
NextGen Developer’s Guide

Eric Allen

eallen@cs.rice.edu

Rice University

6100 S. Main St.

Houston TX 77005

February 1, 2003

1 Introduction

This document describes the high-level architecture and code layout of the
NextGen prototype compiler at Rice University. The NextGen compiler
was developed as an extension to the GJ compiler under special license from
Sun Microsystems. This same compiler was extended independently by Sun
Microsystems to form the JSR-14 prototype compiler, scheduled for inclusion
in J2SE 1.5. In the process of developing NextGen, we have refactored the
original GJ compiler substantially, and no attempt has been made to maintain
compatibility with the JSR-14 source code. Nevertheless, the reader may find
that some of the architectural features of NextGen described here are helpful
when deciphering the JSR-14 code base (modulo class, package, and variable
name changes).

Throughout this document, it is assumed that the reader is familiar with
the GJ, NextGen, and MixGen language designs, as well as the published
descriptions of how these languages can be compiled to the JVM so as to main-
tain compatibility with existing compiled binaries. Readers not already familiar
with this material are referred to [10, 9, 3].

2 The NextGen CVS Repository

The NextGen source code is maintained under the javaplt CVS repository at
Rice University, and is available to all members of Rice JavaPLT. You can access

1



this repository from any machine with access the the Rice CS network. To do
so, set your CVSROOT to <user-name>@cs.rice.edu:/home/javaplt/.cvsroot.
If you are accessing the repository remotely, set your CVS RSH variable to ssh.
Then perform the following steps to set up your environment for NextGen

development:

1. In your home directory, create a new subdirectory called javaplt.

2. In your javaplt directory, enter the following commands:

$ cvs checkout bin

$ cvs checkout packages

$ cvs checkout public_html

$ cvs checkout java/<your-plaform>

References

[1] O. Agesen, S.. Freund and J. Mitchell. Adding Type Parameterization to
the Java Language. In OOPLSA’97.

[2] D. Ancona and E. Zucca. A Theory of Mixin Modules: Basic and Derived
Operators. Mathematical Structures in Computer Science, 8(4):401–446,
1998.

[3] E. Allen, J. Bannet, R. Cartwright. First-class Genericity for Java. Sub-
mitted to ECOOP 2003.

[4] E. Allen, J. Bannet, R. Cartwright. Mixins in Generic Java are Sound.
Technical Report, Computer Science Department, Rice University, De-
cember 2002.

[5] E. Allen, R. Cartwright, B. Stoler. Efficient Implementation of Run-time
Generic Types for Java. IFIP WG2.1 Working Conference on Generic Pro-
gramming, July 2002.

[6] E. Allen, R. Cartwright.The Case for Run-time Types in Generic Java.
Principles and Practice of Programming in Java, June 2002.

[7] D. Ancona, G.Lagorio, E.Zucca. JAM-A Smooth Extension of Java with
Mixins. ECOOP 00, LNCS, Spring Verlag, 2000.

[8] J. Bloch, N. Gafter. Personal communication.

2



[9] R. Cartwright, G. Steele. Compatible Genericity with Run-time Types for
the Java Programming Language. In OOPSLA ’98 , October 1998.

[10] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler. Making the Future Safe
for the Past: Adding Genericity to the Java Programming Language. In
OOPSLA ’98, October 1998.

[11] M. Flatt, S. Krishnamurthi, M. Felleisen. A Programmer’s Reduction Se-
mantics for Classes and Mixins. Formal Syntax and Semantics of Java,
volume 1523, June 1999.

[12] Martin Odersky and Philip Wadler. Pizza into Java: Translating Theory
into Practice. In POPL 1997, January 1997, 146–159.

[13] Sun Microsystems, Inc. JSR 14: Add Generic Types To The Java Program-
ming Language. Available at http://www.jcp.org/jsr/detail/14.jsp.

3


