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1 Introduction

This document describes the high-level architecture and code layout of the
NextGen prototype compiler at Rice University. The NextGen compiler
was developed as an extension to the GJ compiler under special license from
Sun Microsystems. This same compiler was extended independently by Sun
Microsystems to form the JSR-14 prototype compiler, scheduled for inclusion
in J2SE 1.5. In the process of developing NextGen, we have refactored the
original GJ compiler substantially, and no attempt has been made to maintain
compatibility with the JSR-14 source code. Nevertheless, the reader may find
that some of the architectural features of NextGen described here are helpful
when deciphering the JSR-14 code base (modulo class, package, and variable
name changes).

Throughout this document, it is assumed that the reader is familiar with
the GJ, NextGen, and MixGen language designs, as well as the published
descriptions of how these languages can be compiled to the JVM so as to main-
tain compatibility with existing compiled binaries. Readers not already familiar
with this material are referred to [10, 9, 3].

2 The NextGen CVS Repository

The NextGen source code is maintained under the javaplt CVS repository at
Rice University, and is available to all members of Rice JavaPLT. You can access
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this repository from any machine with access the the Rice CS network. To do
so, set your CVSROOT to <user-name>@cs.rice.edu:/home/javaplt/.cvsroot.
If you are accessing the repository remotely, set your CVS RSH variable to ssh.
Then perform the following steps to set up your environment for NextGen

development:

1. In your home directory, create a new subdirectory called javaplt.

2. In your javaplt directory, enter the following commands:

$ cvs checkout bin

$ cvs checkout packages

$ cvs checkout public_html

$ cvs checkout java/<your-plaform>
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