One-Factor Designs

Dr. John Mellor-Crummey

Department of Computer Science Rice University

johnmc@cs.rice.edu

Goals for Today

Understand One-factor Designs

- Motivation
- Properties
- Computing effects
- Estimating experimental errors
- Allocating variation
- Analyzing variance
- Confidence intervals

One-factor Designs

- Why? Compare several alternatives of one categorical variable
 - —several processors
 - —several caching schemes
 - —several garbage collection strategies
- No limits on number of levels the factor can take

```
• Model: y_{ij} = \mu + \alpha_j + e_{ij}

- y_{ij}

-
```

Computing Effects for a One-factor Design

- Measured data = \mathbf{r} observations for each of \mathbf{a} alternatives
 - r x a matrix
 - r observations for an alternative arranged in a column
- Substituting responses into our model $y_{ii} = \mu + \alpha_i + e_{ii}$ yields ar equations.
- Summing them, we get

$$\sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = ar\mu + r \sum_{j=1}^{a} \alpha_{j} + \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}$$

0 by design

assume mean error = 0

Thus, $\sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = ar\mu + 0 + 0 \quad \text{and} \quad \mu = \frac{1}{ar} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{ij}$

$$\mu = \frac{1}{ar} \sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij}$$
grand mean, also denoted

Mean Effect for an Alternative

Mean effect for an alternative is a column mean

$$\overline{y}_{.j} = \frac{1}{r} \sum_{i=1}^{r} y_{ij}$$

Substituting for y_{ii}

$$\overline{y}_{.j} = \frac{1}{r} \sum_{i=1}^{r} (\mu + \alpha_j + e_{ij}) = \mu + \alpha_j + \frac{1}{r} \sum_{i=1}^{r} e_{ij} = \mu + \alpha_j$$

• Therefore, we can estimate mean effect for an alternative $\,\alpha_{j}\,$

$$\alpha_j = \overline{y}_{.j} - \mu = \overline{y}_{.j} - \overline{y}_{..}$$

assume mean error = 0

Tabular Computation of Mean Effect

- Code size comparison study
 - —three processors R,V,Z
 - —measured number of bytes to code a workload
 - 5 independent coders for each machine (1 for each of ar entries)
 - if row entries not independent, need 2 factor analysis (next lecture)

	R	V	Z	
	144.0	101.0	130.0)
	120.0	144.0	180.0	
	176.0	211.0	141.0	≻r replications
	288.0	288.0	374.0	
	144.0	72.0	302.0	<u>ノ</u>
Column Sum	872.0	816.0	1127.0	2815.0 Grand Sum
Column Mean	174.4	163.2	225.4	187.7 Grand Mean
Column Effect	-13.3	-24.5	37.7	
$\alpha_1 \alpha_2 \alpha_3$				

- Interpretation
- a alternatives
- —avg processor requires 187.7B storage
- —R uses 13.3B < avg; V uses 24.5B < avg; Z uses 37.7B > avg 6

Estimating Experimental Errors

Predicted response of jth alternative

$$\hat{y}_j = \mu + \alpha_j$$

• Prediction error $e_{ij} = y_{ij} - \hat{y}_j = y_{ij} - \mu - \alpha_j$

-mean error for column and grand mean all will be 0

Estimate variance of errors from sum of squared errors

$$SSE = \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}^{2}$$

$$SSE = (-30.4)^2 + (-54.4)^2 + ... + (76.6)^2 = 94,365.2$$

Allocating Variation

- Total variation of y can be allocated to the factor and errors
- First, square model equation

$$y_{ij}^2 = \mu^2 + \alpha_j^2 + e_{ij}^2 + 2\mu\alpha_j + 2\mu e_{ij} + 2\alpha_j e_{ij}$$

Adding corresponding terms of ar equations

$$\sum_{i,j} y_{ij}^2 = \sum_{i,j} \mu^2 + \sum_{i,j} \alpha_j^2 + \sum_{i,j} e_{ij}^2 + \text{cross product terms}$$

$$\text{all add to 0 because}$$

$$\text{SSY} = \text{SSO} + \text{SSA} + \text{SSE}$$

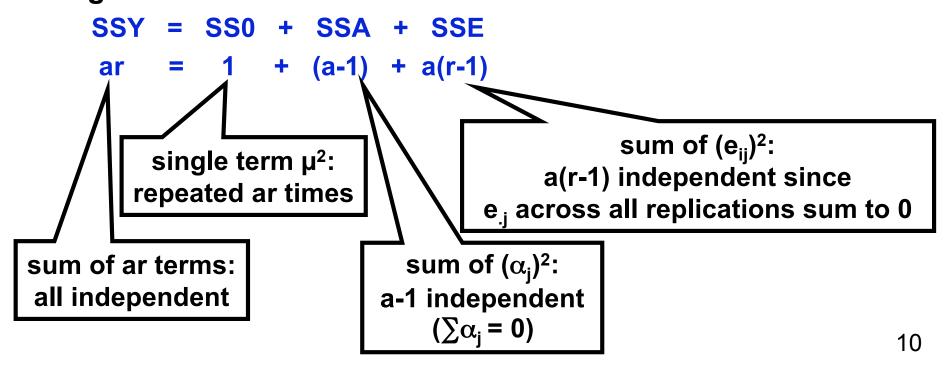
$$\sum_{j} \alpha_j = 0, \sum_{i,j} e_{ij} = 0$$

$$SSY = SSO + SSA + SSE$$

$$\sum_{j} \alpha_{j} = 0, \sum_{i,j} e_{ij} = 0$$

Total variation

$$SST = \sum_{i,j} (y_{ij} - \bar{y}_{..})^2 = \sum_{i,j} y_{ij}^2 - ar\bar{y}_{..}^2 = SSY - SSO = SSA + SSE$$


Allocating Variation for Code Size Study

R	V	Z		
144.0	101.0	130.0		
120.0	144.0	180.0		
176.0	211.0	141.0		
288.0	288.0	374.0		
144.0	72.0	302.0		
872.0	816.0	1127.0	2815.0 Grand Sum	
174.4	163.2	225.4	187.7 Grand Mear	า
-13.3	-24.5	37.7		
$lpha_{\scriptscriptstyle 1}$	$lpha_2$	α_3		
$SSY = 144^2 + 120^2 + + 302^2 = 633,639$				
(5)(1	87.7)	$)^2 = 52$	8,281.7	
$SSA = r\sum_{j} \alpha_{j}^{2} = 5((-13.3)^{2} + (-24.5)^{2} + (37.6)^{2}) = 10,992.1$				
SST = SSY - SSO = 633,639.0 - 528,281.7 = 105,357.3 SSE = SST - SSA = 105,357.3 - 10,992.1 = 94,365.2				
	$ \begin{array}{r} 144.0 \\ 120.0 \\ 176.0 \\ 288.0 \\ 144.0 \\ 872.0 \\ 174.4 \\ -13.3 \\ \alpha_1 \end{array} $ $ \begin{array}{r} \alpha_1 \\ 0^2 + \\ 0(5)(1 \\ 5((-1) \\ 0 = 6 \\ \end{array} $	$ \begin{array}{c cccc} & 144.0 & 101.0 \\ & 120.0 & 144.0 \\ & 176.0 & 211.0 \\ & 288.0 & 72.0 \\ & 872.0 & 816.0 \\ & 174.4 & 163.2 \\ & -13.3 & -24.5 \\ & \alpha_1 & \alpha_2 \\ & 0^2 + + 36 \\ & 0(5)(187.7) \\ & 5((-13.3)^2 \end{array} $ $0 = 633,63$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	144.0 101.0 130.0 120.0 144.0 180.0 176.0 211.0 141.0 288.0 288.0 374.0 144.0 72.0 302.0 872.0 816.0 1127.0 2815.0 Grand Sum 174.4 163.2 225.4 187.7 Grand Mean α_1 α_2 α_3 α_3 α_4 α_5 α_6 α_7 α_8 α_8 α_8 α_9

% variation explained by processors = 100 * SSA/SST = 100*(10,922.1/105,357.3) = 10.4%

Analyzing Variance I

- To determine if a factor is statistically significant
 - —compare its contribution with that of errors
- Unexplained variation is high →
 variation due to factor may be statistically insignificant
- Analysis of Variance (ANOVA)
- Degrees of freedom

Analyzing Variance II

Degrees of freedom

$$SSY = SSO + SSA + SSE$$

ar = 1 + (a-1) + a(r-1)

Mean square values

$$MSA = SSA/(a-1)$$

$$MSE = SSE/(a(r-1))$$

$$S_e = \sqrt{MSE}$$

- Is effect of alternative significant?
 - —if errors are normally distributed, then SSE & SSA have chisquare distributions
 - —ratio of [SSA/(a-1)]/[SSE/(a(r-1))] = MSA/MSE has F distribution
 - numerator has v_A = (a-1) degrees of freedom
 - denominator has $v_E = a(r-1)$ degrees of freedom
 - —Significant if [SSA/ v_A]/[SSE/ v_E] > $F_{[1-\alpha; vA; vE]}$ = $F_{[1-\alpha; a-1; a(r-1)]}$

Analyzing Variance for Code Size Study

R	V	Z
144.0	101.0	130.0
120.0	144.0	180.0
176.0	211.0	141.0
288.0	288.0	374.0
144.0	72.0	302.0
972 N	916 N	1127 0

observed difference mostly due to experimental error not significant difference among processors

Column Sum	872.0	816.0	1127.0	2815.0 Grand Sum
Column Mean	174.4	163.2	225.4	187.7 Grand Mear
Column Effect	-13.3	-24.5	37.7	

$$\alpha_1 \qquad \alpha_2 \qquad \alpha_3$$

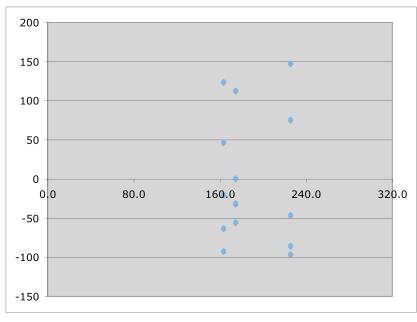
$$SSY = 144^2 + 120^2 + ... + 302^2 = 633,639$$

$$SSO = ar\mu^2 = (3)(5)(187.7)^2 = 528,281.7$$

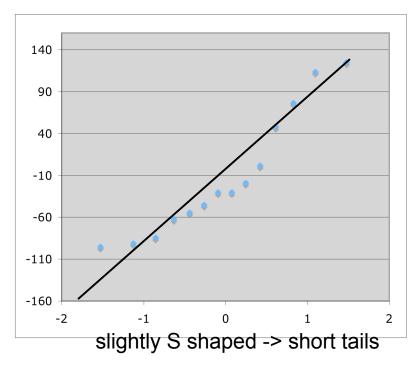
$$SSA = r\sum_{i} \alpha_{j}^{2} = 5((-13.3)^{2} + (-24.5)^{2} + (37.6)^{2}) = 10,992.1$$

$$SST = SSY - SSO = 633,639.0 - 528,281.7 = 105,357.3$$

$$SSE = SST - SSA = 105,357.3 - 10,992.1 = 94,365.2$$


MSA = SSA/2 = 5496.1; MSE = SSE/(3(5-1)) = 7863.8 MSA/MSE = .7; $F_{[.90; 2; 12]}$ = 2.81; (MSA/MSE)/ $F_{[.90; 2; 12]}$ < 1

Assumptions of One-factor Experiments


- Effects of various factors are additive
- Errors are additive
- Errors are independent of factor levels
- Errors are normally distributed
- Errors have the same variance for all factor levels

Visual Diagnostic Tests

- Same as discussed in earlier lectures
 - —quantile-quantile plot of residuals vs. predicted response
 - if plot approximately linear, can assume normality
 - —scatter plot of residuals vs. predicted response
 - confirm no trend in residuals or their spread
 - magnitude of errors smaller than response by order of magnitude → ignore trend

Variance for Effects

- Estimated model parameters are random variables
 - —based on one sample
 - —estimates from another sample would be different
- Variance of model parameters can be estimated from errors

parameter	estimate	variance
μ	$\overline{y}_{}$	s_e^2 / ar
α_{j}	$\overline{y}_{.j} - \overline{y}_{}$	$s_e^2(a-1)/ar$
$\mu + \alpha_j$	$\overline{\mathcal{Y}}_{.j}$	s_e^2/r
$\sum_{j=1}^{a} h_j \alpha_j,$		
$\sum_{j=1}^{a} h_{j} = 0$	$\sum_{j=1}^{a} h_j \overline{y}_{\cdot j}$	$\sum_{j=1}^{a} s_e^2 h_j^2 / ar$
s_e^2	$\sum e_{ij}^2 / (a(r-1))$	

Variance for µ

• Expression for μ in terms of random variables y_{ij} 's

$$\mu = \frac{1}{ar} \sum_{i=1}^{a} \sum_{j=1}^{r} y_{ij}$$

What is the coefficient a_{ij} for each y_{ij}?

$$a_{ij} = \left\{ \frac{1}{ar} \right\}$$

$$Var(\mu) = Var\left(\frac{1}{ar}\sum_{i=1}^{a}\sum_{j=1}^{r}y_{ij}\right)$$

Assuming

errors normally distributed zero mean, variance $(\sigma_e)^2$

What is the variance for μ ?

$$\sigma_{\mu}^{2} = \left(ar\left(\frac{1}{ar}\right)^{2}\right)\sigma_{e}^{2}$$
$$= \frac{1}{ar}\sigma_{e}^{2}$$

Variance for α_i

Expression for α_{i} in terms of random variables $\textbf{y}_{\text{ii}}\text{'s}$

$$\alpha_{j} = \overline{y}_{.j} - \mu = \overline{y}_{.j} - \overline{y}_{.i} = \frac{1}{r} \sum_{i=1}^{r} y_{ij} - \frac{1}{ar} \sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij}$$

What is the coefficient a_{iki} for each y_{ik} for α_{j} ?

$$a_{ikj} = \begin{cases} \frac{1}{r} - \frac{1}{ar} & k = j \\ -\frac{1}{ar} & \text{otherwise} \end{cases}$$
 Assuming errors normally distributed zero mean, variance $(\sigma_e)^2$ What is the variance for α_j ?

$$Var(e_{\alpha_j}) = Var\left(\sum_{i=1}^r \sum_{k=1}^a a_{ikj} y_{ik}\right)$$

• Var of error
$$\mathbf{e}_{\alpha \mathbf{j}}$$
 for $\alpha_{\mathbf{j}}$

$$Var(e_{\alpha_{j}}) = Var\left(\sum_{i=1}^{r}\sum_{k=1}^{a}a_{ikj}y_{ik}\right)$$

$$= \frac{(a-1)}{ar}\sigma_{e}^{2}$$

Linear Contrasts

Linear combinations of effects

$$\sum_{j=1}^{a} h_j \alpha_j \qquad \text{where} \qquad \sum_{j=1}^{a} h_j = 0$$

mean =
$$\sum_{j=1}^{a} h_j \overline{y}_{.j}$$
 variance = $\sum_{j=1}^{a} h_j^2 s_e^2 / ar$

Confidence Intervals for Effects

 Compute confidence intervals with t values read out of table at a(r-1) degrees of freedom (DOF of errors)