Other Regression Models

Dr. John Mellor-Crummey

Department of Computer Science Rice University

johnmc@cs.rice.edu

Goals for Today

Understand

- Limitations of simple linear regression
- How to apply regression analysis more broadly
 - —multiple linear regression
 - —curvilinear regression
 - —transformations
 - —categorical predictors
- Common mistakes in regression analysis & how to avoid them

Limitations of Simple Linear Regression

Three key restrictions

- Only one predictor variable is allowed
- The predictor variable must be quantitative
- The response must be a linear function of the predictor

Towards Broader Applicability

Relaxing some of the restrictions

- Allow more than one predictor variable
 - —multiple linear regression
- Allow categorical variables, e.g. CPU type
 - —categorical predictors
- Allow non-linear relationship between response and predictors
 - —curvilinear regression
- Use transformations to cope with
 - —errors that are not normally distributed
 - —variance that is not homogeneous

Multiple Linear Regression (MLR)

Predict a response variable from k predictor variables

$$y = b_0 + \left(\sum_{i=1}^k b_i x_i\right) + e$$

- $-b_0$, b_1 , ... b_k are fixed parameters
- —e is the error term

In vector notation

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{k1} \\ 1 & x_{12} & x_{22} & \dots & x_{k2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & \dots & x_{kn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$
 or $\mathbf{y} = \mathbf{Xb} + \mathbf{e}$

Estimating Model Parameters for MLR

- Given n sets of observations of a y response variable given a vector of x predictor variables
- Solve for the b model parameters in y = Xb + e
- Solve using matrix notation

$$y = Xb$$

$$X^{T}y = X^{T}Xb$$

$$(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}Xb$$

$$(X^{T}X)^{-1}X^{T}y = Ib$$

$$(X^{T}X)^{-1}X^{T}y = b$$

matrix solution technique works great for simple linear regression as well!

Allocating Variation for MLR

Quantifying variation

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 (total sum of squares)

- Key questions
 - —how much variation is unexplained?

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (sum of squares error)

—how much variation is accounted for by the regression?

$$SSR = SST - SSE$$
 (sum of squares regression)

same as simple linear regression

Coefficient of Determination for MLR

Measuring the quality of a regression model

coefficient of determination
$$= R^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

same as linear regression through here

Coefficient of multiple correlation = R

Standard Deviation of Errors for MLR

Variance of errors = SSE/(degrees of freedom) (aka MSE)

$$s_e^2 = \frac{SSE}{n - k - 1}$$

- Why n-k-1 degrees of freedom for SSE?
 - —SSE computed after calculating k+1 regression parameters
- Degrees of freedom and multiple linear regression

$$SST = SSR + SSE$$

$$(n-1) = k + (n-k-1)$$

Standard deviation of errors

$$s_e = \sqrt{MSE} = \sqrt{\frac{SSE}{n - k - 1}}$$

Analysis of Variance (ANOVA)

- MSR = SSR/k
- MSE = SSE/(n-k-1)
- Assuming that
 - —errors are independent, normally distributed with same μ , σ^2
 - —then y's are normally distributed since x's are non-stochastic
- The sum of squares of a normal variate has a χ^2 distribution
 - —see section 29.4 in Jain
- $F_{[1-\alpha;k,n-k-1]}$ distribution: models ratio of sample variances (each χ^2)
 - —k = DOF numerator (MSR); n-k-1 = DOF denominator (MSE)
 - $-\alpha$ is the significance level

described in Jain pp. 489-490,634

- Regression is significant if MSR/MSE > F_[1-α;k,n-k-1]
 - —if MSR/MSE is greater than the F-ratio, the predictor variables are assumed to explain a significant fraction of the response variation
 - —F-test is equivalent to testing that y does not depend on any x_i
 - if computed ratio is < F value, hypothesis that b₁=b₂=...=b_k=0 cannot be rejected

Comparing to MLR ANOVA to Simple Regression

- For simple linear regression, F-test reduces to testing if $b_1 = 0$
- F-test not necessary for simple linear regression
 - —If the confidence interval of b₁ does not include 0
 - —then the regression explains a significant portion of the response variation

Curvilinear Regression

- Linear regression model can only be used if response variable is linear function predictor variables
 - —that's why we first check a scatter diagram of y vs x!
- If the relationship between y and x appears (or is known) to be non-linear, must use a non-linear regression model
- If non-linear form can be converted into a linear one, we can use simple or multiple linear regression techniques

Non-linear forms y = a + b/x y = a + b(1/x) y = 1/(a + bx) y = x/(a + bx) y = a + bx $y = ab^{x}$ $y = ab^{x}$ $y = bx^{a}$ y = a + bx y = a + bx

Curvalinear Regression Issues

- If predictor variable appears in more than one transformed predictor variable
 - —transformed variables are likley to be correlated
 - —causes problem of multi-colinearity
- Strategy for minimizing multi-colinearity
 - —avoid using unnecessary predictor variables
 - —use smallest subset that gives significant parameters and explains a high percent of observed variation

Transformations

- The term transformation is used when some function of the measured response variable y is used in place of y in a model
- For example

$$\sqrt{y} = b_0 + \left(\sum_{i=1}^k b_i x_i\right) + e$$

- Three cases where transformations should be investigated
 - —if known from physical considerations that f(y) would yield better model than y
 - e.g. if requests per unit time (1/y) has linear relationship with predictor, then use 1/y rather than y
 - —if data covers several orders of magnitude and sample size is small
 - —if homogeneous variance (homoscedasticity) assumption of residuals is violated
 - if this is true, residuals are still functions of predictor variables

Regression with Categorical Predictors

Categorical variable = non-numerical variable

```
-e.g. CPU type
```

- Regressions can still be used if one or more of the predictor variables is categorical
- Coding binary categorical variables

$$x_j = \begin{cases} -1 & => \text{ first value} \\ +1 & => \text{ second value} \end{cases}$$

- with this coding, value of parameter b_j represents the average difference in response for each level
- difference of effect of the 2 levels is 2b_j
- What about multi-valued categorical variables?

Multi-valued Categorical Predictors - I

- Coding multi-valued categorical variables
 - -e.g. CPU A vs. CPU B vs. CPU c
 - one approach

$$x_{j} = \begin{cases} 1 \Rightarrow \text{type A} \\ 2 \Rightarrow \text{type B} \\ 3 \Rightarrow \text{type C} \end{cases}$$

problem: this coding implies ordering among variables

a better approach

$$x_1 = \begin{cases} 1 => \text{ type A} \\ 0 => \text{ otherwise} \end{cases}$$
 $(x_1, x_2) = (1,0) => \text{ type A}$
 $(x_1, x_2) = (0,1) => \text{ type B}$
 $(x_1, x_2) = (0,1) => \text{ type B}$
 $(x_1, x_2) = (0,0) => \text{ type C}$

this coding implies no ordering

Multi-valued Categorical Predictors - II

$$y = b_0 + b_1 x_1 + b_2 x_2 + e$$

$$\overline{y}_A = b_0 + b_1$$

$$\overline{y}_B = b_0 + b_2$$

$$\overline{y}_C = b_0$$

$$(x_1,x_2) = (1,0) => type A$$

 $(x_1,x_2) = (0,1) => type B$
 $(x_1,x_2) = (0,0) => type C$

- parameter b₀ represents diff betw/ avg responses type A & C
- parameter b₁ represents diff betw/ avg responses type B & C

Multi-valued Categorical Predictors - III

- In general, with a categorical variable of k levels
 - —need k 1 binary variables defined as follows

$$x_i = \begin{cases} 1 => \text{ if } i^{th} \text{ value} \\ 0 => \text{ otherwise} \end{cases}$$

- — k^{th} value defined by $x_1=x_2=...=x_{k-1}=0$
- —regression parameter b₀ represents average response with kth alternative
- —regression parameter b_i represents difference between the average response for the alternatives i and k

Outliers

- Definition: atypical observations
- Dilemma
 - —including outliers in analysis may significantly change conclusions
 - —excluding outliers may lead to a misleading conclusion if outlier represents correct operation of the system
- Easiest way to identify outliers is to look at scatter plot
- Any value significantly different from others should be investigated for experimental error
- Once possibility of experimental error has been eliminated
 - —can decide whether to include outlier or not using intuition

Common Mistakes - I

- Not verifying relationship is linear
 - —check scatter plot
 - —if non-linear, consider curvalinear regression
- Relying on automated results without visual verification
 - —check your scatter plots, even if using an automated analysis package!
- Attaching numerical importance to regression parameters
 - —small regression parameters may be meaningful
 - —changing units (e.g. seconds to milliseconds) can change their magnitude dramatically
- Not specifying confidence intervals for regression parameters
 - —remember they are derived from a *sample*, not the *population*!
- Not specifying the coefficient of determination
 - —without R² it is hard to understand the quality of a regression

Common Mistakes - II

Confusing the coefficient of determination with the coefficient of correlation

```
—COD = R^2 = % explained variance
```

- —COC = R does not
- Using highly correlated predictor variables
 - —both should be included only if there is a considerable increase in significance of regression
- Using regression to predict far beyond the measured range
 - —measurements in one operating range may not apply elsewhere
- Too many predictor variables
 - —try subsets of predictor variables to look for most parsimonious and accurate prediction
- Measuring only a small subset of range of operation
 - —may miss non-linearity

Common Mistakes - III

- Assuming that a good predictor is also a good control variable
 - —regression model can predict performance
 - —if goal is to improve performance, regression only helpful if predictors are also control variables
 - —e.g. CPU time is a predictor but not a controller of number of disk I/Os