IBM POWER7 (and Beyond)

Lai Wei Updates by John Mellor-Crummey

COMP 522 January 29, 2019

History of IBM POWER series

IBM POWER4, 2001 180 nm, 412 mm² 2 core @ 1~1.3 GHz IBM POWER5, 2004 130 nm, 389 mm² 2 core @ 1.5~1.9 GHz, 2-way SMT IBM POWER6, 2007 65 nm, 341 mm² 2 core @ 3.6~5 GHz, 2-way SMT

The first dual core chip

The first SMT chip

Ultra high frequency

POWER7 Multicore Server Processor

POWER7 (2010)

- 45 nm, 567 mm²
- 8 cores per chip
- 4-way SMT per core
- Each core has:
 - 32KB L1 I/D cache
 - 256 KB L2 cache
 - 4MB Local L3 region
- 32 MB shared L3
- Multi-socket support

Figure credit: IBM POWER7 multicore server processor, Sinharoy, B. et al. IBM Journal of Research and Development 55(3), May-June 2011, 1:1-1:29.

Overview

- SMT implementation
- Cache hierarchy
- Energy management
- Interconnect

Core design

- To provide good single thread performance
 - 12 execution units: 2 FXU, 2 LSU, etc.
 - Deep out-of-order execution
 - Fetch up to 8 instructions per cycle
 - Decode and dispatch up to 6 instructions per cycle
 - Issue and execute up to 8 instructions per cycle

Simultaneous multi-threading

- A single-thread is unlikely to keep all resources busy
- Provide 4-way SMT to achieve a better throughput
- However, more threads running doesn't always lead to better performance
 - Resource contention between threads may hurt performance
- POWER7 provides 3 SMT modes: ST, SMT2, and SMT4
- Applications can choose between single thread performance and throughput by choosing SMT mode

Simultaneous multi-threading

- One way to achieve 4-way SMT is to have all 4 threads share all resources
 - Energy consumption is too high
 - Complex logic -> need large area
- POWER7 uses a partitioned approach
 - In SMT4 mode, one physical general-purpose register (GPR) file supports two threads
 - Each GPR file feeds one FXU pipeline and one LSU pipeline
 - A pair of GPR files support four threads total

SMT implementation

- In SMT4 mode
 - GPR0, FX0, LS0 can only be used by thread T0 and T1
 - Thread T2 and T3 use the other set

- In ST and SMT2 mode
 - Two GPR files have identical contents
 - Instructions of any thread can be dispatched to each issue queue

Cache overview

POWER6 (assuming 5-GHz core)	POWER7 (assuming 4-GHz core)		
64 KB store-through L1 D-cache 0.8ns latency, 80 GB/s private 4 MB store-in L2 cache ~5.0-ns latency, 160 GB/s private	32 KB store-through L1 D-cache 0.5ns latency, 192 GB/s private		
	256 KB store-in L2 cache 2.0-ns latency, 256 GB/s private		
	4 MB partial victim local L3 region ~6.0-ns latency, 128 GB/s private		
32 MB victim L3 cache ~35-ns latency, 80 GB/s shared by 2	32 MB adaptive victim L3 cache ~30-ns latency, 512 GB/s shared by 8		

- Capacity deduction in L1 and L2 helps:
 - Reduce L1 and L2 latency
 - Increase bandwidth of L1 and L2
- On chip L3 has better latency and bandwidth

L1 data cache

- Objective: provide data at low latency and high bandwidth
- 32KB 8-way set-associative, inclusive L2 cache
- Low latency: cache line size is 128B consisting of four 32B sectors
 - A dedicated interface from L2 supplies a sector in each processor cycle
 - Each sector has a valid bit, loads can hit when the corresponding sector is validated
- High bandwidth: for concurrent read and write:
 - Provides two read ports and one write port
 - Divided into 64 banks, which allows for concurrent read and write if they are not using the same bank
- Use a store-through design: all stores go directly to L2
 - No L1 cast-out for stores

L2 cache

- Objective: absorb store traffic from L1 at low latency
- 256KB 8-way set-associative, 256 GB/s bandwidth
- Use a fully associative 16-deep 32-byte entry store cache:
 - Absorb store traffic (up to 16 bytes per cycle)
 - If four of these entries comprise updates to the same 128B coherence granule, they will be grouped together into a single coherence dispatch

L3 cache

- 32MB consists of eight 4MB regions
 - Each region is 8-way set-associative and has an 128B cache line
 - Each region is tightly coupled with corresponding L2 cache
- Exclusive or inclusive L3 cache, determined by the partial victim cache (local L3) management policy
 - Exclusive provides more capacity and cache associativity
 - Inclusive helps reduce energy usage
- L3 cache is impemented using eDRAM
 - Access latency and cycle time is slightly worse than conventional SRAM
 - Requires one-third area and one fifth standby energy compared to equivalent SRAM, enabling on-chip L3 cache
 - On-chip cache has a lower latency
 - On-chip cache has better bandwidth and saves off-chip bandwidth

Cache states

State	Description	Authority	Sharers and scope	Source data	Data cast-out	Scope cast-out
I	Invalid	None	N/A	N/A	N/A	None
ID	Deleted, do not allocate	None	N/A	N/A	N/A	None
S	Shared	Read	Yes, scope unknown	No	No	None
SL	Shared, local data source	Read	Yes, scope unknown	At request	No	None
T	Formerly MU, now shared	Update	Yes, probably global	If notified	Yes	Required, global
TE	Formerly ME, now shared	Update	Yes, probably global	If notified	No	Required, global
M	Modified, avoid sharing	Update	No	At request	Yes	Optional, local
ME	Exclusive	Update	No	At request	No	None
MU	Modified, bias toward sharing	Update	No	At request	Yes	Optional, local
IG	Invalid, cached scope-state	None	N/A, probably global copies	N/A	N/A	Required, global
IN	Invalid, scope predictor	None	N/A, probably local copies	N/A	N/A	None
TN	Formerly MU, now shared	Update	Yes, local	If notified	Yes	Optional, local
TEN	Formerly ME, now shared	Update	Yes, local	If notified	No	None

L3 replacement algorithm

- Algorithm categorizes L3 lines into two classes:
 - 1. Victims via an L2 cast-out operation by the associated L2 cache
 - 2. Victims via a lateral cast-out operation by other L3 regions; residual shared copies of lines of L2; invalid lines.

- Every time algorithm needs to allocate a line:
 - 1. It selects the LRU line from 2nd class
 - 2. If no such lines exist, it selects the LRU line from the 1st class

L2 cast-out

Lateral cast-out

Line eviction

Energy management

- While having 4 times as many cores on the chip, POWER7 chip is in the same power envelope as POWER6
 - Reduced frequency (From 3.6 ~ 5 GHz to 2.4–4.25 GHz)
 - Microarchitecture changes (e.g., combine GPR, FPR and VR)
 - On chip eDRAM (one fifth standby energy compared to equivalent SRAM)
 - State of each chiplet (core with its L2 and local L3 cache) is configurable: 4 idle states and 8 performance states.

Idle states

- Nap
 - Turn off clocks to execution units
 - Caches remain coherent
- Fast sleep
 - Turn off core plus L2 cache clocks
 - L3 cache remains operational
- Deep sleep
 - Power off voltage to core and L2
- Winkle
 - Power off entire chiplet

Processor Energy Reduction (compared to Idle Loop)

Performance states

8 P-states

Each state has a frequency and voltage

Power Save States	Freq (Max)
Pstate0	1.1
Pstate1	1.0
Pstate2	0.9
Pstate3	0.8
Pstate4	0.7
Pstate5	0.6
Pstate6	Fmax@vmin
Pstate7	0.50

Frequency and voltage adjustment

- Critical path monitor (CPM) circuit measures in real time
- Adjust clock frequency according to the output of CPM
- Adjust the processor voltage level periodically to achieve a specified average clock frequency target

Critical path monitor

Measure timing margin

- Use Critical Path Monitor (CPM) circuit. Mimics behavior of real critical path.
- Each cycle: generate pulse, traverse synthesized critical path and calibrated delay, capture in edge detector

Critical Path Monitor

Edge detector 12-bit output: (bit 0 = less margin, bit 11 = more margin)

Edge Detector

Content and figure credit: Active Management of Timing Guardband to Save Energy in POWER7, Charles R. Lefurgy et al. MICRO-44, pp. 1–11, 2011.

On-chip interconnect

 Utilizes a non-blocking broadcast-based coherence-transport mechanism

- Coherence request
 - (1) Send inward toward the even/odd arbitration logic
 - (2) Up to one even and one odd request may be granted at each on-chip bus cycle.
 - (3) Requests are broadcast outward within the chip
- Coherence responses
 - (1) Send inward toward the even/odd coherence logic
 - (2) Once a final coherence decision is made in response to a given request, a notification is broadcast outward in the chip.

Multi-chip interconnect

- Two-level topology support up to 32 chips to form a 256-way SMP system
- First level nodal structure
 - Fully connected 4 chips
- Second level system structure
 - Fully connected 8 nodes
- Coherence domain is the system.

Cluster interconnect

- Three-level topology support up to a 512K processor cluster.
- First level nodal structure
 - Fully connected 4 chips and cluster chip
- Second level SuperNode structure
 - Fully connected 32 nodes
- Third level cluster structure
 - Fully connected 512 SuperNodes.
- Coherence domain is within each nodal.

IBM POWER7 performance modeling, verification, and evaluation

Overview

- Performance modeling
 - Used for comparing alternative designs, code tuning, etc.
- Performance verification
- Performance monitoring
- Performance evaluation

Performance analysis

- Goal: analyze application performance on a complex out-of-order core
 - Pinpoint instructions causing losses, e.g. cache misses

- Challenge: precise attribution of events is hard
 - Multiple instructions and events per cycle

Sampling-based performance analysis

- Asynchronous sampling is commonly used to measure performance
 - Periodically sample activity
 - Sampled activity is likely representative of aggregate behavior
- For a specific instruction, POWER7 provides:
 - Continuous sampling sample every instruction executed.
 - Random sampling randomly sample instructions.

Instruction sampling

- An instruction is (randomly) marked at dispatch.
- Special registers record IP and effective data address.
- Can record up to 32 events of a marked instruction during its lifetime in the pipeline.
 - Cache miss indication and reload information
 - TLB miss and reload information
 - etc.

Hierarchical breakdown of cycles

SMT performance

- Using SAP SD benchmark
 - ST mode: 2.7 GIPS (gigainstruction per second)
 - SMT2 mode: 3.8 GIPS, 1.4× performance gain
 - SMT4 mode: 4.7 GIPS, 1.7× performance gain
- ST has the best single-threaded performance

SMT performance

- Using OLTP workloads
 - ST mode: 1.3 GIPS (gigainstruction per second)
 - SMT2 mode: 1.9 GIPS, 1.5× performance gain
 - SMT4 mode: 2.4 GIPS, 1.9× performance gain
- ST has the best single-threaded performance

Turbo Core mode

- In *Turbo Core* mode, 4 out of 8 cores are disabled.
 - Cache of disabled cores becomes an extension to the local L3 cache for the running cores.
 - Only 4 threads are sharing resources like memory capacity, memory bandwidth, etc.
 - About 10% frequency boost by shifting power from the disabled cores to the active components.

SPECjbb gains in Turbo Core

Single thread performance of SPECjbb improved by 19%

SPECjbb L1 D-cache miss reloads

OLTP gains in Turbo Core

Performance of OLTP workload improved by 13%

Content and figure credit: IBM POWER7 performance modeling, verification, and evaluation. Srinivas, M. et al. IBM Journal of Research and Development 55(3), May-June 2011, 4:1-4:19.

OLTP L1 D-cache miss reloads

Single-precision FP performance

- Performance of Fast Fourier transforms (FFTs)
 - N is the size of the Fourier transform

Double-precision performance

- Performance of Fast Fourier transforms (FFTs)
 - N is the size of the Fourier transform

Scalability

SPECjbb scalability

SAP workload scalability

Evolution of POWER Processors

POWER7+ (2012)

- 32 nm, 567 mm²
- 8 cores per chip
- 4-way SMT per core
- Each core has
 - 32KB L1 I/D cache
 - 256 KB L2 cache
 - 10MB Local L3 region
- 80 MB shared L3

Figure credit: Power7+, Scott Taylor, Hot Chips 24, August 2012. http://www.hotchips.org/archives/hc24

An improved core

- Up to 25% frequency gain due to mapping into 32nm technology and power management improvements
- ▶ L3 cache capacity increased by 2.5x
- Doubled single precision floating-point performance

Optimized in two dimensions

Performance comparison

POWER7+ accelerators

- Dedicated hardware accelerators that provide significant speedup for SSL and encrypted file system. Support in three cryptography aspects:
 - Asymmetric Math Functions (AMF)
 - Support RSA cryptography and ECC cryptography
 - Advanced Encryption Standard (AES) / Secure Hash Algorithm (SHA)
 - Provide encryption and verification respectively
 - Random Number Generator (RNG)
 - Can't be algorithmically reverse engineered.
- Speed up for active memory expansion (AME)
 - Highly efficient hardware implementation of proprietary 832 compression algorithm

POWER8 (2014)

- 22 nm, 650 mm²
- 12 cores per chip
- 8-way SMT per core
- Each core has:
 - 32KB L1 I cache
 - 64KB L1 D cache
 - 512KB L2 cache
 - 8MB Local L3 region
- 96 MB on-chip shared L3
- 128MB off-chip L4 cache
- Improved bandwidth

POWER9 variants (2016)

Four targeted implementations

Core Count / Size

SMP scalability / Memory subsystem

SMT4 Core

SMT8 Core

24 SMT4 Cores / Chip

Linux Ecosystem Optimized

12 SMT8 Cores / Chip
PowerVM Ecosystem Continuity

Scale-Out - 2 Socket Optimized

Robust 2 socket SMP system Direct Memory Attach

- Up to 8 DDR4 ports
- · Commodity packaging form factor

Scale-Up - Multi-Socket Optimized

Scalable System Topology / Capacity

- Large multi-socket
 Buffered Memory Attach
- 8 Buffered channels

POWER9 SMT

Available with SMT8 or SMT4 Cores

8 or 4 threaded core built from modular execution slices

POWER9 SMT8 Core

- PowerVM Ecosystem Continuity
- Strongest Thread
- Optimized for Large Partitions

SMT8 Core

POWER9 SMT4 Core

- Linux Ecosystem Focus
- Core Count / Socket
- · Virtualization Granularity

SMT4 Core

Modular Execution Slices

POWER9, Processor for the Cognitive Era, Brian Thompto, Hot Chips 28, 2016.

POWER9 SMT8 Core

POWER9 SMT4 Core

POWER9 cache hierarchy

- 512K L2 per SMT8 Core
- 120MB NUCA L3 architecture
 - partitioned into 10MB blocks
 - each shared by 2 cores
 - 12 x 20-way associative regions
- Advanced replacement policies
- Fed by 7 TB/s on-chip bandwidth
- Move data in/out at 256 GB/s per SMT8 core

POWER9, Processor for the Cognitive Era, Brian Thompto, Hot Chips 28, 2016.

POWER9 connectivity

- Extreme Processor / Accelerator Bandwidth and Reduced Latency
- Coherent Memory and Virtual Addressing Capability for all Accelerators
- OpenPOWER Community Enablement Robust Accelerated Compute Options
- State of the Art I/O and Acceleration Attachment Signaling
 - PCle Gen 4 x 48 lanes 192 GB/s duplex bandwidth
 - 25G Link x 48 lanes 300 GB/s duplex bandwidth
- Robust Accelerated Compute Options with OPEN standards
 - On-Chip Acceleration Gzip x1, 842 Compression x2, AES/SHA x2
 - CAPI 2.0 4x bandwidth of POWER8 using PCIe Gen 4
 - NVLink 2.0 Next generation of GPU/CPU bandwidth and integration
 - New CAPI High bandwidth, low latency and open interface using 25G Link

DMI **PCle** Devices PCle G4 I/O ²Cle G4 ASIC / CAPI **CAPI 2.0 FPGA** Devices **NVLink** NVLink 2.0 Nvidia Interconnect **GPUs** New CAP Link ASIC / **New CAPI FPGA** Devices 16G On Chip Accel

POWER9

PowerAccel

PCIe Gen4 x16

Accelerator

GPU

GPU

GPU

Maria Maria

Sx

Sx

POWER8 with NVLink 1.0

Accelerator

7-10x

POWER9 with 25G Link

POWER9, Processor for the Cognitive Era, Brian Thompto, Hot Chips 28, 2016.