Scheduling Multithreaded Computations by Work-Stealing
[Blumofe and Leiserson, 1999]

Vu Phan – COMP 522 (Rice University)

Thu 2019-03-07
work-stealing scheduling method: idle processors steal threads from busy processors

contribution: efficient randomized work-stealing algorithm for fully strict computations
Overview

challenge: efficiently executing a dynamic multithreaded computation on a MIMD computer

- parallelism not known in advance
 - dynamically growing and shrinking as computation unfolds
 - static scheduling: ill-suited
- threads depend on each other

scheduler goals:

- ensuring an appropriate number of threads are active at each step (keeping all processors busy)
- limiting memory usage of active threads
1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion
Scheduling paradigms

work-sharing:
- scheduler migrates threads to underutilized processors (even if processors are busy)
- more thread migration

work-stealing:
- idle processors steal threads
- less thread migration
Fully strict computations

fully strict (well-structured) computations include:

- backtrack search
- divide-and-conquer
- data flow
efficient randomized work-stealing algorithm for scheduling fully strict multithreaded computations:

- **expected time**: $\frac{T_1}{P} + O(T_∞)$
 - T_1: serial time
 - P: number of processors
 - $T_∞$: time with ∞ processors

- **space**: $S_1 P$
 - S_1: serial space
1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion
Multithreaded computation: continue-edges

- v_1: instruction
- (v_1, v_2): continue-edge (horizontal)
- Γ_6: thread
 - activation frame
 - alive
 - dead
Multithreaded computation: spawn-edges

- (v_2, v_3): **spawn-edge** (shaded)
- **spawn-tree**:
 - Γ_1: root thread
 - Γ_3: leaf thread
Multithreaded computation: join-edges

- \((v_5, v_{14})\): **join-edge** (curved)
- thread \(\Gamma_2\):
 - **ready** after \(v_2\)
 - **stalled** at \(v_{14}\)
 - **resolved join-dependency**
 - **enabled** by \(v_5\) and \(v_8\)
Multithreaded computation: execution schedule

2-processor **execution schedule**

<table>
<thead>
<tr>
<th>step</th>
<th>thread pool</th>
<th>processor activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Γ_1: v_1</td>
<td>p_1: v_1</td>
</tr>
<tr>
<td>2</td>
<td>v_2</td>
<td>p_2: v_2</td>
</tr>
<tr>
<td>3</td>
<td>Γ_2: v_3</td>
<td>Γ_1: v_{16}</td>
</tr>
<tr>
<td>4</td>
<td>Γ_3: v_4</td>
<td>Γ_1: v_{17}</td>
</tr>
<tr>
<td>5</td>
<td>Γ_2: v_5</td>
<td>Γ_6: v_{18}</td>
</tr>
<tr>
<td>6</td>
<td>Γ_2: v_6</td>
<td>Γ_4: v_{20}</td>
</tr>
<tr>
<td>7</td>
<td>Γ_1: v_7</td>
<td>Γ_1: v_{21}</td>
</tr>
<tr>
<td>8</td>
<td>v_8</td>
<td>Γ_2: v_9</td>
</tr>
<tr>
<td>9</td>
<td>Γ_1: v_{10}</td>
<td>Γ_2: v_{13}</td>
</tr>
<tr>
<td>10</td>
<td>Γ_1: v_{11}</td>
<td>Γ_1: v_{14}</td>
</tr>
<tr>
<td>11</td>
<td>Γ_2: v_{12}</td>
<td>Γ_1: v_{22}</td>
</tr>
<tr>
<td>12</td>
<td>Γ_1: v_{15}</td>
<td>Γ_2: v_{23}</td>
</tr>
<tr>
<td>13</td>
<td>Γ_1: v_{23}</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multithreaded computation: (full) strictness

- **strict**: each join-edge ends at an ancestor
- **fully strict** (well-structured): each join-edge ends at the parent
Multithreaded computation: work (T_1), span (T_∞)

- **work**: number of instructions (23)
- **span (critical-path length)**: number of instructions in longest path (10)
Execution time

notations:

- P: number of processors
- X: P-processor execution schedule
- $T(X)$: execution time of X
- $T_P = \min_X T(X)$: least execution time with P processors over all execution schedules X

observations:

1. $T_1 =$ work (number of instructions)
2. $T_\infty =$ span (length of longest path)
3. $T_P \geq T_1/P$
4. $T_P \geq T_\infty$
Greedy execution schedule

Greedy P-processor execution schedule:

- if at least P instructions are ready, P instructions are executed (**complete step**)
- otherwise, all ready instructions are executed (**incomplete step**)

Theorem (1)

*If a P-processor execution schedule X is greedy, then $T(X) \leq T_1/P + T_\infty$.***

Proof.

\[
T(X) = \#\text{CompleteSteps} + \#\text{IncompleteSteps} \\
\leq T_1/P + T_\infty
\]
P-processor execution schedule X achieves **linear speedup** when $T(X) = O(T_1/P)$

- if X is greedy:
 - linear speedup is achieved when **parallelism** $T_1/T_\infty = \Omega(P)$
 - using Theorem 1: $T(X) \leq T_1/P + T_\infty$
Linear space expansion

- **stack depth of thread**: sum of sizes of activation frames of the thread and its ancestors

- **stack depth of computation**: max stack depth across all threads in the computation

- S_1: space usage with 1 processor (equal to stack depth of computation)

- $S(X)$: space usage of P-processor execution schedule X

- X exhibits **linear space expansion** if $S(X) = O(S_1 P)$
Busy-leaves property

spawn-subtree at time step t: alive threads of spawn-tree

- given execution schedule X:
 - at time step t, leaf thread Γ in the spawn-subtree is busy if some processor in X is working on Γ
 - X has busy-leaves property if: at every time step, all leaf threads in the spawn-subtree are busy
Busy-leaves property implying linear space expansion

Lemma (2)

If a P-processor execution schedule X has busy-leaves property, then $S(X) \leq S_1 P$.
- $S(X)$: space usage of X
- S_1: serial space usage (stack depth of computation)

Proof.

1. by busy-leaves property: at every time step, the spawn-subtree has at most P leaf threads
2. for each such leaf thread, the space used by the thread and its ancestors is S_1
3. at every time step, the total space used by all threads is $S_1 P$
Busy-leaves property implied by strict computation:

- after a thread Γ is spawned and until Γ dies, the subcomputation rooted at Γ can be finished by 1 processor
- no leaf thread can stall

observation: if a computation is strict, then it has an execution schedule with busy-leaves property
Busy-leaves algorithm: linear speedup and linear space expansion

given a strict computation, the **busy-leaves algorithm** finds a \(P \)-processor execution schedule \(X \) such that:

- \(X \) is greedy
 - \(T(X) \leq T_1/P + T_\infty \) (Theorem 1)
 - excluding algorithm’s time to find schedule \(X \)
- \(X \) has busy-leaves property
 - \(S(X) \leq S_1 P \) (Lemma 2)
Busy-leaves algorithm: overview

- online algorithm:
 - only using information from the subcomputation revealed so far
 - no knowledge of:
 - instructions not yet executed
 - threads not yet spawned
- global pool of alive threads
 - processors take ready threads from this pool
 - processors return stalled threads to this pool
Busy-leaves algorithm: part 1

- root thread is put in global thread pool
- for each step:
 - each idle processor attempts to take a ready thread from the global thread pool
 - each busy processor executes the next instruction in a thread, until the thread:
 1. spawns
 2. stalls
 3. dies
Busy-leaves algorithm: part 2

each busy processor \(p \) executes the next instruction in a thread \(\Gamma_a \), until:

1. thread \(\Gamma_a \) spawns a child thread:
 - \(p \) returns \(\Gamma_a \) to the thread pool
 - \(p \) works on the child thread in the next step

2. thread \(\Gamma_a \) stalls:
 - \(p \) returns \(\Gamma_a \) to the thread pool
 - \(p \) becomes idle in the next step

3. thread \(\Gamma_a \) dies:
 - \(\Gamma_a \)'s parent is some thread \(\Gamma_b \)
 - if \(\Gamma_b \) has no alive child and no processor is working on \(\Gamma_b \), then \(p \) takes \(\Gamma_b \) from the thread pool and works on \(\Gamma_b \) in the next step
 - otherwise, \(p \) becomes idle in the next step
Busy-leaves algorithm: example

<table>
<thead>
<tr>
<th>step</th>
<th>thread pool</th>
<th>processor activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>p_1: v_1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>v_2</td>
</tr>
<tr>
<td>3</td>
<td>Γ_1</td>
<td>Γ_2: v_3</td>
</tr>
<tr>
<td>4</td>
<td>Γ_2</td>
<td>Γ_1: v_4</td>
</tr>
<tr>
<td>5</td>
<td>Γ_1</td>
<td>Γ_2: v_5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Γ_6: v_6</td>
</tr>
<tr>
<td>7</td>
<td>Γ_1</td>
<td>Γ_2: v_7</td>
</tr>
<tr>
<td>8</td>
<td>Γ_2</td>
<td>v_8</td>
</tr>
<tr>
<td>9</td>
<td>Γ_1</td>
<td>Γ_2: v_9</td>
</tr>
<tr>
<td>10</td>
<td>Γ_1</td>
<td>Γ_2: v_{10}</td>
</tr>
<tr>
<td>11</td>
<td>Γ_1</td>
<td>v_{11}</td>
</tr>
<tr>
<td>12</td>
<td>Γ_2</td>
<td>v_{12}</td>
</tr>
<tr>
<td>13</td>
<td>Γ_1</td>
<td>Γ_2: v_{15}</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Γ_1: v_{23}</td>
</tr>
</tbody>
</table>

Thread pool:

- ready threads are in boldface
- stalled threads are not

Diagram showing thread pool with nodes labeled v_1 to v_{23} and edges indicating dependencies.
for every strict computation, the busy-leaves algorithm computes a P-processor execution schedule X such that:

- X uses time $T(X) \leq T_1/P + T_\infty$
 - T_1: work
 - T_∞: span (critical-path length)

 (X is greedy)

- X uses space $S(X) \leq S_1 P$
 - S_1: serial space

 (X has busy-leaves property)
1 Introduction
2 A model of multithreaded computation
3 The busy-leaves property
4 A randomized work-stealing algorithm
5 Atomic accesses
6 Analysis of the work-stealing algorithm
7 Conclusion
each processor p maintains a **ready deque** of threads

- other processors steal threads from the **top** of p’s ready deque
- p inserts threads to the **bottom** of p’s ready deque
- p removes threads from the **bottom** of p’s ready deque
Work-stealing algorithm

each processor p works on a thread Γ_a, until:

1. Γ_a spawns some thread Γ_b:
 p: inserts Γ_a at the bottom of p’s ready deque, and starts working on Γ_b

2. Γ_a stalls:
 - if p’s ready deque has some thread Γ_b:
 p: removes Γ_b from p’s ready deque, and starts working on Γ_b
 - otherwise:
 p: steals the top-most thread Γ_b of a randomly chosen processor, and starts working on Γ_b

3. Γ_a dies: same as when Γ_a stalls

4. Γ_a enables some thread Γ_b: Γ_b becomes the bottom-most thread in p’s ready deque
for every fully strict computation, the work-stealing algorithm needs at most $S_1 P$ space

- S_1: serial space
- P: number of processors

(the work-stealing algorithm find execution schedules with busy-leaves property)
1. Introduction
2. A model of multithreaded computation
3. The busy-leaves property
4. A randomized work-stealing algorithm
5. Atomic accesses
6. Analysis of the work-stealing algorithm
7. Conclusion
Atomic-access model

atomic-access model:

- parallel computer with P processors
- concurrent accesses to the same data are serially queued by an adversary
 - the adversary tries to maximize the **total delay**
 (sum of numbers of outstanding access requests over all steps)
Total delay proportional to number of access requests

Lemma (6)

The total delay incurred by M random access requests made by P processors is:

1. $O(M + P \ln P - P \ln \epsilon)$, with probability at least $1 - \epsilon$, for every $0 < \epsilon < 1$
2. at most M (expected)

very rough proof sketch:

1. tracking the **delay** of an access request
 (number of steps in which the request is waiting to be serviced)
2. linearity of expectation
1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion
for every fully strict computation with work T_1 and span $T_∞$, the work-stealing algorithm has
time usage:

- $T_1/P + O(T_∞ + \ln P - \ln \epsilon)$, with probability at least $1 - \epsilon$, for every $0 < \epsilon < 1$
- $T_1/P + O(T_∞)$ (expected)

very rough proof sketch:

- summand T_1/P: T_1 instructions executed in parallel by P processors
- summand $O(T_∞)$: scheduling overhead
 (time for steal attempts to wait before being satisfied)
 - overhead is high if many steal attempts are made
 - a large number of steal attempts can occur only with low probability
1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion
Cilk

C-based language Cilk:

- runtime system employs work-stealing algorithm
- guaranteed performance to user applications
 - with high probability, linear speedup is achieved \(T_P = O(T_1/P) \), if parallel slackness \(T_1/(PT_\infty) \) is large

- applications:
 - protein folding
 - graphic rendering
 - backtrack search
 - chess
References

efficient randomized work-stealing algorithm for scheduling fully strict multithreaded computations:

- expected time: $T_1/P + O(T_\infty)$
 - T_1: serial time
 - P: number of processors
 - T_∞: time with ∞ processors
- space: S_1P
 - S_1: serial space