = types.memberType(t2, s2);
1403                    if (types.overrideEquivalent(st1, st2)) {
1404                        List<Type> tvars1 = st1.getTypeArguments();
1405                        List<Type> tvars2 = st2.getTypeArguments();
1406                        Type rt1 = st1.getReturnType();
1407                        Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1408                        boolean compat =
1409                            types.isSameType(rt1, rt2) ||
1410                            rt1.tag >= CLASS && rt2.tag >= CLASS &&
1411                            (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
1412                             types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
1413                             checkCommonOverriderIn(s1,s2,site);
1414                        if (!compat) return s2;
1415                    }
1416                }
1417            }
1418            return null;
1419        }
1420        //WHERE
1421        boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1422            Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
1423            Type st1 = types.memberType(site, s1);
1424            Type st2 = types.memberType(site, s2);
1425            closure(site, supertypes);
1426            for (Type t : supertypes.values()) {
1427                for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
1428                    Symbol s3 = e.sym;
1429                    if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1430                    Type st3 = types.memberType(site,s3);
1431                    if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
1432                        if (s3.owner == site.tsym) {
1433                            return true;
1434                        }
1435                        List<Type> tvars1 = st1.getTypeArguments();
1436                        List<Type> tvars2 = st2.getTypeArguments();
1437                        List<Type> tvars3 = st3.getTypeArguments();
1438                        Type rt1 = st1.getReturnType();
1439                        Type rt2 = st2.getReturnType();
1440                        Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
1441                        Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
1442                        boolean compat =
1443                            rt13.tag >= CLASS && rt23.tag >= CLASS &&
1444                            (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
1445                             types.covariantReturnType(rt23, rt2, Warner.noWarnings));
1446                        if (compat)
1447                            return true;
1448                    }
1449                }
1450            }
1451            return false;
1452        }
1453    
1454        /** Check that a given method conforms with any method it overrides.
1455         *  @param tree         The tree from which positions are extracted
1456         *                      for errors.
1457         *  @param m            The overriding method.
1458         */
1459        void checkOverride(JCTree tree, MethodSymbol m) {
1460            ClassSymbol origin = (ClassSymbol)m.owner;
1461            if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1462                if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1463                    log.error(tree.pos(), "enum.no.finalize");
1464                    return;
1465                }
1466            for (Type t = types.supertype(origin.type); t.tag == CLASS;
1467                 t = types.supertype(t)) {
1468                TypeSymbol c = t.tsym;
1469                Scope.Entry e = c.members().lookup(m.name);
1470                while (e.scope != null) {
1471                    if (m.overrides(e.sym, origin, types, false))
1472                        checkOverride(tree, m, (MethodSymbol)e.sym, origin);
1473                    else if (e.sym.isInheritedIn(origin, types) && !m.isConstructor()) {
1474                        Type er1 = m.erasure(types);
1475                        Type er2 = e.sym.erasure(types);
1476                        if (types.isSameType(er1,er2)) {
1477                                log.error(TreeInfo.diagnosticPositionFor(m, tree),
1478                                        "name.clash.same.erasure.no.override",
1479                                        m, m.location(),
1480                                        e.sym, e.sym.location());
1481                        }
1482                    }
1483                    e = e.next();
1484                }
1485            }
1486        }
1487    
1488        /** Check that all abstract members of given class have definitions.
1489         *  @param pos          Position to be used for error reporting.
1490         *  @param c            The class.
1491         */
1492        void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
1493            try {
1494                MethodSymbol undef = firstUndef(c, c);
1495                if (undef != null) {
1496                    if ((c.flags() & ENUM) != 0 &&
1497                        types.supertype(c.type).tsym == syms.enumSym &&
1498                        (c.flags() & FINAL) == 0) {
1499                        // add the ABSTRACT flag to an enum
1500                        c.flags_field |= ABSTRACT;
1501                    } else {
1502                        MethodSymbol undef1 =
1503                            new MethodSymbol(undef.flags(), undef.name,
1504                                             types.memberType(c.type, undef), undef.owner);
1505                        log.error(pos, "does.not.override.abstract",
1506                                  c, undef1, undef1.location());
1507                    }
1508                }
1509            } catch (CompletionFailure ex) {
1510                completionError(pos, ex);
1511            }
1512        }
1513    //where
1514            /** Return first abstract member of class `c' that is not defined
1515             *  in `impl', null if there is none.
1516             */
1517            private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
1518                MethodSymbol undef = null;
1519                // Do not bother to search in classes that are not abstract,
1520                // since they cannot have abstract members.
1521                if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
1522                    Scope s = c.members();
1523                    for (Scope.Entry e = s.elems;
1524                         undef == null && e != null;
1525                         e = e.sibling) {
1526                        if (e.sym.kind == MTH &&
1527                            (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
1528                            MethodSymbol absmeth = (MethodSymbol)e.sym;
1529                            MethodSymbol implmeth = absmeth.implementation(impl, types, true);
1530                            if (implmeth == null || implmeth == absmeth)
1531                                undef = absmeth;
1532                        }
1533                    }
1534                    if (undef == null) {
1535                        Type st = types.supertype(c.type);
1536                        if (st.tag == CLASS)
1537                            undef = firstUndef(impl, (ClassSymbol)st.tsym);
1538                    }
1539                    for (List<Type> l = types.interfaces(c.type);
1540                         undef == null && l.nonEmpty();
1541                         l = l.tail) {
1542                        undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
1543                    }
1544                }
1545                return undef;
1546            }
1547    
1548        /** Check for cyclic references. Issue an error if the
1549         *  symbol of the type referred to has a LOCKED flag set.
1550         *
1551         *  @param pos      Position to be used for error reporting.
1552         *  @param t        The type referred to.
1553         */
1554        void checkNonCyclic(DiagnosticPosition pos, Type t) {
1555            checkNonCyclicInternal(pos, t);
1556        }
1557    
1558    
1559        void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
1560            checkNonCyclic1(pos, t, new HashSet<TypeVar>());
1561        }
1562    
1563        private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) {
1564            final TypeVar tv;
1565            if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
1566                return;
1567            if (seen.contains(t)) {
1568                tv = (TypeVar)t;
1569                tv.bound = types.createErrorType(t);
1570                log.error(pos, "cyclic.inheritance", t);
1571            } else if (t.tag == TYPEVAR) {
1572                tv = (TypeVar)t;
1573                seen.add(tv);
1574                for (Type b : types.getBounds(tv))
1575                    checkNonCyclic1(pos, b, seen);
1576            }
1577        }
1578    
1579        /** Check for cyclic references. Issue an error if the
1580         *  symbol of the type referred to has a LOCKED flag set.
1581         *
1582         *  @param pos      Position to be used for error reporting.
1583         *  @param t        The type referred to.
1584         *  @returns        True if the check completed on all attributed classes
1585         */
1586        private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
1587            boolean complete = true; // was the check complete?
1588            //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
1589            Symbol c = t.tsym;
1590            if ((c.flags_field & ACYCLIC) != 0) return true;
1591    
1592            if ((c.flags_field & LOCKED) != 0) {
1593                noteCyclic(pos, (ClassSymbol)c);
1594            } else if (!c.type.isErroneous()) {
1595                try {
1596                    c.flags_field |= LOCKED;
1597                    if (c.type.tag == CLASS) {
1598                        ClassType clazz = (ClassType)c.type;
1599                        if (clazz.interfaces_field != null)
1600                            for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
1601                                complete &= checkNonCyclicInternal(pos, l.head);
1602                        if (clazz.supertype_field != null) {
1603                            Type st = clazz.supertype_field;
1604                            if (st != null && st.tag == CLASS)
1605                                complete &= checkNonCyclicInternal(pos, st);
1606                        }
1607                        if (c.owner.kind == TYP)
1608                            complete &= checkNonCyclicInternal(pos, c.owner.type);
1609                    }
1610                } finally {
1611                    c.flags_field &= ~LOCKED;
1612                }
1613            }
1614            if (complete)
1615                complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
1616            if (complete) c.flags_field |= ACYCLIC;
1617            return complete;
1618        }
1619    
1620        /** Note that we found an inheritance cycle. */
1621        private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
1622            log.error(pos, "cyclic.inheritance", c);
1623            for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
1624                l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
1625            Type st = types.supertype(c.type);
1626            if (st.tag == CLASS)
1627                ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
1628            c.type = types.createErrorType(c, c.type);
1629            c.flags_field |= ACYCLIC;
1630        }
1631    
1632        /** Check that all methods which implement some
1633         *  method conform to the method they implement.
1634         *  @param tree         The class definition whose members are checked.
1635         */
1636        void checkImplementations(JCClassDecl tree) {
1637            checkImplementations(tree, tree.sym);
1638        }
1639    //where
1640            /** Check that all methods which implement some
1641             *  method in `ic' conform to the method they implement.
1642             */
1643            void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
1644                ClassSymbol origin = tree.sym;
1645                for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
1646                    ClassSymbol lc = (ClassSymbol)l.head.tsym;
1647                    if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
1648                        for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
1649                            if (e.sym.kind == MTH &&
1650                                (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
1651                                MethodSymbol absmeth = (MethodSymbol)e.sym;
1652                                MethodSymbol implmeth = absmeth.implementation(origin, types, false);
1653                                if (implmeth != null && implmeth != absmeth &&
1654                                    (implmeth.owner.flags() & INTERFACE) ==
1655                                    (origin.flags() & INTERFACE)) {
1656                                    // don't check if implmeth is in a class, yet
1657                                    // origin is an interface. This case arises only
1658                                    // if implmeth is declared in Object. The reason is
1659                                    // that interfaces really don't inherit from
1660                                    // Object it's just that the compiler represents
1661                                    // things that way.
1662                                    checkOverride(tree, implmeth, absmeth, origin);
1663                                }
1664                            }
1665                        }
1666                    }
1667                }
1668            }
1669    
1670        /** Check that all abstract methods implemented by a class are
1671         *  mutually compatible.
1672         *  @param pos          Position to be used for error reporting.
1673         *  @param c            The class whose interfaces are checked.
1674         */
1675        void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
1676            List<Type> supertypes = types.interfaces(c);
1677            Type supertype = types.supertype(c);
1678            if (supertype.tag == CLASS &&
1679                (supertype.tsym.flags() & ABSTRACT) != 0)
1680                supertypes = supertypes.prepend(supertype);
1681            for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
1682                if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
1683                    !checkCompatibleAbstracts(pos, l.head, l.head, c))
1684                    return;
1685                for (List<Type> m = supertypes; m != l; m = m.tail)
1686                    if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
1687                        return;
1688            }
1689            checkCompatibleConcretes(pos, c);
1690        }
1691    
1692        /** Check that class c does not implement directly or indirectly
1693         *  the same parameterized interface with two different argument lists.
1694         *  @param pos          Position to be used for error reporting.
1695         *  @param type         The type whose interfaces are checked.
1696         */
1697        void checkClassBounds(DiagnosticPosition pos, Type type) {
1698            checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
1699        }
1700    //where
1701            /** Enter all interfaces of type `type' into the hash table `seensofar'
1702             *  with their class symbol as key and their type as value. Make
1703             *  sure no class is entered with two different types.
1704             */
1705            void checkClassBounds(DiagnosticPosition pos,
1706                                  Map<TypeSymbol,Type> seensofar,
1707                                  Type type) {
1708                if (type.isErroneous()) return;
1709                for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
1710                    Type it = l.head;
1711                    Type oldit = seensofar.put(it.tsym, it);
1712                    if (oldit != null) {
1713                        List<Type> oldparams = oldit.allparams();
1714                        List<Type> newparams = it.allparams();
1715                        if (!types.containsTypeEquivalent(oldparams, newparams))
1716                            log.error(pos, "cant.inherit.diff.arg",
1717                                      it.tsym, Type.toString(oldparams),
1718                                      Type.toString(newparams));
1719                    }
1720                    checkClassBounds(pos, seensofar, it);
1721                }
1722                Type st = types.supertype(type);
1723                if (st != null) checkClassBounds(pos, seensofar, st);
1724            }
1725    
1726        /** Enter interface into into set.
1727         *  If it existed already, issue a "repeated interface" error.
1728         */
1729        void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
1730            if (its.contains(it))
1731                log.error(pos, "repeated.interface");
1732            else {
1733                its.add(it);
1734            }
1735        }
1736    
1737    /* *************************************************************************
1738     * Check annotations
1739     **************************************************************************/
1740    
1741        /** Annotation types are restricted to primitives, String, an
1742         *  enum, an annotation, Class, Class<?>, Class<? extends
1743         *  Anything>, arrays of the preceding.
1744         */
1745        void validateAnnotationType(JCTree restype) {
1746            // restype may be null if an error occurred, so don't bother validating it
1747            if (restype != null) {
1748                validateAnnotationType(restype.pos(), restype.type);
1749            }
1750        }
1751    
1752        void validateAnnotationType(DiagnosticPosition pos, Type type) {
1753            if (type.isPrimitive()) return;
1754            if (types.isSameType(type, syms.stringType)) return;
1755            if ((type.tsym.flags() & Flags.ENUM) != 0) return;
1756            if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
1757            if (types.lowerBound(type).tsym == syms.classType.tsym) return;
1758            if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
1759                validateAnnotationType(pos, types.elemtype(type));
1760                return;
1761            }
1762            log.error(pos, "invalid.annotation.member.type");
1763        }
1764    
1765        /**
1766         * "It is also a compile-time error if any method declared in an
1767         * annotation type has a signature that is override-equivalent to
1768         * that of any public or protected method declared in class Object
1769         * or in the interface annotation.Annotation."
1770         *
1771         * @jls3 9.6 Annotation Types
1772         */
1773        void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
1774            for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
1775                Scope s = sup.tsym.members();
1776                for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
1777                    if (e.sym.kind == MTH &&
1778                        (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
1779                        types.overrideEquivalent(m.type, e.sym.type))
1780                        log.error(pos, "intf.annotation.member.clash", e.sym, sup);
1781                }
1782            }
1783        }
1784    
1785        /** Check the annotations of a symbol.
1786         */
1787        public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
1788            if (skipAnnotations) return;
1789            for (JCAnnotation a : annotations)
1790                validateAnnotation(a, s);
1791        }
1792    
1793        /** Check an annotation of a symbol.
1794         */
1795        public void validateAnnotation(JCAnnotation a, Symbol s) {
1796            validateAnnotation(a);
1797    
1798            if (!annotationApplicable(a, s))
1799                log.error(a.pos(), "annotation.type.not.applicable");
1800    
1801            if (a.annotationType.type.tsym == syms.overrideType.tsym) {
1802                if (!isOverrider(s))
1803                    log.error(a.pos(), "method.does.not.override.superclass");
1804            }
1805        }
1806    
1807        /** Is s a method symbol that overrides a method in a superclass? */
1808        boolean isOverrider(Symbol s) {
1809            if (s.kind != MTH || s.isStatic())
1810                return false;
1811            MethodSymbol m = (MethodSymbol)s;
1812            TypeSymbol owner = (TypeSymbol)m.owner;
1813            for (Type sup : types.closure(owner.type)) {
1814                if (sup == owner.type)
1815                    continue; // skip "this"
1816                Scope scope = sup.tsym.members();
1817                for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
1818                    if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
1819                        return true;
1820                }
1821            }
1822            return false;
1823        }
1824    
1825        /** Is the annotation applicable to the symbol? */
1826        boolean annotationApplicable(JCAnnotation a, Symbol s) {
1827            Attribute.Compound atTarget =
1828                a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
1829            if (atTarget == null) return true;
1830            Attribute atValue = atTarget.member(names.value);
1831            if (!(atValue instanceof Attribute.Array)) return true; // error recovery
1832            Attribute.Array arr = (Attribute.Array) atValue;
1833            for (Attribute app : arr.values) {
1834                if (!(app instanceof Attribute.Enum)) return true; // recovery
1835                Attribute.Enum e = (Attribute.Enum) app;
1836                if (e.value.name == names.TYPE)
1837                    { if (s.kind == TYP) return true; }
1838                else if (e.value.name == names.FIELD)
1839                    { if (s.kind == VAR && s.owner.kind != MTH) return true; }
1840                else if (e.value.name == names.METHOD)
1841                    { if (s.kind == MTH && !s.isConstructor()) return true; }
1842                else if (e.value.name == names.PARAMETER)
1843                    { if (s.kind == VAR &&
1844                          s.owner.kind == MTH &&
1845                          (s.flags() & PARAMETER) != 0)
1846                        return true;
1847                    }
1848                else if (e.value.name == names.CONSTRUCTOR)
1849                    { if (s.kind == MTH && s.isConstructor()) return true; }
1850                else if (e.value.name == names.LOCAL_VARIABLE)
1851                    { if (s.kind == VAR && s.owner.kind == MTH &&
1852                          (s.flags() & PARAMETER) == 0)
1853                        return true;
1854                    }
1855                else if (e.value.name == names.ANNOTATION_TYPE)
1856                    { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
1857                        return true;
1858                    }
1859                else if (e.value.name == names.PACKAGE)
1860                    { if (s.kind == PCK) return true; }
1861                else
1862                    return true; // recovery
1863            }
1864            return false;
1865        }
1866    
1867        /** Check an annotation value.
1868         */
1869        public void validateAnnotation(JCAnnotation a) {
1870            if (a.type.isErroneous()) return;
1871    
1872            // collect an inventory of the members
1873            Set<MethodSymbol> members = new HashSet<MethodSymbol>();
1874            for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
1875                 e != null;
1876                 e = e.sibling)
1877                if (e.sym.kind == MTH)
1878                    members.add((MethodSymbol) e.sym);
1879    
1880            // count them off as they're annotated
1881            for (JCTree arg : a.args) {
1882                if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
1883                JCAssign assign = (JCAssign) arg;
1884                Symbol m = TreeInfo.symbol(assign.lhs);
1885                if (m == null || m.type.isErroneous()) continue;
1886                if (!members.remove(m))
1887                    log.error(arg.pos(), "duplicate.annotation.member.value",
1888                              m.name, a.type);
1889                if (assign.rhs.getTag() == ANNOTATION)
1890                    validateAnnotation((JCAnnotation)assign.rhs);
1891            }
1892    
1893            // all the remaining ones better have default values
1894            for (MethodSymbol m : members)
1895                if (m.defaultValue == null && !m.type.isErroneous())
1896                    log.error(a.pos(), "annotation.missing.default.value",
1897                              a.type, m.name);
1898    
1899            // special case: java.lang.annotation.Target must not have
1900            // repeated values in its value member
1901            if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
1902                a.args.tail == null)
1903                return;
1904    
1905            if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
1906            JCAssign assign = (JCAssign) a.args.head;
1907            Symbol m = TreeInfo.symbol(assign.lhs);
1908            if (m.name != names.value) return;
1909            JCTree rhs = assign.rhs;
1910            if (rhs.getTag() != JCTree.NEWARRAY) return;
1911            JCNewArray na = (JCNewArray) rhs;
1912            Set<Symbol> targets = new HashSet<Symbol>();
1913            for (JCTree elem : na.elems) {
1914                if (!targets.add(TreeInfo.symbol(elem))) {
1915                    log.error(elem.pos(), "repeated.annotation.target");
1916                }
1917            }
1918        }
1919    
1920        void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
1921            if (allowAnnotations &&
1922                lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
1923                (s.flags() & DEPRECATED) != 0 &&
1924                !syms.deprecatedType.isErroneous() &&
1925                s.attribute(syms.deprecatedType.tsym) == null) {
1926                log.warning(pos, "missing.deprecated.annotation");
1927            }
1928        }
1929    
1930    /* *************************************************************************
1931     * Check for recursive annotation elements.
1932     **************************************************************************/
1933    
1934        /** Check for cycles in the graph of annotation elements.
1935         */
1936        void checkNonCyclicElements(JCClassDecl tree) {
1937            if ((tree.sym.flags_field & ANNOTATION) == 0) return;
1938            assert (tree.sym.flags_field & LOCKED) == 0;
1939            try {
1940                tree.sym.flags_field |= LOCKED;
1941                for (JCTree def : tree.defs) {
1942                    if (def.getTag() != JCTree.METHODDEF) continue;
1943                    JCMethodDecl meth = (JCMethodDecl)def;
1944                    checkAnnotationResType(meth.pos(), meth.restype.type);
1945                }
1946            } finally {
1947                tree.sym.flags_field &= ~LOCKED;
1948                tree.sym.flags_field |= ACYCLIC_ANN;
1949            }
1950        }
1951    
1952        void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
1953            if ((tsym.flags_field & ACYCLIC_ANN) != 0)
1954                return;
1955            if ((tsym.flags_field & LOCKED) != 0) {
1956                log.error(pos, "cyclic.annotation.element");
1957                return;
1958            }
1959            try {
1960                tsym.flags_field |= LOCKED;
1961                for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
1962                    Symbol s = e.sym;
1963                    if (s.kind != Kinds.MTH)
1964                        continue;
1965                    checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
1966                }
1967            } finally {
1968                tsym.flags_field &= ~LOCKED;
1969                tsym.flags_field |= ACYCLIC_ANN;
1970            }
1971        }
1972    
1973        void checkAnnotationResType(DiagnosticPosition pos, Type type) {
1974            switch (type.tag) {
1975            case TypeTags.CLASS:
1976                if ((type.tsym.flags() & ANNOTATION) != 0)
1977                    checkNonCyclicElementsInternal(pos, type.tsym);
1978                break;
1979            case TypeTags.ARRAY:
1980                checkAnnotationResType(pos, types.elemtype(type));
1981                break;
1982            default:
1983                break; // int etc
1984            }
1985        }
1986    
1987    /* *************************************************************************
1988     * Check for cycles in the constructor call graph.
1989     **************************************************************************/
1990    
1991        /** Check for cycles in the graph of constructors calling other
1992         *  constructors.
1993         */
1994        void checkCyclicConstructors(JCClassDecl tree) {
1995            Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
1996    
1997            // enter each constructor this-call into the map
1998            for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
1999                JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
2000                if (app == null) continue;
2001                JCMethodDecl meth = (JCMethodDecl) l.head;
2002                if (TreeInfo.name(app.meth) == names._this) {
2003                    callMap.put(meth.sym, TreeInfo.symbol(app.meth));
2004                } else {
2005                    meth.sym.flags_field |= ACYCLIC;
2006                }
2007            }
2008    
2009            // Check for cycles in the map
2010            Symbol[] ctors = new Symbol[0];
2011            ctors = callMap.keySet().toArray(ctors);
2012            for (Symbol caller : ctors) {
2013                checkCyclicConstructor(tree, caller, callMap);
2014            }
2015        }
2016    
2017        /** Look in the map to see if the given constructor is part of a
2018         *  call cycle.
2019         */
2020        private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
2021                                            Map<Symbol,Symbol> callMap) {
2022            if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
2023                if ((ctor.flags_field & LOCKED) != 0) {
2024                    log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
2025                              "recursive.ctor.invocation");
2026                } else {
2027                    ctor.flags_field |= LOCKED;
2028                    checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
2029                    ctor.flags_field &= ~LOCKED;
2030                }
2031                ctor.flags_field |= ACYCLIC;
2032            }
2033        }
2034    
2035    /* *************************************************************************
2036     * Miscellaneous
2037     **************************************************************************/
2038    
2039        /**
2040         * Return the opcode of the operator but emit an error if it is an
2041         * error.
2042         * @param pos        position for error reporting.
2043         * @param operator   an operator
2044         * @param tag        a tree tag
2045         * @param left       type of left hand side
2046         * @param right      type of right hand side
2047         */
2048        int checkOperator(DiagnosticPosition pos,
2049                           OperatorSymbol operator,
2050                           int tag,
2051                           Type left,
2052                           Type right) {
2053            if (operator.opcode == ByteCodes.error) {
2054                log.error(pos,
2055                          "operator.cant.be.applied",
2056                          treeinfo.operatorName(tag),
2057                          List.of(left, right));
2058            }
2059            return operator.opcode;
2060        }
2061    
2062    
2063        /**
2064         *  Check for division by integer constant zero
2065         *  @param pos           Position for error reporting.
2066         *  @param operator      The operator for the expression
2067         *  @param operand       The right hand operand for the expression
2068         */
2069        void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
2070            if (operand.constValue() != null
2071                && lint.isEnabled(Lint.LintCategory.DIVZERO)
2072                && operand.tag <= LONG
2073                && ((Number) (operand.constValue())).longValue() == 0) {
2074                int opc = ((OperatorSymbol)operator).opcode;
2075                if (opc == ByteCodes.idiv || opc == ByteCodes.imod
2076                    || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
2077                    log.warning(pos, "div.zero");
2078                }
2079            }
2080        }
2081    
2082        /**
2083         * Check for empty statements after if
2084         */
2085        void checkEmptyIf(JCIf tree) {
2086            if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
2087                log.warning(tree.thenpart.pos(), "empty.if");
2088        }
2089    
2090        /** Check that symbol is unique in given scope.
2091         *  @param pos           Position for error reporting.
2092         *  @param sym           The symbol.
2093         *  @param s             The scope.
2094         */
2095        boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
2096            if (sym.type.isErroneous())
2097                return true;
2098            if (sym.owner.name == names.any) return false;
2099            for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
2100                if (sym != e.sym &&
2101                    sym.kind == e.sym.kind &&
2102                    sym.name != names.error &&
2103                    (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
2104                    if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
2105                        varargsDuplicateError(pos, sym, e.sym);
2106                    else
2107                        duplicateError(pos, e.sym);
2108                    return false;
2109                }
2110            }
2111            return true;
2112        }
2113    
2114        /** Check that single-type import is not already imported or top-level defined,
2115         *  but make an exception for two single-type imports which denote the same type.
2116         *  @param pos           Position for error reporting.
2117         *  @param sym           The symbol.
2118         *  @param s             The scope
2119         */
2120        boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
2121            return checkUniqueImport(pos, sym, s, false);
2122        }
2123    
2124        /** Check that static single-type import is not already imported or top-level defined,
2125         *  but make an exception for two single-type imports which denote the same type.
2126         *  @param pos           Position for error reporting.
2127         *  @param sym           The symbol.
2128         *  @param s             The scope
2129         *  @param staticImport  Whether or not this was a static import
2130         */
2131        boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
2132            return checkUniqueImport(pos, sym, s, true);
2133        }
2134    
2135        /** Check that single-type import is not already imported or top-level defined,
2136         *  but make an exception for two single-type imports which denote the same type.
2137         *  @param pos           Position for error reporting.
2138         *  @param sym           The symbol.
2139         *  @param s             The scope.
2140         *  @param staticImport  Whether or not this was a static import
2141         */
2142        private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
2143            for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
2144                // is encountered class entered via a class declaration?
2145                boolean isClassDecl = e.scope == s;
2146                if ((isClassDecl || sym != e.sym) &&
2147                    sym.kind == e.sym.kind &&
2148                    sym.name != names.error) {
2149                    if (!e.sym.type.isErroneous()) {
2150                        String what = e.sym.toString();
2151                        if (!isClassDecl) {
2152                            if (staticImport)
2153                                log.error(pos, "already.defined.static.single.import", what);
2154                            else
2155                                log.error(pos, "already.defined.single.import", what);
2156                        }
2157                        else if (sym != e.sym)
2158                            log.error(pos, "already.defined.this.unit", what);
2159                    }
2160                    return false;
2161                }
2162            }
2163            return true;
2164        }
2165    
2166        /** Check that a qualified name is in canonical form (for import decls).
2167         */
2168        public void checkCanonical(JCTree tree) {
2169            if (!isCanonical(tree))
2170                log.error(tree.pos(), "import.requires.canonical",
2171                          TreeInfo.symbol(tree));
2172        }
2173            // where
2174            private boolean isCanonical(JCTree tree) {
2175                while (tree.getTag() == JCTree.SELECT) {
2176                    JCFieldAccess s = (JCFieldAccess) tree;
2177                    if (s.sym.owner != TreeInfo.symbol(s.selected))
2178                        return false;
2179                    tree = s.selected;
2180                }
2181                return true;
2182            }
2183    
2184        private class ConversionWarner extends Warner {
2185            final String key;
2186            final Type found;
2187            final Type expected;
2188            public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
2189                super(pos);
2190                this.key = key;
2191                this.found = found;
2192                this.expected = expected;
2193            }
2194    
2195            public void warnUnchecked() {
2196                boolean warned = this.warned;
2197                super.warnUnchecked();
2198                if (warned) return; // suppress redundant diagnostics
2199                Object problem = diags.fragment(key);
2200                Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
2201            }
2202        }
2203    
2204        public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
2205            return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
2206        }
2207    
2208        public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
2209            return new ConversionWarner(pos, "unchecked.assign", found, expected);
2210        }
2211    }